Skip to main content

Phytoremediation of Mining Areas: An Overview of Application in Lead- and Zinc-Contaminated Soils

  • Chapter
  • First Online:
Phytoremediation

Abstract

The metals concentration in soils is connected with natural and anthropogenic factors. Mine activities, in particular, entail the release of metals into the environment, a large proportion of which are accumulated in soil. Different approaches can be considered for soil remediation. Physical and chemical technologies are well known and extensively applied, but can alter soil and landscape characteristics and entail high costs due to the wide areas involved. Conversely, phytoremediation has been universally considered as a cost-effective technique that permit to restore biological activity and physical structure of soil. Lead and zinc are among the most common contaminants in soils originated by mineral exploitation; both phytoextraction and phytostabilization can be applied in this case. On the basis of experimental results, phytoextraction of heavily polluted soils may require decades to reduce the residual metal concentration to acceptable levels. Therefore, taking into account the characteristics of mine areas, in particular size and level of contamination, phytostabilization seems the most preferable technique, while phytoextraction could be applied in those areas surrounding mine sites when soil contamination is limited. The use of amendments could enhance the process by improving the soil properties and assisting the plant growth. The identification of the ideal candidate for phytoremediation must be tailored on the individual mine site. Recently, greater attention is addressed to apply native plant species, which demonstrated a better tolerance to local conditions, and are preferable in comparison to introduced or invasive species in order to reduce possible impacts on the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wood M (1995) Environmental soil biology. Springer, New York

    Book  Google Scholar 

  2. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20. doi:10.5402/2011/402647

    Article  Google Scholar 

  3. Agnieszka B, Tomasz C, Jerzy W (2014) Chemical properties and toxicity of soils contaminated by mining activity. Ecotoxicology 23(7):1234–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. UNEP (2000) Industry and environment—mining and sustainable development II: challenges and perspectives, vol 23. http://www.uneptie.org/media/review/vol23si/unep23.pdf. Accessed 30 Nov 2015

  5. USEPA (1994) Extraction and beneficiation of ores and minerals, vol 1: lead–zinc. http://www3.epa.gov/epawaste/nonhaz/industrial/special/mining/techdocs/leadzinc.pdf. Accessed 30 Nov 2015

  6. Cao A, Cappai G, Carucci A et al (2008) Heavy metal bioavailability and chelate mobilization efficiency in an assisted phytoextraction process. Environ Geochem Health 30(2):115–119

    Article  CAS  PubMed  Google Scholar 

  7. Resongles E, Casiot C, Freydier R et al (2014) Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France. Sci Total Environ 481:509–521

    Article  CAS  PubMed  Google Scholar 

  8. McLaughlin MJ, Parker DR, Clarke JM (1999) Metals and micronutrients—food safety issues. Field Crop Res 60(1):143–163

    Article  Google Scholar 

  9. Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60(1):193–207

    Article  Google Scholar 

  10. Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7(1):47–59

    Article  CAS  Google Scholar 

  11. Yao Z, Li J, Xie H et al (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    Article  CAS  Google Scholar 

  12. Bolan N, Kunhikrishnan A, Thangarajan R et al (2014) Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  PubMed  Google Scholar 

  13. Bradshaw A (1997) Restoration of mined lands using natural processes. Ecol Eng 8(4):255–269

    Article  Google Scholar 

  14. Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41(1):219–228

    Article  CAS  PubMed  Google Scholar 

  15. Singh AN, Raghubanshi AS, Singh JS (2002) Plantations as a tool for mine spoil restoration. Curr Sci 82(12):1436–1441

    CAS  Google Scholar 

  16. Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39(8):622–654

    Article  CAS  Google Scholar 

  17. Favas PJ, Pratas J, Varun M et al (2014) Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. In: Hernández-Soriano MC (ed) Environmental risk assessment of soil contamination. Intech, Rijeka, pp 485–517

    Google Scholar 

  18. USEPA (1994a) Acid mine drainage prediction. http://www3.epa.gov/epawaste/nonhaz/industrial/special/mining/techdocs/amd.pdf. Accessed 30 Nov 2015

  19. Ardau C, Blowes DW, Ptacek CJ (2009) Comparison of laboratory testing protocols to field observations of the weathering of sulfide-bearing mine tailings. J Geochem Explor 100(2):182–191

    Article  CAS  Google Scholar 

  20. Candeias C, da Silva EF, Salgueiro AR et al (2011) Assessment of soil contamination by potentially toxic elements in the Aljustrel mining area in order to implement soil reclamation strategies. Land Degrad Dev 22(6):565–585

    Article  Google Scholar 

  21. Babbou-Abdelmalek C, Sebei A, Chaabani F (2011) Incurred environmental risks and potential contamination sources in an abandoned mine site. Afr J Environ Sci Technol 5(11):894–915

    CAS  Google Scholar 

  22. Iavazzo P, Adamo P, Boni M et al (2012) Mineralogy and chemical forms of lead and zinc in abandoned mine wastes and soils: an example from Morocco. J Geochem Explor 113:56–67

    Article  CAS  Google Scholar 

  23. Pagnanelli F, De Michelis I, Di Tommaso M et al (2008) Treatment of acid mine drainage by a combined chemical/biological column apparatus: mechanisms of heavy metal removal. In: Sanchez ML (ed) Causes and effects of heavy metal pollution. Nova Science Publishers Inc., New York, pp 81–106

    Google Scholar 

  24. Concas S, Ardau C, Di Bonito M et al (2015) Field sampling of soil pore water to evaluate the mobile fraction of trace elements in the Iglesiente area (SW Sardinia, Italy). J Geochem Explor 158:82–94

    Article  CAS  Google Scholar 

  25. Lee CG, Chon HT, Jung MC (2001) Heavy metal contamination in the vicinity of the Daduk Au–Ag–Pb–Zn mine in Korea. Appl Geochem 16(11):1377–1386

    Article  CAS  Google Scholar 

  26. Li J, Xie ZM, Zhu YG et al (2005) Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. J Environ Sci (China) 17(6):881–885

    CAS  Google Scholar 

  27. Liu H, Probst A, Liao B (2005) Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci Total Environ 339(1):153–166

    Article  CAS  PubMed  Google Scholar 

  28. Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ et al (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96(2):183–193

    Article  CAS  Google Scholar 

  29. Liao GL, Liao DX, Li QM (2008) Heavy metals contamination characteristics in soil of different mining activity zones. Trans Nonferr Metal Soc China 18(1):207–211

    Article  CAS  Google Scholar 

  30. Ikenaka Y, Nakayama SM, Muzandu K et al (2010) Heavy metal contamination of soil and sediment in Zambia. Afr J Environ Sci Technol 4(11):729–739

    CAS  Google Scholar 

  31. Oyarzun R, Lillo J, López-García JA et al (2011) The Mazarrón Pb–(Ag)–Zn mining district (SE Spain) as a source of heavy metal contamination in a semiarid realm: geochemical data from mine wastes, soils, and stream sediments. J Geochem Explor 109(1):113–124

    Article  CAS  Google Scholar 

  32. Onyeobi TUS, Imeokparia EG (2014) Heavy metal contamination and distribution in soils around Pb–Zn mines of Abakaliki District, South Eastern Nigeria. Front Geosci 2(2):30–40

    Google Scholar 

  33. Pourret O, Lange B, Bonhoure J et al (2016) Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo). Appl Geochem 64:43–55

    Google Scholar 

  34. Dayani M, Mohammadi J (2010) Geostatistical assessment of Pb, Zn and Cd contamination in near-surface soils of the urban-mining transitional region of Isfahan, Iran. Pedosphere 20(5):568–577

    Article  CAS  Google Scholar 

  35. Cappuyns V, Swennen R, Vandamme A et al (2006) Environmental impact of the former Pb–Zn mining and smelting in East Belgium. J Geochem Explor 88(1):6–9

    Article  CAS  Google Scholar 

  36. Vrhovnik P, Šmuc NR, Dolenec T et al (2013) Impact of Pb-Zn mining activity on surficial sediments of Lake Kalimanci (FYR Macedonia). Turk J Earth Sci 22(6):996–1009

    Google Scholar 

  37. Espinosa-Reyes G, González-Mille DJ, Ilizaliturri-Hernández CA et al (2014) Effect of mining activities in biotic communities of Villa de la Paz, San Luis Potosi, Mexico. Biomed Res Int 1–13. http://dx.doi.org/10.1155/2014/165046

    Google Scholar 

  38. Qing H, Qi HY, Zeng HY et al (2007) Bacterial diversity in soils around a lead and zinc mine. J Environ Sci 19(1):74–79

    Article  Google Scholar 

  39. Peijnenburg WJGM, Jager T (2003) Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicol Environ Saf 56(1):63–77

    Article  CAS  PubMed  Google Scholar 

  40. Kabata-Pendias A (2004) Soil–plant transfer of trace elements—an environmental issue. Geoderma 122(2):143–149

    Article  CAS  Google Scholar 

  41. Salt DE, Blaylock M, Kumar NP et al (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13(5):468–474

    Article  CAS  Google Scholar 

  42. Chaney RL, Malik M, Li YM et al (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8(3):279–284

    Article  CAS  PubMed  Google Scholar 

  43. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29(4):529–540

    Article  CAS  PubMed  Google Scholar 

  44. Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77(3):229–236

    Article  CAS  PubMed  Google Scholar 

  45. Baker AJM, McGrath SP, Reeves RD et al (1999) Metal hyperaccumulation plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 85–107

    Google Scholar 

  46. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  47. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181

    Article  CAS  PubMed  Google Scholar 

  48. Pollard AJ, Reeves RD, Baker AJ (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217:8–17

    Article  PubMed  CAS  Google Scholar 

  49. Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  50. van der Ent A, Baker AJ, Reeves RD et al (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1–2):319–334

    Google Scholar 

  51. Robinson BH, Banuelos G, Conesa HM et al (2009) The phytomanagement of trace elements in soil. Crit Rev Plant Sci 28(4):240–266

    Article  CAS  Google Scholar 

  52. Ali MB, Vajpayee P, Tripathi RD et al (2003) Phytoremediation of lead, nickel, and copper by Salix acmophylla Boiss.: role of antioxidant enzymes and antioxidant substances. Bull Environ Contam Toxicol 70(3):462–469

    Article  CAS  PubMed  Google Scholar 

  53. Yanqun Z, Yuan L, Schvartz C et al (2004) Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead–zinc mine area, China. Environ Int 30(4):567–576

    Article  PubMed  CAS  Google Scholar 

  54. Unterbrunner R, Puschenreiter M, Sommer P et al (2007) Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ Pollut 148(1):107–114

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Bai S, Wu J et al (2015) Plumbum/Zinc accumulation in seedlings of six afforestation species cultivated in mine spoil substrate. J Trop For Sci 27(2):166–175

    Google Scholar 

  56. Wahsha M, Bini C, Argese E et al (2012) Heavy metals accumulation in willows growing on Spolic Technosols from the abandoned Imperina Valley mine in Italy. J Geochem Explor 123:19–24

    Article  CAS  Google Scholar 

  57. Wahsha M, Nadimi-Goki M, Bini C (2015) Land contamination by toxic elements in abandoned mine areas in Italy. J Soil Sediments 16(4):1300–1305. doi:10.1007/s11368-015-1151-1

    Article  CAS  Google Scholar 

  58. Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8(2):221–226

    Article  CAS  PubMed  Google Scholar 

  59. Vara Prasad MN, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):285–321

    Google Scholar 

  60. Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8(1):1–17

    Article  CAS  Google Scholar 

  61. Lai T, Cao A, Zucca A et al (2012) Use of natural zeolites charged with ammonium or carbon dioxide in phytoremediation of lead and zinc contaminated soils. J Chem Technol Biotechnol 87:1342–1348

    Article  CAS  Google Scholar 

  62. González RC, González-Chávez MCA (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144(1):84–92

    Article  PubMed  CAS  Google Scholar 

  63. Pandey VC, Pandey DN, Singh N (2015) Sustainable phytoremediation based on naturally colonizing and economically valuable plants. J Cleaner Prod 86:37–39

    Article  CAS  Google Scholar 

  64. Conesa HM, Faz Á, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena–La Unión mining district (SE Spain). Sci Total Environ 366(1):1–11

    Article  CAS  PubMed  Google Scholar 

  65. Wójcik M, Sugier P, Siebielec G (2014) Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits. Sci Total Environ 487:313–322

    Article  PubMed  CAS  Google Scholar 

  66. Vangronsveld J, Herzig R, Weyens N et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16(7):765–794

    Google Scholar 

  67. Zhuang P, Ye ZH, Lan CY et al (2005) Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species. Plant Soil 276(1–2):153–162

    Article  CAS  Google Scholar 

  68. Komárek M, Tlustoš P, Száková J et al (2008) The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils. Environ Pollut 151(1):27–38

    Article  PubMed  CAS  Google Scholar 

  69. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  PubMed  Google Scholar 

  70. Pinto IS, Neto IF, Soares HM (2014) Biodegradable chelating agents for industrial, domestic, and agricultural applications—a review. Environ Sci Pollut Res 21(20):11893–11906

    Google Scholar 

  71. Cao A, Carucci A, Lai T et al (2007) Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria. Eur J Soil Biol 43(4):200–206

    Article  CAS  Google Scholar 

  72. Piechalak A, Tomaszewska B, Barałkiewicz D (2003) Enhancing phytoremediative ability of Pisum sativum by EDTA application. Phytochemistry 64(7):1239–1251

    Article  CAS  PubMed  Google Scholar 

  73. Evangelou MW, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68(6):989–1003

    Article  CAS  PubMed  Google Scholar 

  74. Epelde L, Hernández-Allica J, Becerril J et al (2008) Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Sci Total Environ 401(1):21–28

    Article  CAS  PubMed  Google Scholar 

  75. Leštan D, Luo CL, Li XD (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 153(1):3–13

    Article  PubMed  CAS  Google Scholar 

  76. Ye ZH, Shu WS, Zhang ZQ et al (2002) Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere 47(10):1103–1111

    Article  CAS  PubMed  Google Scholar 

  77. Ernst WH (2005) Phytoextraction of mine wastes—options and impossibilities. Chem Erde-Geochem 65:29–42

    Article  CAS  Google Scholar 

  78. Pardo T, Bernal MP, Clemente R (2014) Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: I. Effects on trace elements and nutrients solubility and leaching risk. Chemosphere 107:121–128

    Article  CAS  PubMed  Google Scholar 

  79. Pardo T, Clemente R, Alvarenga P et al (2014) Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: II. Biological and ecotoxicological evaluation. Chemosphere 107:101–108

    Article  CAS  PubMed  Google Scholar 

  80. Lee SH, Ji W, Lee WS et al (2014) Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings. J Environ Manage 139:15–21

    Article  CAS  PubMed  Google Scholar 

  81. de la Fuente C, Pardo T, Alburquerque JA et al (2014) Assessment of native shrubs for stabilisation of a trace elements-polluted soil as the final phase of a restoration process. Agr Ecosyst Environ 196:103–111

    Article  CAS  Google Scholar 

  82. Grimalt JO, Ferrer M, Macpherson E (1999) The mine tailing accident in Aznalcollar. Sci Total Environ 242(1):3–11

    Article  CAS  PubMed  Google Scholar 

  83. Clemente R, Almela C, Bernal MP (2006) A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environ Pollut 143(3):397–406

    Article  CAS  PubMed  Google Scholar 

  84. Wang B, Xie Z, Chen J et al (2008) Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil. J Environ Sci 20(9):1109–1117

    Article  CAS  Google Scholar 

  85. Bacchetta G, Cao A, Cappai G et al (2012) A field experiment on the use of Pistacia lentiscus L. and Scrophularia canina L. subsp. bicolor (Sibth. et Sm.) Greuter for the phytoremediation of abandoned mining areas. Plant Biosyst 146(4):1054–1063

    Article  Google Scholar 

  86. Galende MA, Becerril JM, Barrutia O et al (2014) Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb–Zn contaminated mine soil. J Geochem Explor 145:181–189

    Article  CAS  Google Scholar 

  87. Sánchez-López AS, Carrillo-González R, González-Chávez MCA et al (2015) Phytobarriers: plants capture particles containing potentially toxic elements originating from mine tailings in semiarid regions. Environ Pollut 205:33–42

    Google Scholar 

  88. Epelde L, Becerril JM, Barrutia O et al (2010) Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environ Pollut 158(5):1576–1583

    Article  CAS  PubMed  Google Scholar 

  89. Jin Z, Li Z, Li Q et al (2014) Canonical correspondence analysis of soil heavy metal pollution, microflora and enzyme activities in the Pb–Zn mine tailing dam collapse area of Sidi village, SW China. Environ Earth Sci 73(1):267–274

    Article  CAS  Google Scholar 

  90. Ma Y, Prasad MNV, Rajkumar M et al (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    Article  CAS  PubMed  Google Scholar 

  91. Zhang WH, Huang Z, He LY et al (2012) Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead–zinc mine tailings. Chemosphere 87(10):1171–1178

    Article  CAS  PubMed  Google Scholar 

  92. Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483

    Article  PubMed  CAS  Google Scholar 

  93. Sessitsch A, Kuffner M, Kidd P et al (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tamburini E, Sergi S, Cau D et al (2015) Bioaugmentation-assisted phytostabilisation of abandoned mine sites in South West Sardinia. Bull Environ Contam Toxicol. doi:10.1007/s00128-016-1866-8.

    Google Scholar 

  95. Becerra-Castro C, Monterroso C, Prieto-Fernández A et al (2012) Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant–microorganism–rhizosphere soil system and isolation of metal-tolerant bacteria. J Hazard Mater 217:350–359

    Article  PubMed  CAS  Google Scholar 

  96. Raskin I (1996) Plant genetic engineering may help with environmental cleanup. Proc Natl Acad Sci USA 93(8):3164–3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kärenlampi S, Schat H, Vangronsveld J et al (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107(2):225–231

    Article  PubMed  Google Scholar 

  98. Gisbert C, Ros R, De Haro A et al (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303(2):440–445

    Article  CAS  PubMed  Google Scholar 

  99. Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21(5):439–456

    Article  CAS  Google Scholar 

  100. Snow AA, Andow DA, Gepts P et al (2005) Genetically engineered organisms and the environment: current status and recommendations. Ecol Appl 15(2):377–404

    Google Scholar 

  101. Kotrba P, Najmanova J, Macek T et al (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27(6):799–810

    Article  CAS  PubMed  Google Scholar 

  102. Shim D, Kim S, Choi YI et al (2013) Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 90(4):1478–1486

    Article  CAS  PubMed  Google Scholar 

  103. Bech J, Roca N, Tume P et al (2016) Screening for new accumulator plants in potential hazards elements polluted soil surrounding Peruvian mine tailings. Catena 136:66–73

    Article  CAS  Google Scholar 

  104. Sánchez-López AS, González-Chávez MCA, Carrillo-González R et al (2015) Wild flora of mine tailings: perspectives for use in phytoremediation of potentially toxic elements in a semi-arid region in Mexico. Int J Phytoremediat 17(5):476–484

    Google Scholar 

  105. Bech J, Duran P, Roca N et al (2012) Accumulation of Pb and Zn in Bidens triplinervia and Senecio sp. spontaneous species from mine spoils in Peru and their potential use in phytoremediation. J Geochem Explor 123:109–113

    Article  CAS  Google Scholar 

  106. Abreu MM, Santos ES, Magalhães MCF et al (2012) Trace elements tolerance, accumulation and translocation in Cistus populifolius, Cistus salviifolius and their hybrid growing in polymetallic contaminated mine areas. J Geochem Explor 123:52–60

    Article  CAS  Google Scholar 

  107. Cao A, Carucci A, Lai T et al (2009) Use of native species and biodegradable chelating agents in the phytoremediation of abandoned mining areas. J Chem Technol Biotechnol 84(6):884–889

    Article  CAS  Google Scholar 

  108. Abreu MM, Santos ES, Ferreira M et al (2012) Cistus salviifolius a promising species for mine wastes remediation. J Geochem Explor 113:86–93

    Article  CAS  Google Scholar 

  109. Liu X, Gao Y, Khan S et al (2008) Accumulation of Pb, Cu, and Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunnan. J Environ Sci 20(12):1469–1474

    Article  CAS  Google Scholar 

  110. Conesa HM, Faz Á, Arnaldos R (2007) Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Chemosphere 66(1):38–44

    Article  CAS  PubMed  Google Scholar 

  111. García-Sánchez M, García-Romera I, Száková J et al (2015) The effectiveness of various treatments in changing the nutrient status and bioavailability of risk elements in multi-element contaminated soil. Environ Sci Pollut Res 22(18):14325–14326. doi:10.1007/s11356-015-4678-1

    Google Scholar 

  112. Zornoza R, Faz A, Carmona DM et al (2012) Plant cover and soil biochemical properties in a mine tailing pond five years after application of marble wastes and organic amendments. Pedosphere 22(1):22–32

    Article  CAS  Google Scholar 

  113. Zhuang P, Yang QW, Wang HB et al (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 184(1–4):235–242

    Article  CAS  Google Scholar 

  114. Santos FS, Hernández-Allica J, Becerril JM et al (2006) Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere 65(1):43–50

    Article  CAS  PubMed  Google Scholar 

  115. Chiu KK, Ye ZH, Wong MH (2006) Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Bioresour technol 97(1):158–170

    Article  CAS  PubMed  Google Scholar 

  116. Solhi M, Shareatmadari H, Hajabbasi MA (2005) Lead and zinc extraction potential of two common crop plants, Helianthus annuus and Brassica napus. Water Air Soil Pollut 167(1–4):59–71

    Article  CAS  Google Scholar 

  117. Yang B, Shu WS, Ye ZH et al (2003) Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere 52(9):1593–1600

    Article  CAS  PubMed  Google Scholar 

  118. Su C, Jiang L, Zhang W (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skep Crit 3(2):24–38

    Google Scholar 

  119. Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ 357(1):38–53

    Article  CAS  PubMed  Google Scholar 

  120. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Poll 184(1–4):105–126

    Article  CAS  Google Scholar 

  121. McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14(3):277–282

    Article  CAS  PubMed  Google Scholar 

  122. Alkorta I, Hernández-Allica J, Becerril JM et al (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3(1):71–90

    Article  CAS  Google Scholar 

  123. Arthur EL, Rice PJ, Rice PJ et al (2005) Phytoremediation—an overview. Crit Rev Plant Sci 24(2):109–122

    Article  CAS  Google Scholar 

  124. Wu G, Kang H, Zhang X et al (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174(1):1–8

    Article  CAS  PubMed  Google Scholar 

  125. Cameselle C, Chirakkara RA, Reddy KR (2013) Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere 93(4):626–636

    Article  CAS  PubMed  Google Scholar 

  126. Gupta DK, Chatterjee S, Datta S et al (2014) Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere 108:134–144

    Article  CAS  PubMed  Google Scholar 

  127. Yang X, Feng Y, He Z et al (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18(4):339–353

    Article  CAS  PubMed  Google Scholar 

  128. Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22(12):1007–1019

    Article  CAS  Google Scholar 

  129. Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28(1):61–69

    Article  CAS  PubMed  Google Scholar 

  130. Bhargava A, Carmona FF, Bhargava M et al (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    Article  CAS  PubMed  Google Scholar 

  131. Visioli G, Marmiroli N (2013) The proteomics of heavy metal hyperaccumulation by plants. J Proteomics 79:133–145

    Article  CAS  PubMed  Google Scholar 

  132. Ullah A, Heng S, Munis MFH et al (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  133. USEPA (2000) Introduction to Phytoremediation. EPA/600/R-99/107. http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=30003T7G.TXT. Accessed 30 Nov 2015

  134. Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23(2):97–114

    Article  CAS  PubMed  Google Scholar 

  135. Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153(3):497–522

    Article  CAS  PubMed  Google Scholar 

  136. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393

    Article  CAS  PubMed  Google Scholar 

  137. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374

    Article  CAS  PubMed  Google Scholar 

  138. Rajkumar M, Sandhya S, Prasad MNV et al (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  PubMed  Google Scholar 

  139. Rajkumar M, Prasad MNV, Swaminathan S et al (2013) Climate change driven plant–metal–microbe interactions. Environ Int 53:74–86

    Article  CAS  PubMed  Google Scholar 

  140. Glass DJ (2000) Economical potential of phytoremediation. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley, New York, pp 15–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lai, T., Cappai, G., Carucci, A. (2016). Phytoremediation of Mining Areas: An Overview of Application in Lead- and Zinc-Contaminated Soils. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-40148-5_1

Download citation

Publish with us

Policies and ethics