Skip to main content

Phytoremediation of Heavy Metals Contaminated Soils Through Transgenic Plants

  • Chapter
  • First Online:
Phytoremediation

Abstract

The contamination of the environment with toxic metals has become a worldwide problem. Metal toxicity affects crop yields, soil biomass, and fertility. Soils polluted with heavy metals pose a serious health hazard to humans as well as plants and animals, and often requires soil remediation practices. Phytoremediation, the use of plants and their associated microbes to remedy contaminated soils, sediments, and groundwater, is emerging as a cost-effective and environment friendly technology. Phytoremediation uses different plant processes and mechanisms normally involved in the accumulation, complexation, volatilization, and degradation of organic and inorganic pollutants. Certain plants, called hyperaccumulators, are good candidates in phytoremediation, particularly for the removal of heavy metals. Phytoremediation efficiency of plants can be substantially improved using genetic engineering technologies. Recent research results, including overexpression of genes whose protein products are involved in metal uptake, transport, and sequestration, or act as enzymes involved in the degradation of hazardous organics, have opened up new possibilities in phytoremediation of heavy metal-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khan S, Hesham AEL, Qiao M, Rehman S, He JZ (2010) Effects of Cd and Pb on soil microbial community structure and activities. Environ Sci Pollut Res 17:288–296

    Article  CAS  Google Scholar 

  2. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  3. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  4. Chaney RL (1983) Plant uptake of inorganic waste. In: Parr JE et al (eds) Land treatment of hazardous wastes. Noyes Data, Park Ridge, pp 50–76

    Google Scholar 

  5. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  6. Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7(7):309–315

    Article  CAS  PubMed  Google Scholar 

  7. Rascioa N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci 80:169–181

    Article  CAS  Google Scholar 

  8. Auburn AL. Heavy metal soil contamination. soil quality—Urban Technical Note No. 3. 2000. United States Department of Agriculture Natural Resources Conservation Service.

    Google Scholar 

  9. Pehlivan E, Ozkan AM, Dinç S, Parlayici S (2009) Adsorption of Cu2+ and Pb2+ ion on dolomite powder. J Hazard Mater 167(1–3):1044–1049

    Article  CAS  PubMed  Google Scholar 

  10. Roy S, Labelle S, Mehta P et al (2005) Phytoremediation of heavy metal and PAH-contaminated Brownfield sites. Plant Soil 272(1-2):277–290

    Article  CAS  Google Scholar 

  11. Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86(4):528–534

    CAS  Google Scholar 

  12. Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161. doi:10.1155/2011/939161, 31 p

    Article  Google Scholar 

  13. USEPA (1996) Report: recent developments for in situ treatment of metals contaminated soils. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  14. Shiowatana J, McLaren RG, Chanmekha N, Samphao A (2001) Fractionation of arsenic in soil by a continuous flow sequential extraction method. J Environ Qual 30(6):1940–1949

    Article  CAS  PubMed  Google Scholar 

  15. Buekers J (2007) Fixation of cadmium, copper, nickel and zinc in soil: kinetics, mechanisms and its effect on metal bioavailability, Ph.D. thesis, Katholieke Universiteit Lueven, DissertationesDe Agricultura, Doctoraatsprooefschrift nr

    Google Scholar 

  16. Levy DB, Barbarick KA, Siemer EG, Sommers LE (1992) Distribution and partitioning of trace metals in contaminated soils near Leadville, Colorado. J Environ Qual 21(2):185–195

    Article  CAS  Google Scholar 

  17. Wuana RA, Okieimen FF (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647. doi:10.5402/2011/402647, 20 p

    Google Scholar 

  18. USDHHS (1999) Toxicological profile for lead. United States Department of Health and Human Services, Atlanta

    Google Scholar 

  19. Kabata-Pendias A, Pendias H (2001) Trace metals in soils and plants, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  20. GWRTAC (1997) Remediation of metals-contaminated soils and groundwater. Rep. TE-97-01, GWRTAC-E Series. GWRTAC, Pittsburgh

    Google Scholar 

  21. Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  22. NSC, Lead Poisoning, National Safety Council (2009). http:// www.nsc.org/news resources/Resources/Documents/Lead Poisoning.pdf

  23. Baldwin DR, Marshall W (1999) Heavy metal poisoning and its laboratory investigation. Ann Clin Biochem 36(3):267–300

    Article  CAS  PubMed  Google Scholar 

  24. Rosen CJ (2002) Lead in the home garden and urban soil environment. Communication and Educational Technology Services, University of Minnesota Extension, St Paul

    Google Scholar 

  25. Smith LA, Means JL, Chen A (1995) Remedial options for metals-contaminated sites. Lewis, Boca Raton

    Google Scholar 

  26. Bodek I, Lyman WJ, Reehl WF, Rosenblatt DH (eds) (1988) Environmental inorganic chemistry: properties, processes and estimation methods. Pergamon Press, New York

    Google Scholar 

  27. Scragg A (2006) Environmental biotechnology, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  28. Davies BE, Jones LHP (1988) Micronutrients and toxic elements. In: Wild A (ed) Russell’s soil conditions and plant growth, 11th edn. Wiley, New York, pp 781–814

    Google Scholar 

  29. Greany KM (2005) An assessment of heavy metal contamination in the marine sediments of Las Perlas Archipelago, M.S. thesis. School of Life Sciences, Heriot-Watt University, Edinburgh

    Google Scholar 

  30. Campbell PGC (2006) Cadmium-A priority pollutant. Environ Chem 3(6):387–388

    Article  CAS  Google Scholar 

  31. Weggler K, McLaughlin MJ, Graham RD (2004) Effect of chloride in soil solution on the plant vailability of biosolid-borne cadmium. J Environ Qual 33(2):496–504

    Article  CAS  PubMed  Google Scholar 

  32. McLaughlin MJ, Hamon RE, McLaren RG, Speir TW, Rogers SL (2000) Review: a bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust J Soil Res 38(6):1037–1086

    Article  CAS  Google Scholar 

  33. Manahan SE (2003) Toxicological chemistry and biochemistry, 3rd edn. CRC, Boca Raton

    Google Scholar 

  34. VCI (2011) Copper history/future. Van Commodities. http://trademetalfutures.com/copperhistory.html

  35. Martínez CE, Motto HL (2000) Solubility of lead, zinc and copper added to mineral soils. Environ Pollut 107(1):153–158

    Article  PubMed  Google Scholar 

  36. Eriksson J, Andersson A, Andersson R (1997) The state of Swedish farmlands. Tech. Rep. 4778. Swedish Environmental Protection Agency, Stockholm

    Google Scholar 

  37. Bjuhr J (2007) Trace metals in soils irrigated with waste water in a periurban area downstream Hanoi City, Vietnam, Seminar Paper. Institutionen för markvetenskap, Sveriges lantbruksuniversitet (SLU), Uppsala

    Google Scholar 

  38. Pourbaix M (1974) Atlas of electrochemical equilibria. Pergamon Press, New York, Translated from French by J.A. Franklin

    Google Scholar 

  39. Khodadoust AP, Reddy KR, Maturi K (2004) Removal of nickel and phenanthrene from kaolin soil using different extractants. Environ Eng Sci 21(6):691–704

    Article  CAS  Google Scholar 

  40. The Conservation Foundation (1987) State of the environment: a view toward the nineties. The Conservation Foundation, Washington, DC

    Google Scholar 

  41. Pirbazari M, Badriyha BN, Ravindran V, Kim S (1989) Treatment of landfill leachate by biologically active carbon adsorbers. In: Bell JM (ed) Proceedings of 44th annual Purdue conference on industrial wastes. Lewis, Chelsea, pp 555–563

    Google Scholar 

  42. Adriano DC (2001) Trace elements in the terrestrial environments. Biogeochemistry, bioavailability, and risks of heavy metals, 2nd edn. Springer, New York

    Book  Google Scholar 

  43. Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17. doi:10.1007/s10311-009-0268-0

    Article  CAS  Google Scholar 

  44. Basta NT, Ryan JA, Chaney RL (2005) Trace element chemistry in residual-treated soil. Key concepts and metal bioavailability. J Environ Qual 34:49–63

    Article  CAS  PubMed  Google Scholar 

  45. Cataldo DA, Wildung RE (1978) Soil and plant factors influencing the accumulation of heavy metals by plants. Environ Health Perspect 27:149–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cataldo DA, Garland TR, Wildung RE (1978) Nickel in plants: II. Distribution and chemical form in soybean plants. Plant Physiol 62:566–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gaweda M, Capecka E (1995) Effect of substrate pH on the accumulation of lead in radish (Raphanus sativus L. subvar. radicula) and spinach (Spinacia oleracea L.). Acta Physiol Plant 17:333–340

    CAS  Google Scholar 

  48. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  49. Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  CAS  PubMed  Google Scholar 

  50. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719

    Article  CAS  PubMed  Google Scholar 

  51. Marin AR, Masscheleyn PH, Patrick WH Jr (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139:175–183

    Article  CAS  Google Scholar 

  52. Tiwari KK, Dwivedi S, Singh NK, Rai UN, Tripathi RD (2009) Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients. J Environ Biol 30:389–394

    CAS  PubMed  Google Scholar 

  53. Mellem JJ, Baijnath H, Odhav B (2009) Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. J Environ Sci Heal A 44:568–575

    Article  CAS  Google Scholar 

  54. Probst A, Liu H, Fanjul M, Liao B, Hollande E (2009) Response of Vicia faba L. to metal toxicity on mine tailing substrate: geochemical and morphological changes in leaf and root. Environ Exp Bot 66:297–308

    Article  CAS  Google Scholar 

  55. Barcelo J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Science 2:333–344

    Google Scholar 

  56. Onwubuya K, Cundy A, Puschenreiter M, Kumpiene J, Bone B, Greaves J, Teasdale P, Mench M, Tlustos P, Mikhalovsky S, Waite S, Friesl-Hanl W, Marschner B, Muller I (2009) Developing decision support tools for the selection of ‘gentle’ remediation approaches. Sci Environ 407:6132–6142

    CAS  Google Scholar 

  57. Gomes HI (2012) Phytoremediation for bioenergy: challenges and opportunities. Environ Technol Rev 1:59–66

    Article  CAS  Google Scholar 

  58. Rajeswari PM (2014) Phytoremediation-insights into plants as remedies. Malaya Journal of Biosciences 1(1):41–45, ISSN 2348-6236 print /2348-3075 online

    Google Scholar 

  59. Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110(3):715–719

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Helmisaari HS, Salemaa M, Derome J, Kiikkilä O, Uhlig C, Nieminen TM (2007) Remediation of heavy metal contaminated forest soil using recycled organic matter and native woody plants. J Environ Qual 36(4):1145–1153

    Article  CAS  PubMed  Google Scholar 

  61. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotech 8:279–284

    Article  CAS  PubMed  Google Scholar 

  62. Henry RJ (2000) An overview of the phytoremediation of lead and mercury. Office of Solid Waste and Emergency Response Technology, Innovation office, United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  63. Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77(3):229–236

    Article  CAS  PubMed  Google Scholar 

  64. Raskin I (1996) Plant genetic engineering may help with environmental cleanup. Proc Natl Acad Sci U S A 93:3164–3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Anderson TA, Coats JR (1995) An overview of microbial degradation in the rhizosphere and its implications for bioremediation. In: Skipper HD, Turco RF (eds) Bioremediation, science and applications. SSSA/ASA/CSS, Madison, pp 135–143

    Google Scholar 

  66. Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Article  Google Scholar 

  67. USEPA (2000) Introduction to phytoremediation. Tech. Rep. EPA 600/R-99/107. Office of Research and Development, United States Environmental Protection Agency, Cincinnati

    Google Scholar 

  68. Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8(6):921–928

    CAS  Google Scholar 

  69. Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal mine waste. Appl Ecol Environ Res 8:207–222

    Google Scholar 

  70. Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    Article  CAS  Google Scholar 

  71. Karlson U, Frankenberger WT Jr (1989) Accelerated rates of selenium volatilization from California soils. Soil Sci Soc Am J 53:749–753

    Article  CAS  Google Scholar 

  72. Bauelos GS, Meek DW (1990) Accumulation of selenium in plants grown on selenium-treated soil. J Environ Qual 19:772

    Article  Google Scholar 

  73. Bauelos GS, Cardon G, Mackey B, Ben-Asher J, Wu L, Beuselinck P, Akohoue S, Zambrzuski S (1993) Plant and environment interactions, boron and selenium removal in boron-laden soils by four sprinkler irrigated plant species. J Environ Qual 22:786–792

    Article  Google Scholar 

  74. Zayed AM, Terry N (1994) Selenium volatilization in roots and shoots: effects of shoot removal and sulfate level. J Plant Physiol 143:8–14

    Article  CAS  Google Scholar 

  75. Terry N, Carlson C, Raab TK, Zayed AM (1992) Rates of selenium volatilization among crop species. J Environ Qual 21:341–344

    Article  CAS  Google Scholar 

  76. Neuhierl B, Böck A (1996) On the mechanism of selenium tolerance in selenium-accumulating plants: purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisculatus. Eur J Biochem 239:235–238

    Article  CAS  PubMed  Google Scholar 

  77. Fox B, Walsh CT (1982) Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide. J Biol Chem 253:4341–4348

    Google Scholar 

  78. Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci U S A 93:3182–3187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  PubMed  Google Scholar 

  80. Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York

    Book  Google Scholar 

  81. Adriano DC (1992) Biogeochemistry of trace metals. Lewis, Boca Raton

    Google Scholar 

  82. Alloway BJ (1990) Soil processes and behaviour of metals. In: Alloway BJ (ed) Heavy metals in soils. Blackie, Glasgow, pp 7–28

    Google Scholar 

  83. Meeuseen JCL, Keizer MG, Reimsdijk WH, Haan FAM (1994) Solubility of cyanide in contaminated soil. J Environ Qual 23:785–792

    Article  Google Scholar 

  84. Raskin I, Kumar PBAN, Dushenkov S, Salt D (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  85. Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Article  Google Scholar 

  86. Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  PubMed  Google Scholar 

  87. Barceló J, Vázquez MD, Mádico J, Poschenrieder C (1994) Hyperaccumulation of zinc and cadmium in Thlaspi caerulescens. In: Varnavas SP (ed) Environmental contamination. CEP, Edinburgh, pp 132–134

    Google Scholar 

  88. Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Min Proc Einviron Protect 3:229–236

    Google Scholar 

  89. van der Lelie D, Schwitzguébel JP, Glass DJ, Vangronsveld J, Baker A (2001) Assessing phytoremediation progress in the United States and Europe. Environ Sci Technol 35:446–452

    Article  Google Scholar 

  90. Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  91. Yoon J, Cao X, Zhou O (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  PubMed  Google Scholar 

  92. McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, pp 261–287

    Google Scholar 

  93. Robinson BH, Meblanc L, Petit D, Broks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    Article  CAS  Google Scholar 

  94. Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp p193–p229

    Google Scholar 

  95. Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subs Res 2:1–25

    Google Scholar 

  96. Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 85–107

    Google Scholar 

  97. McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  PubMed  Google Scholar 

  98. Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY, Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci U S A 96:5973–5977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guerinot ML, Salt DE (2001) Fortified foods and phytoremediation: two sides of the same coin. Plant Physiol 125:164–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Peuke AD, Rennenberg H (2005) Phytoremediation: molecular biology, requirements for application, environmental protection, public attention and feasibility. EMBO Rep 6:497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. and C. Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  102. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    Article  CAS  PubMed  Google Scholar 

  103. Boyd RS, Martens SN (1992) The raison d’être for metal hyperaccumulation by plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, UK, pp 279–289

    Google Scholar 

  104. Macnair MR (1993) The genetics of metal tolerance in vascular plants. New Phytol 124:541–559

    Article  CAS  Google Scholar 

  105. Boyd RS, Marten SN (1994) SN Ni hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore. Oikos 70:21–25

    Article  CAS  Google Scholar 

  106. Huitson SB, Macnair MR (2003) Does Zn protect the Zn hyperaccumulator Arabidopsis halleri from herbivory by snails? New Phytol 159:453–459

    Article  CAS  Google Scholar 

  107. Boyd RS (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293:153–176

    Article  CAS  Google Scholar 

  108. Noret N, Meerts P, Vanhaelen M, Dos Santos A, Escarré J (2007) Do metal-rich plants deter herbivores? A field test of the defence hypothesis. Oecologia 152:92–100

    Article  PubMed  Google Scholar 

  109. Galeas ML, Klamper EM, Bennett LE, Freeman JL, Kondratieff BC, Quinn CF, Pilon-Smits EA (2008) Selenium hyperaccumulation reduces plant arthropod loads in the field. New Phytol 177:715–724

    Article  CAS  PubMed  Google Scholar 

  110. Baker AJM, Whiting SN (2002) In search of the Holy Grail—a further step in understanding metal hyperaccumulation? New Phytol 155:1–7

    Article  Google Scholar 

  111. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Plant Soil 184:105–126

    CAS  Google Scholar 

  112. Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants - biodiversity prospecting for phytoremediation technology. Electronic J Biotechnol 6:275–321

    Article  Google Scholar 

  113. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  114. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kenelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  PubMed  Google Scholar 

  115. Zhang W, Cai Y, Tu C, Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci Total Environ 300:167–177

    Article  CAS  PubMed  Google Scholar 

  116. Brown SL, Chaney RF, Angle JS, Baker AJM (1995) Zn and Cd uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris, grown on sludge-amended soils. Environ Sci Tech 29:1581–1585

    Article  CAS  Google Scholar 

  117. Basic N, Keller C, Fontanillas P, Vittoz P, Besnard G, Galland N (2006) Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens populations. Plant Biol 8:64–72

    Article  CAS  PubMed  Google Scholar 

  118. Shah K, Nongkynrih JM (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51:618–634

    Article  CAS  Google Scholar 

  119. Ebbs SD, Lasat MM, Brandy DJ, Cornish J, Gordon R, Kochian LV (1997) Heavy metals in the environment: phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26:1424–1430

    Article  CAS  Google Scholar 

  120. Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  CAS  PubMed  Google Scholar 

  121. Capuana M (2011) Heavy metals and woody plants-biotechnologies for phytoremediation. iForest 4:7–15

    Article  Google Scholar 

  122. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    Article  CAS  PubMed  Google Scholar 

  123. Rosselli W, Keller C, Boschi K (2003) Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 256:265–272

    Article  CAS  Google Scholar 

  124. Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68

    Article  CAS  Google Scholar 

  125. Unterbrunner R, Puschenreiter M, Sommer P, Wieshammer G, Tlustos P, Zupan M (2007) Heavy metal accumulation in tree growing on contaminated sites in Central Europe. Environ Poll 148:107–114

    Article  CAS  Google Scholar 

  126. Brunner I, Luster J, Günthardt-Goerg MS, Frey B (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Poll 152:559–568

    Article  CAS  Google Scholar 

  127. Domínguez MT, Marañón T, Murillo JM, Schulin R, Robinson BH (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Poll 152:50–59

    Article  CAS  Google Scholar 

  128. Fischerová Z, Tlustos P, Száková J, Sichorova K (2006) A comparison of phytoremediation capability of selected plant species for given trace elements. Environ Poll 144:93–100

    Article  CAS  Google Scholar 

  129. Keller C, Diallo S, Cosio C, Basic N, Galland N (2006) Cadmium tolerance and hyperaccumulation by Thlaspi caerulescens populations grown in hydroponics are related to plant uptake characteristics in the field. Func Plant Biol 33:673–684

    Article  CAS  Google Scholar 

  130. Mench M, Lepp N, Bert V, Schwitzguébel JP, Gawronski SW, Schröder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcome, assessment and outlook from COST Action 859. J Soil Sedim 10:1039–1070

    Article  CAS  Google Scholar 

  131. Brown SL, Chaney RL, Angle IS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Am J 59:125–133

    Article  CAS  Google Scholar 

  132. Lefebvre DD, Mild DBL, Laliberte JF (1987) Mammalian metallothionein functions in plants. BiofTechnoI 5:1053–1056

    CAS  Google Scholar 

  133. Maiti LB, Wagner GJ, Hunt AG (1991) Light inducible and tissue specific expression of a chimeric mouse metallothionein cDNA gene in tobacco. Plant Sci 76:99–107

    Article  CAS  Google Scholar 

  134. Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Macková M (2007) Novel roles for genetically modified plants in environmental protection. Trends Biotech 26:146–152

    Article  CAS  Google Scholar 

  135. Kamnev AA, van der Lelie D (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci Rep 20:239–258

    Article  CAS  PubMed  Google Scholar 

  136. Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of Hg pollution in soil and water using bacterial genes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 201–221

    Google Scholar 

  137. Nedelkoska TV, Doran PM (2000) Hyperaccumulation of Cd by hairy roots of Thlaspi caerulescens. Biotechnol Bioeng 67:607–615

    Article  CAS  PubMed  Google Scholar 

  138. Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Tibtech 13:393–397

    Article  CAS  Google Scholar 

  139. Fulekar MH, Singh A, Bhaduri AM (2008) Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr J Biotechnol 8(4):529–535

    Google Scholar 

  140. Mello-Farias PCD, Chaves ALS, Lencina CL (2011) Transgenic plants for enhanced phytoremediation—physiological studies. In: Alvarez M (ed.) Genetic transformation. InTech. ISBN: 978-953-307-364-4. http://www.intechopen.com/books/genetictransformation/transgenic-plants-for-enhanced-phytoremediation-physiological-studies

  141. Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  CAS  PubMed  Google Scholar 

  142. Mello-Farias PC, Chaves ALS (2008) Biochemical and molecular aspects of toxic metals phytoremediation using transgenic plants. In: Tiznado-Hernandez ME, Troncoso-Rojas R, Rivera-Domínguez MA (eds) Transgenic approach in plant biochemistry and physiology. Research Signpost, Kerala, pp 253–266

    Google Scholar 

  143. Yang X, Jin XF, Feng Y, Islam E (2005) Molecular mechanisms and genetic bases of heavy metal tolerance/hyperaccumulation in plants. Journal of Integrative PlantBiology 47(9):1025–1035

    Article  CAS  Google Scholar 

  144. Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692

    Article  CAS  Google Scholar 

  145. de la Fuente JM, Ramírez-Rodríguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    Article  PubMed  Google Scholar 

  146. Zhu Y, Pilon-Smits EAH, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 

  147. Zhu Y, Pilon-Smits EAH, Tarun A, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian tase. Plant Physiol 121:1169–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of the pea metallothionein- like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: Implications for gene PsMTA function. Plant Mol Biol 20:1019–1028

    Article  CAS  PubMed  Google Scholar 

  149. Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP I). Plant Soil 196:277–281

    Article  CAS  Google Scholar 

  150. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  CAS  PubMed  Google Scholar 

  151. Samuelsen AI, Martin RC, Mok DWS, Machteld CM (1998) Expression of the yeast FRE genes in transgenic tobacco. Plant Physiol 118:51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasmamembrane calmodulin-binding transporter confers Ni2-tolerance and Pb2-hypersensitivity in transgenic plants. Plant J 20:171–182

    Article  CAS  PubMed  Google Scholar 

  153. Van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JAC, Hooykaas PJJ (1999) Overexpres sion of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Article  PubMed  PubMed Central  Google Scholar 

  154. Curie C, Alonso JM, Le Jean V, Ecker JR, Briat JF (2000) Involvement of Nramp1 from Arabidopsis thaliana in iron trans port. Biochem J 347:749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) bioremediation and biodegradation. analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440

    Article  CAS  PubMed  Google Scholar 

  157. Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21(5):439–456

    Article  CAS  Google Scholar 

  158. MacNair MR, Tilstone GH, Smith SE (2000) The genetics of metal tolerance and accumulation in higher plants. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 235–250

    Google Scholar 

  159. Wu L (1990) Colonization and establishment of plants in contaminated sites. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 269–284

    Google Scholar 

  160. Seth CS (2011) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Botanical Review 78:9092. doi:10.1007/s12229-011-9092-x

    Google Scholar 

  161. Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78:16–18

    Article  Google Scholar 

  162. Pan A, Yang M, Tie F, Li L, Chen Z, Ru B (1994) Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351

    Article  CAS  PubMed  Google Scholar 

  163. Dorlhac de Borne F, Elmayan T, De Roton C, De Hys L, Tepfer M (1998) Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Molecul Breeding 4:83–90

    Article  Google Scholar 

  164. Pavlikova D, Macek T, Mackova M, Sura M, Szakova J, Tlustos P (2004) The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes. Plant Soil Environ 50:513–517

    CAS  Google Scholar 

  165. Macek T, Macková M, Pavlíková D, Száková J, Truksa M, Singh Cundy A, Kotrba P, Yancey N, Scouten H (2002) Accumulation of cadmium by transgenic tobacco. Acta Biotechnol 22:101–106

    Article  CAS  Google Scholar 

  166. Suh MC et al (1998) Cadmium resistance in transgenic tobacco plants expressing the Nicotiana glutinosa L. metallothionein-like gene. Mol Cells 8:678–684

    CAS  PubMed  Google Scholar 

  167. Elmayan T, Tepfer M (1994) Synthesis of a bifunctional metallothionein β-glucuronidase fusion protein in transgenic tobacco plants as a means of reducing leaf cadmium levels. Plant J 6:433–440

    Article  CAS  PubMed  Google Scholar 

  168. Stefanov I et al (1997) Effect of cadmium treatment on the expression of chimeric genes in transgenic seedlings and calli. Plant Cell Rep 16:291–294

    Article  CAS  Google Scholar 

  169. Mejáre M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19(2):67–73

    Article  PubMed  Google Scholar 

  170. Balasundaram U, Venkataraman G, George S, Parida A (2014) Metallothioneins from a hyperaccumulating plant Prosopis juliflora show difference in heavy metal accumulation in transgenic tobacco. Int J Agric Environ Biotechnol 7(2):241–246, 10.5958/2230-732X.2014.00240.X

    Article  Google Scholar 

  171. Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Harada E, Choi YE, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. J Plant Physiol 158:655–661

    Article  CAS  Google Scholar 

  173. Reisinger S, Schiavon M, Terry N, Pilon-Smits EAH (2008) Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial gamma-glutamylcysteine synthetase or glutathione synthetase. Int J Phytoremediat 10:440–454

    Article  CAS  Google Scholar 

  174. GuoJ XW, Maa M (2012) The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hazard Mater 199–200:309–313. doi:10.1016/j.jhazmat.2011.11.008

    Google Scholar 

  175. Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Marrs KA (1996) The functions and regulation of glutathione S-transferase in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  CAS  PubMed  Google Scholar 

  177. López-Bucio J, Martinez de la Vega O, Guevara-García A, Herrera-Estrella L (2000) Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat Biotechnol 18:450–453

    Google Scholar 

  178. Guerinot ML (2001) Improving rice yields—ironing out the details. Nature Biotechnol 19:417–418

    Article  CAS  Google Scholar 

  179. Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32:2004–2008

    Article  CAS  Google Scholar 

  180. Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  PubMed  Google Scholar 

  181. Han YY, Zhang WZ, Zhang BL, Zhang SS, Wang W, Ming F (2009) One novel mitochondrial citrate synthase from Oryza sativa L. can enhance aluminum tolerance in transgenic tobacco. Mol Biotechnol 42:299–305

    Article  CAS  PubMed  Google Scholar 

  182. Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Meda AR, Scheuermann EB, Prechsl UE, Erenoglu B, Schaaf G, Hayen H, Weber G, von Wirén N (2007) Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiol 143:1761–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Sappin-Didier V, Vansuyts G, Mench M, Briat JF (2005) Cadmium availability at different soil pH to transgenic tobacco overexpressing ferritin. Plant Soil 270:189–197

    Article  CAS  Google Scholar 

  185. Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nature Biotechnol 19:466–469

    Article  CAS  Google Scholar 

  186. Goto F, Yoshihara T, Saiki H (1998) Iron accumulation in tobacco plants expressing soyabean ferritin gene. Transgenic Res 7:173–180

    Article  CAS  Google Scholar 

  187. Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci U S A 98:9995–10000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Shaul O, Hilgemann DW, de Almedia-Engler J, Van Montagu M, Inze D, Galili G (1999) Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO J 18:3973–3980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke IN, Maathuis FJM, Sanders D, Bouchez D, Fromm H (2000) Plant J 24:533–542

    Article  CAS  PubMed  Google Scholar 

  190. Delhaize E (1996) A metal accumulator mutant of Arabidopsis thaliana. Plant Physiol 111:849–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    Article  CAS  PubMed  Google Scholar 

  192. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci U S A 97:12356–12360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kiyono M, Oka Y, Sone Y, Nakamura R, Sato MH, Sakabe K, Pan-Hou H (2013) Bacterial heavy metal transporter MerC increases mercury accumulation in Arabidopsis thaliana. Biochem Eng J 71:19–24

    Article  CAS  Google Scholar 

  195. Mouhamada R, Ibrahimb K, Alib N, Ghanemc I, Al-Daoudec A (2014) Determination of heavy metal uptake in transgenic plants harbouring the rabbit CYP450 2E1 using X-ray fluorescence analysis. Int J Environ Stud 71(3):292–300. doi:10.1080/00207233.2014.909681

    Google Scholar 

  196. Summers AO (1986) Organization, expression, and evolution of genes for mercury resistance. Annu Rev Microbiol 40:607–634

    Article  CAS  PubMed  Google Scholar 

  197. Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nature Biotechnol 18:213–217

    Article  CAS  Google Scholar 

  198. Rugh CL, Bizily SP, Meagher RB (2000) Phytoreduction of environmental mercury pollution. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals—using plants to clean up the environment. Wiley, New York, pp 151–171

    Google Scholar 

  199. Dhankher OP, Li YJ, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthase expression. Nat Biotechnol 20:1140–1150

    Article  CAS  PubMed  Google Scholar 

  200. Chen L et al (1998) Expression and inheritance of multiple transgenes in rice plants. Nature Biotechnol 16:1060–1064

    Article  CAS  Google Scholar 

  201. Brewer EP, Saunders JA, Angle JS, Chaney RL, McIntosh MS (1999) Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor Appl Genet 99:761–771

    Article  CAS  Google Scholar 

  202. Oberschall A, Deak M, Torok K, Sass L, Vass I, Kovacs I, Feher A, Dudits D, Horvath GV (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stress. Plant J 24:437–446

    Article  CAS  PubMed  Google Scholar 

  203. Pilon-Smits EAH, Zhu YL, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiol Plant 110:455–460

    Article  CAS  Google Scholar 

  204. Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol 81:45–53

    Article  CAS  PubMed  Google Scholar 

  205. Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellins biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788

    Article  CAS  PubMed  Google Scholar 

  206. Gisbert C, Ros R, De Haro A, Walker DJ, Bernal MP, Serrano R, Navarro-Avino J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    Article  CAS  PubMed  Google Scholar 

  207. Rugh CL, Seueoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  CAS  PubMed  Google Scholar 

  208. Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Over expression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Li TQ, Yang XE, Long XX (2004) Potential of using Sedum alfredii for phytoremediating multi-metal contaminated soils. Journal of Soil Water Conservation 18:79–83

    Google Scholar 

  210. Mohammadi M, Chalavi V, Novakova-Sura M, Laliberte JF, Sylvestre M (2007) Expression of bacterial biphenyl-chlorophenyl dioxygenase genes in tobacco plants. Biotechnology Bioengineering 97:496–505

    Article  CAS  PubMed  Google Scholar 

  211. Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290:2088–2093

    Article  CAS  PubMed  Google Scholar 

  212. Glass DJ (1999) U.S. and international markets for phytoremediation, 1999–2000. D. Glass, Needham

    Google Scholar 

  213. Lin Z-Q, Schemenauer RS, Cervinka V, Zayed A, Lee A, Terry N (2000) Selenium volatilization from the soil—Salicornia bigelovii Torr treatment system for the remediation of contaminated water and soil in the San Joaquin Valley. J Environ Qual 29:1048–1056

    Article  CAS  Google Scholar 

  214. Herbik A, Koch G, Mock HP, Dushkov D, Czihal A, Thielmann J, Stephan UW, Bäumlein H (1999) Isolation, characterization and cDNA cloning of nicotianamine synthase from barley — a key enzyme for iron homeostasis in plants. Eur J Biochem 265:231–239

    Article  CAS  PubMed  Google Scholar 

  215. Ling HQ, Koch G, Bäumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci U S A 96:7098–7103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (strategy II) in graminaceous plants. Plant Physiol 121:947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBOJ 18:3325–3333

    Article  CAS  Google Scholar 

  218. Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci U S A 96:7110–7115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Lu YP, Li ZS, Rea PA (1997) AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene. Proc Natl Acad Sci U S A 94:8243–8248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Persans MW, Yan X, Patnoe JML, Krämer U, Salt DE (1999) Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy). Plant Physiol 121:1117–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Krämer U, Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672

    Article  PubMed  Google Scholar 

  223. Wallace A, Mueller RT, Wood RA (1980) Arsenic phytotoxicity and interactions in bush bean plants grown in solution culture. J Plant Nutr 2:111–113

    Article  CAS  Google Scholar 

  224. Förstner U (1995) Land contamination by metals: global scope and magnitude of problem. In: Allen HE, Huang CP, Bailey GW, Bowers AR (eds) Metal speciation and contamination of soil. CRC Press, Boca Raton, pp 1–33

    Google Scholar 

  225. Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75:979–986

    Article  CAS  PubMed  Google Scholar 

  226. McCutcheon SC, Schnoor JL (2003) Phytoremediation. Wiley, Hoboken

    Book  Google Scholar 

  227. Terry N, Bañuelos GS (2000) Phytoremediation of contaminated soil and water. CRC, Boca Raton

    Google Scholar 

  228. Visoottiviseth P, Francesconi K, Sridokchan V (2002) The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ Pollut 118:453–461

    Article  CAS  PubMed  Google Scholar 

  229. Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

  230. Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    Article  CAS  Google Scholar 

  231. Moradi AB, Swoboda S, Robinson B, Prohaska T, Kaestner A, Oswald SE, Wenzel WW, Schulin R (2010) Mapping of nickel in root cross-sections of the hyperaccumulator plant Berkheya coddii using laser ablation ICP-MS. Environ Exp Bot 69:24–31

    Article  CAS  Google Scholar 

  232. Becerra-Castro C, Monterroso C, Garcia-Leston M, Prieto-Fernandez A, Acea MJ, Kidd PS (2009) Rhizosphere microbial densities and trace metal tolerance of the nickel hyperaccumulator Alyssum serpyllifolium subsp. lusitanicum. Int J Phytoremed 11:525–541

    Article  CAS  Google Scholar 

  233. Barzanti R, Colzi I, Arnetoli M, Gallo A, Pignattelli S, Gabbrielli R, Gonnelli C (2011) Cadmium phytoextraction potential of different Alyssum species. J Hazard Mater 196:66–72

    Article  CAS  PubMed  Google Scholar 

  234. Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    Article  CAS  PubMed  Google Scholar 

  235. Perrier N (2004) Nickel speciation in Sebertia acuminata, a plant growing on a lateritic soil of New Caledonia. Geoscience 336:567–577

    Article  CAS  Google Scholar 

  236. Reeves RD, Baker AJM, Borhidi A, Berazain R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83:29–38

    Article  CAS  Google Scholar 

  237. Reeves RD, Adiguzel N, Baker AJM (2009) Nickel hyperaccumulation in Bornmuellera kiyakii and associated plants of the Brassicaceae from Kızıldaäÿ Derebucak (Konya). Turkey Turk J Bot 33:33–40

    Google Scholar 

  238. Küpper H, Mijovilovich A, Götz B, Kroneck PMH, Küpper FC, Meyer-Klaucke W (2009) Complexation and toxicity of copper in higher plants (I): characterisation of copper accumulation, speciation and toxicity in Crassula helmsii as a new copper hyperaccumulator. Plant Physiol 151:702–714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Wang H, Zhong G (2011) Effect of organic ligands on accumulation of copper in hyperaccumulator and nonaccumulator Commelina communis. Biol Trace Elem Res 143:489–499

    Article  CAS  PubMed  Google Scholar 

  240. Oven M, Grill E, Golan-Goldhirsh A, Kutchan TM, Zenk MH (2002) Increase of free cysteine and citric acid in plant cells exposed to cobalt ions. Phytochemistry 60:467–474

    Article  CAS  PubMed  Google Scholar 

  241. Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol 173:517–525

    Article  CAS  PubMed  Google Scholar 

  242. Freeman JL, Tamaoki M, Stushnoff C (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 153:1630–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Hladun KR, Parker DR, Trumble JT (2011) Selenium accumulation in the floral tissues of two Brassicaceae species and its impact on floral traits and plant performance. Environ Exp Bot 74:90–97

    Article  CAS  Google Scholar 

  244. Kupper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129

    Article  CAS  PubMed  Google Scholar 

  245. Kubota H, Takenaka C (2003) Arabis gemmifera is a hyperaccumulator of Cd and Zn. Int J Phytoremed 5:197–201

    Article  CAS  Google Scholar 

  246. Tang YT, Qiu RL, Zeng XW, Ying RR, Yu FM, Zhou XY (2009) Lead, zinc cadmium accumulation and growth simulation in Arabis paniculata Franch. Env Exp Bot 66:126–134

    Article  CAS  Google Scholar 

  247. Sun Q, Ye ZH, Wang XR, Wong MH (2005) Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator. Phytochemistry 66:2549–2556

    Article  CAS  PubMed  Google Scholar 

  248. Zhao FJ, Lombi E, Breedon T, McGrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 3:507–514

    Article  Google Scholar 

  249. Du RJ, He EK, Tang YT, Hu PJ, Ying RR, Morel JL, Qiu RL (2011) How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata. Int J Phytoremed 13:1024–1036

    Article  CAS  Google Scholar 

  250. Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub. Sesbania drummondii Environ Sci Technol 36:4676–4680

    Article  PubMed  Google Scholar 

  251. Sharma NC, Gardea-Torresday JL, Parson Sahi SV (2004) Chemical speciation of lead in Sesbania drummondii. Environ Toxicol Chem 23:2068–2073

    Article  CAS  PubMed  Google Scholar 

  252. Chandra Sekhar K, Kamala CT, Chary NS, Balaram V, Garcia G (2005) Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere 58:507–514

    Article  CAS  PubMed  Google Scholar 

  253. Bech J, Duran P, Roca N, Poma W, Sánchez I, Barceló J, Boluda R, Roca-Pérez L, Poschenrieder C (2011) Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. J Geochem Explor. doi:10.1016/j.gexplo.2011.04.007

    Google Scholar 

  254. Bidwell SD, Woodrow IE, Batianoff GN, Sommer-Knudsen J (2002) Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland. Australia Funct Plant Biol 29:899–905

    Article  CAS  Google Scholar 

  255. Pollard AJ, Stewart HL, Roberson CB (2009) Manganese hyperaccumulation in Phytolacca americana L. from the southeastern united states. Northeastern Natur 16:155–162

    Article  Google Scholar 

  256. Fernando DR, Bakkaus EJ, Perrier N, Baker AJM, Woodrow IE, Batianoff GN, Collins RN (2006) Manganese accumulation in the leaf mesophyll of four tree species: a PIXE/EDAX localization study. New Phytol 171:751–758

    Article  CAS  PubMed  Google Scholar 

  257. Fernando DR, Woodrow IE, Bakkaus EJ, Collins RN, Baker AJM, Batainoff GN (2007) Variability of Mn hyperaccumulation in the Australian rainforest tree Gossia bidwillii (Myrtaceae). Plant Soil 293:145–152

    Article  CAS  Google Scholar 

  258. Fernando DR, Woodrow IE, Jaffre T, Dumontet V, Marshall AT, Baker AJM (2008) Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis. New Phytol 177:178–185

    CAS  PubMed  Google Scholar 

  259. Dahmani-Muller H, van Oort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Poll 109:231–238

    Article  CAS  Google Scholar 

  260. Bert V, Bonnin I, Saumitou-Laprade P, de Laguerie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57

    Article  CAS  Google Scholar 

  261. Sun Y, Zhou Q, Wang L, Liu W (2009) Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazardous Mat 161:808–814

    Article  CAS  Google Scholar 

  262. Gardea-Torresday JL, De la Rosa G, Peralta-Videa JR, Montes M, Cruz-Jimenez G, Cano-Aguilera I (2005) Differential uptake and transport of trivalent and hexavalent chromium by tumble wed (Salsola kali). Arch Environ Contam Toxicol 48:225–232

    Article  CAS  Google Scholar 

  263. Zhang XH, Liu J, Huang HT, Chen J, Zhu YN, Wang DQ (2007) Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 67:1138–1143

    Article  CAS  PubMed  Google Scholar 

  264. Mongkhonsin B, Nakbanpote W, Nakai I, Hokura A, Jearanaikoon N (2011) Distribution and speciation of chromium accumulated in Gynura pseudochina (L.) DC. Environ Exp Bot 74:56–64

    Article  CAS  Google Scholar 

  265. Leblanc M, Petit D, Deram A, Robinson B, Brooks RR (1999) The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Econ Geol 94:109–113

    Article  CAS  Google Scholar 

  266. Al-Najar H, Kaschl A, Schulz R, Romheld V (2005) Effects of thallium fractions in the soil and pollution origin in thallium uptake by hyperaccumulator plants: a key factor for assessment of phytoextraction. Intern J Phytoremed 7:55–67

    Article  CAS  Google Scholar 

  267. Dhankher OP, Doty SL, Meagher RB, Pilon-Smits E (2011) Biotechnological approaches for phytoremediation. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture. Academic, Oxford, pp 309–328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neerja Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Srivastava, N. (2016). Phytoremediation of Heavy Metals Contaminated Soils Through Transgenic Plants. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-40148-5_12

Download citation

Publish with us

Policies and ethics