Skip to main content

Fast Preconditioned Solver for Truncated Saddle Point Problem in Nonsmooth Cahn–Hilliard Model

  • Chapter
  • First Online:
Recent Advances in Computational Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 655))

Abstract

The discretization of Cahn–Hilliard equation with obstacle potential leads to a block \(2 \times 2\) non-linear system, where the (1, 1) block has a non-linear and non-smooth term. Recently a globally convergent Newton Schur method was proposed for the non-linear Schur complement corresponding to this non-linear system. The proposed method is similar to an inexact active set method in the sense that the active sets are first approximately identified by solving a quadratic obstacle problem corresponding to the (1, 1) block of the block \(2 \times 2\) system, and later solving a reduced linear system by annihilating the rows and columns corresponding to identified active sets. For solving the quadratic obstacle problem, various optimal multigrid like methods have been proposed. In this paper, we study a block tridiagonal Schur complement preconditioner for solving the reduced linear system. The preconditioner shows robustness with respect to problem parameters and truncations of domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banas, L., Nurnberg, R.: A multigrid method for the Cahn-Hilliard equation with obstacle potential. Appl. Math. Comput. 213(2), 290–303 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Barrett, J.W., Nurnberg, R., Styles, V.: Finite element approximation of a phase field model for void electromigration. SIAM J. Numer. Anal. 42(2), 738–772 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benzi, M.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blowey, J.F., Elliott, C.M.: The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy Part I: numerical analysis. Eur. J. Appl. Math. 2, 233–280 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blowey, J.F., Elliott, C.M.: The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy Part II: numerical analysis. Eur. J. Appl. Math. 3 (1992)

    Google Scholar 

  6. Bosch, J., Stoll, M., Benner, P.: Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements. J. Comput. Phys. 262, 38–57 (2014)

    Article  MathSciNet  Google Scholar 

  7. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2) (1958)

    Google Scholar 

  8. Graeser, C., Kornhuber, R.: Nonsmooth newton methods for set-valued saddle point problems. SIAM J. Numer. Anal. 47(2), 1251–1273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Graser, C.: Convex minimization and phase field models. Ph.D. thesis, FU Berlin (2011)

    Google Scholar 

  10. Graser, C., Kornhuber, R.: Multigrid methods for obstacle problems. J. Comput. Math. 27(1), 1–44 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Kornhuber, R.: Monotone multigrid methods for elliptic variational inequalities I. Numerische Mathematik 69(2), 167–184 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kornhuber, R.: Monotone multigrid methods for elliptic variational inequalities II. Numerische Mathematik 72(4), 481–499 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kumar, P.: Purely Algebraic Domain Decomposition Methods for the Incompressible Navier-Stokes Equations (2011). arXiv:1104.3349

  14. Kumar, P.: Aggregation based on graph matching and inexact coarse grid solve for algebraic two grid. Int. J. Comput. Math. 91(5), 1061–1081 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kumar, P.: Fast solvers for nonsmooth optimization problems in phase separation. In: 8th International Workshop on Computational Optimization, FedCSIS 2015, IEEE, pp. 589–594 (2015)

    Google Scholar 

  16. Mandel, J.: A multilevel iterative method for symmetric, positive definite linear complementarity problems. Appl. Math. Optim. 11, 77–95 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Notay, Y.: An aggregation-based algebraic multigrid method. Electron. Trans. Numer. Anal. 37, 123–146 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Oono, Y., Puri, S.: Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling. Phys. Rev. A, 38(1) (1987)

    Google Scholar 

  19. Rao, C.R., Rao, M.B.: Matrix Algebra and Its Applications to Statistics and Econometrics. World Scientific, Singapore (1998)

    Google Scholar 

  20. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  21. Trottenberg, U., Oosterlee, C., Schuller, A.: Multigrid. Academic, Cambridge (2001)

    Google Scholar 

Download references

Acknowledgments

This research was carried out in the framework of Matheon supported by Einstein Foundation Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, P. (2016). Fast Preconditioned Solver for Truncated Saddle Point Problem in Nonsmooth Cahn–Hilliard Model. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol 655. Springer, Cham. https://doi.org/10.1007/978-3-319-40132-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40132-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40131-7

  • Online ISBN: 978-3-319-40132-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics