Skip to main content

Genetic Algorithms for Constrained Tree Problems

  • Chapter
  • First Online:
  • 377 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 655))

Abstract

Given an undirected weighted connected graph \(G=(V,E)\) with vertex set V, edge set E and a designated vertex \(r \in V\), this chapter studies the following constrained tree problems in G. The first problem, called Constrained Minimum Spanning Tree Problem (CMST), asks for a rooted tree T in G that minimizes the total weight of T such that the distance between the r and any vertex v in T is at most a given constant C times the shortest distance between the two vertices in G. The second problem, Constrained Shortest Path Tree Problem (CSPT) requires a rooted tree T in G that minimizes the maximum distance between r and all vertices in V such that the total weight of T is at most a given constant C times the minimum tree weight in G. It is easy to conclude from the literatures that the above problems are NP-hard. This chapter presents efficient genetic algorithms that return (as shown by our experimental results) high quality solutions for those two problems.

This work is partially supported by Alexander von Humboldt foundation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdoun, O., Abouchabaka, J., Tajani, C.: Analyzing the performance of mutation operators to solve the travelling salesman problem. IJES, Int. J. Emerg. Sci. 2(1), 61–77 (2012)

    MATH  Google Scholar 

  2. Awerbuch, B., Baratz, A., Peleg, D.: Cost-sensetive analysis of communication protocols. In: Proceedings on Principles of Distributed Computing, pp. 177–187 (1990)

    Google Scholar 

  3. Awerbuch, B., Baratz, A. Peleg, D.: Efficient broadcast and light-weight spanners. Manuscript (1991)

    Google Scholar 

  4. Bharath-Kumar, K., Jaffe, J.M.: Routing to multiple destinations in computer networks. IEEE Trans. Commun. 31(3), 343–351 (1983)

    Article  MATH  Google Scholar 

  5. Blickle, T., Thiele, L.: A comparison of selection schemes used in genetic algorithms (Technical Report No. 11), Swiss Federal Institute of Technology (ETH) Zurich, Computer Engineering and Communications Networks Lab (TIK) (1995)

    Google Scholar 

  6. Campos, R., Ricardo, M.: A fast algorithm for computing minimum routing cost spanning trees. Comput. Netw. 52(17), 3229–3247 (2008)

    Article  MATH  Google Scholar 

  7. Chipperfield, A., Fleming, P., Pohlheim, H., Fonseca, C.: The matlab genetic algorithm user’s guide, UK SERC (1994)

    Google Scholar 

  8. Cong, J., Kahng, A., Robins, G., Sarrafzadeh, M., Wong, C.K.: Performance-driven global routing for cell based IC’s. In: Proceedings of the IEEE International Conference on Computer Design, pp. 170-173 (1991)

    Google Scholar 

  9. Cong, J., Kahng, A., Robins, G., Sarrafzadeh, M., Wong C.K.: Provably good performance-driven global routing. IEEE Transaction on CAD, pp. 739–752 (1992)

    Google Scholar 

  10. Davis, L., Orvosh, D., Cox, A., Qiu, Y.: A genetic algorithm for survivable network design. In: Proceedings 5th International Conference on Genetic Algorithms, pp. 408–415 (1993)

    Google Scholar 

  11. Engelbrecht, A.P.: Computational Intelligence: An Introduction. Wiley, New York (2007)

    Book  Google Scholar 

  12. Erdos, P., Renyi, A.: On random graphs. Publ. Math 6, 290–297 (1959)

    Google Scholar 

  13. Farley, A.M., Zappala D., Proskurowski, A., Windisch, K.: Spanners and message distribution in networks, Dicret. Appl. Math. 137, 159–171 (2004)

    Google Scholar 

  14. Gottlieb, J., Julstrom, B.A., Rothlauf, F., Raidl, G.R.: Prüfer numbers: a poor representation of spanning trees for evolutionary search. In: Proceedings of the 2001 Genetic and Evolutionary Computation Conference, pp. 343350. Morgan Kaufmann (2000)

    Google Scholar 

  15. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for constructing sparse geometric spanners. SIAM J. Comput. 31, 1479–1500 (2002)

    Google Scholar 

  16. Hesser, J., Mnner, R.: Towards an optimal mutation probability for genetic algorithms. In: Proceedings of the 1st Workshop in Parallel Problem Solving from Nature, pp. 23-32 (1991)

    Google Scholar 

  17. Huang, G., Li, X., He, J.: Dynamic minimal spanning tree routing protocol for large wireless sensor networks. In: Proceedings of the 1st IEEE Conference on Industrial Electronics and Applications, Singapore, pp. 1-5 (2006)

    Google Scholar 

  18. Julstrom, B. A.: Encoding rectilinear Steiner trees as lists of edges. In: Proceedings of the 16th ACM Symposium on Applied Computing, pp. 356–360. ACM Press (2001)

    Google Scholar 

  19. Khullar, S., Raghavachari, B., Young, N.: Balancing minimum spanning trees and shortest-path trees. Algorithmica 14, 305–322 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, C., Zhang, H., Hao, B., Li, J.: A survey on routing protocols for large-scale wireless sensor networks. Sensors 11, 3498–3526 (2011)

    Article  Google Scholar 

  21. Lin, W.-Y. Lee, W.-Y., T.-P. Hong (2001) Adapting Crossover and Mutation Rates in Genetic Algorithms, the Sixth Conference on Artificial Intelligence and Applications, Kaohsiung, Taiwan (2001)

    Google Scholar 

  22. Mathur, R., Khan, I., Choudhary, V.: Genetic algorithm for dynamic capacitated minimum spanning tree. Int.l J. Comput. Tech. Appl. 4, 404–413 (2013)

    Google Scholar 

  23. Navarro, G., Paredes, R., Chavez, E.: t-spanners as a data structure for metric space searching. In: International Symposium on String Processing and Information Retrieval, SPIRE. LNCS, vol. 2476, 298–309 (2002)

    Google Scholar 

  24. Piggott, P., Suraweera, F.: Encoding graphs for genetic algorithms: an investigation using the minimum spanning tree problem. In: Yao X. (ed.) Progress in Evol. Comput. LNAI, vol. 956, pp. 305–314. Springer, New York (1995)

    Google Scholar 

  25. Raidl, G.R., Julstrom, B.A.: Edge-sets: an effective evolutionary coding of spanning trees, IEEE Trans. Evol. Comput. 7, 225–239 (2003)

    Google Scholar 

  26. Roeva, O., Fidanova, S., Paprzycki, M.: Influence of the population size on the genetic algorithm performance in case of cultivation process modelling. In: Proceedings of the Federated Conference on Computer Science and Information Systems, pp. 371-376 (2013)

    Google Scholar 

  27. Sigurd, M., Zachariasen, M.: Construction of Minimum-Weight Spanners. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  28. Tan, Q.P.: A genetic approach for solving minimum routing cost spanning tree problem. Int. J. Mach. Learn. Comput. 2(4), 410–414 (2012)

    Article  Google Scholar 

  29. Vekaria, K., Clack, C.: Selective Crossover in Genetic Algorithms: An Empirical Study. Lecture Notes in Computer Science, vol. 1498, pp. 438–447. Springer, Berlin (1998)

    Google Scholar 

  30. Xiao, B., ZhuGe, Q., Sha, E.H.-M.: Minimum dynamic update for shortest path tree construction, global telecommunications conference, San Antonio, TX, pp. 126-130 (2001)

    Google Scholar 

  31. Ye We, B., Chao, K.: Spanning Trees and Optimization Problems. Chapman & Hall, Boca Raton (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riham Moharam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moharam, R., Morsy, E. (2016). Genetic Algorithms for Constrained Tree Problems. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol 655. Springer, Cham. https://doi.org/10.1007/978-3-319-40132-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40132-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40131-7

  • Online ISBN: 978-3-319-40132-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics