Skip to main content

Interfacial Engineering for Oil and Gas Applications: Role of Modeling and Simulation

  • Chapter
  • First Online:
Book cover New Frontiers in Oil and Gas Exploration

Abstract

Interfaces control the functional performance of advanced materials used in the oil and natural gas industry for applications ranging from oil recovery, and flow assurance to gas separation, and carbon capture and utilization. The interactions that govern such functional performance are extremely challenging to obtain empirically. This is partly because of the instability at fluid interfaces, but also due to the intrinsic complexity in quantification of the behavior of a large number of components and interactions. Molecular modeling offers a pathway to examine confined wettability, specific adsorption, and cooperative network formation with changes in chemical structure that act as a design platform for custom functional performance. This is especially important in oil and natural gas processing because of the large number of variations introduced through changes in environment from one location to another. This chapter highlights the iterative design of injection fluids, kinetic inhibitors, separation membranes, and conversion technologies through mechanistic insight gained from simulations primarily based on molecular dynamics and density functional theory approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aman, Z. M., & Koh, C. A. (2016). Interfacial phenomena in gas hydrate systems. Chemical Society Reviews, 45(6), 1678–1690.

    Google Scholar 

  2. Pathak, M., Pawar, G., Huang, H., & Deo, M. D. (2015). Carbon dioxide sequestration and hydrocarbons recovery in the gas rich shales: An insight from the molecular dynamics simulations. In Carbon Management Technology Conference.

    Google Scholar 

  3. Fouad, W. A., Yarrison, M., Song, K. Y., Cox, K. R., & Chapman, W. G. (2015). High pressure measurements and molecular modeling of the water content of acid gas containing mixtures. AIChE Journal, 61(9), 3038–3052.

    Article  Google Scholar 

  4. Jin, Z., & Firoozabadi, A. (2015). Thermodynamic modeling of phase behavior in shale media. SPE Journal.

    Google Scholar 

  5. Alvarez-Majmutov, A., Chen, J., & Michal Gieleciak, R. (2015). Molecular-level modeling and simulation of vacuum gas oil hydrocracking. Energy & Fuels, 30(1), 138–148.

    Google Scholar 

  6. Garcia-Ratés, M., de Hemptinne, J.-C., Avalos, J. B., & Nieto-Draghi, C. (2012). Molecular modeling of diffusion coefficient and ionic conductivity of CO2 in aqueous ionic solutions. The Journal of Physical Chemistry B, 116(9), 2787–2800.

    Article  Google Scholar 

  7. Fouad, W. A., Song, K. Y., & Chapman, W. G. (2015). Experimental measurements and molecular modeling of the hydrate equilibrium as a function of water content for pressures up to 40 MPa. Industrial & Engineering Chemistry Research, 54(39), 9637–9644.

    Article  Google Scholar 

  8. Pathak, M., Deo, M. D., Panja, P., & Levey, R. A. (2015). The effect of kerogen-hydrocarbons interaction on the pvt properties in liquid rich shale plays. In SPE/CSUR Unconventional Resources Conference. Society of Petroleum Engineers

    Google Scholar 

  9. Yu, W., Sepehrnoori, K., & Patzek, T. W. (2016). Modeling gas adsorption in Marcellus shale with Langmuir and bet isotherms. SPE Journal, 21(02), doi:10.2118/170801-PA.

  10. Dehghanpour, H., Lan, Q., Saeed, Y., Fei, H., & Qi, Z. (2013). Spontaneous imbibition of brine and oil in gas shales: Effect of water adsorption and resulting microfractures. Energy & Fuels, 27(6), 3039–3049.

    Article  Google Scholar 

  11. Kuznetsova, T., Kvamme, B., Parmar, A., Simos, T. E., & Maroulis, G. (2012). Molecular dynamics simulations of methane hydrate pre-nucleation phenomena and the effect of PVCap kinetic inhibitor. In AIP Conference Proceedings-American Institute of Physics (Vol. 1504, p. 776).

    Google Scholar 

  12. Firouzi, M., & Wilcox, J. (2012). Molecular modeling of carbon dioxide transport and storage in porous carbon-based materials. Microporous and Mesoporous Materials, 158, 195–203.

    Article  Google Scholar 

  13. Welch, W. R. W., & Piri, M. (2016). Pore diameter effects on phase behavior of a gas condensate in graphitic one- and two-dimensional nanopores. Journal of Molecular Modeling, 22(1), 1–9.

    Article  Google Scholar 

  14. Taylor, C. D., Chandra, A., Vera, J., & Sridhar, N. (2015). Design and prediction of corrosion inhibitors from quantum chemistry ii. A general framework for prediction of effective oil/water partition coefficients and speciation from quantum chemistry. Journal of the Electrochemical Society, 162(7), C347–C353.

    Article  Google Scholar 

  15. Alvarez-Majmutov, A., Gieleciak, R., & Chen, J. (2015). Deriving the molecular composition of vacuum distillates by integrating statistical modeling and detailed hydrocarbon characterization. Energy & Fuels, 29(12), 7931–7940.

    Article  Google Scholar 

  16. Alvarez-Majmutov, A., Chen, J., Gieleciak, R., Hager, D., Heshka, N., & Salmon, S. (2014). Deriving the molecular composition of middle distillates by integrating statistical modeling with advanced hydrocarbon characterization. Energy & Fuels, 28(12), 7385–7393.

    Article  Google Scholar 

  17. Al-Arfaj, M., Sultan, A., & Abdulraheem, A. (2015). Understanding shale-fluid interactions using molecular modeling techniques for drilling applications: A literature review. In SPE Kuwait Oil and Gas Show and Conference. Society of Petroleum Engineers.

    Google Scholar 

  18. Khoshghadam, M., Lee, W. J., & Khanal, A. (2015). Numerical study of impact of nano-pores on gas-oil ratio and production mechanisms in liquid-rich shale oil reservoirs. In Unconventional Resources Technology Conference (URTEC).

    Google Scholar 

  19. Bui, K., Akkutlu, I. Y., Zelenev, A., Saboowala, H., Gillis, J. R., Silas, J. A., et al. (2016). Insights into mobilization of shale oil by use of microemulsion. SPE Journal.

    Google Scholar 

  20. Liyana-Arachchi, T. P., Zhang, Z., Ehrenhauser, F. S., Avij, P., Valsaraj, K. T., & Hung, F. R. (2014). Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: Molecular dynamics simulations of oil alkanes and dispersants in atmospheric air/salt water interfaces. Environmental Science: Processes & Impacts, 16(1), 53–64.

    Google Scholar 

  21. Collell, J., Ungerer, P., Galliero, G., Yiannourakou, M., Montel, F., & Pujol, M. (2014). Molecular simulation of bulk organic matter in type ii shales in the middle of the oil formation window. Energy & Fuels, 28(12), 7457–7466.

    Article  Google Scholar 

  22. Ungerer, P., Rigby, D., Leblanc, B., & Yiannourakou, M. (2014). Sensitivity of the aggregation behaviour of asphaltenes to molecular weight and structure using molecular dynamics. Molecular Simulation, 40(1–3), 115–122.

    Article  Google Scholar 

  23. Firouzi, M., Alnoaimi, K., Kovscek, A., & Wilcox, J. (2014). Klinkenberg effect on predicting and measuring helium permeability in gas shales. International Journal of Coal Geology, 123, 62–68.

    Article  Google Scholar 

  24. Jiménez-Ángeles, F., & Firoozabadi, A. (2014). Induced charge density and thin liquid film at hydrate/methane gas interfaces. The Journal of Physical Chemistry C, 118(45), 26041–26048.

    Article  Google Scholar 

  25. Aimoli, C. G., Maginn, E. J., & Abreu, C. R. A. (2014). Force field comparison and thermodynamic property calculation of supercritical CO 2 and CH 4 using molecular dynamics simulations. Fluid Phase Equilibria, 368, 80–90.

    Article  Google Scholar 

  26. Sun, M., & Firoozabadi, A. (2013). New surfactant for hydrate anti-agglomeration in hydrocarbon flowlines and seabed oil capture. Journal of Colloid and Interface Science, 402, 312–319.

    Article  Google Scholar 

  27. Stukan, M., & Abdallah, W. (2015). Nano-confined adsorbed and free gas in shale reservoirs: A molecular dynamic study. In SPE Middle East Oil & Gas Show and Conference. Society of Petroleum Engineers.

    Google Scholar 

  28. Morimoto, M., Boek, E. S., Hibi, R., Matsuoka, T., Uetani, T., Murata, S., et al. (2014). Investigation of asphaltene-asphaltene association and aggregation for compositional reservoir simulators by quantitative molecular representations. In International Petroleum Technology Conference.

    Google Scholar 

  29. Kaya, S., Tüzün, B., Kaya, C., & Obot, I. B. (2016). Determination of corrosion inhibition effects of amino acids: Quantum chemical and molecular dynamic simulation study. Journal of the Taiwan Institute of Chemical Engineers, 58, 528–535.

    Article  Google Scholar 

  30. Forte, E., Galindo, A., & Trusler, J. P. M. (2013). Experimental and molecular modelling study of the three-phase behaviour of (propane+ carbon dioxide+ water) at reservoir conditions. The Journal of Supercritical Fluids, 75, 30–42.

    Article  Google Scholar 

  31. Sæthre, B. S., van der Spoel, D., & Hoffmann, A. C. (2012). Free energy of separation of structure ii clathrate hydrate in water and a light oil. The Journal of Physical Chemistry B, 116(20), 5933–5940.

    Article  Google Scholar 

  32. dos Santos, E. S., de Souza, L. C. V., de Assis, P. N., Almeida, P. F., & Ramos-de Souza, E. (2014). Novel potential inhibitors for adenylylsulfate reductase to control souring of water in oil industries. Journal of Biomolecular Structure and Dynamics, 32(11), 1780–1792.

    Article  Google Scholar 

  33. Metin, C. O., Baran, J. R., Jr., & Nguyen, Q. P. (2012). Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface. Journal of Nanoparticle Research, 14(11), 1–16.

    Article  Google Scholar 

  34. Kvamme, B., Kuznetsova, T., & Kivelæ, P.-H. (2012). Adsorption of water and carbon dioxide on hematite and consequences for possible hydrate formation. Physical Chemistry Chemical Physics, 14(13), 4410–4424.

    Article  Google Scholar 

  35. Hu, Y., Devegowda, D., Striolo, A., Phan, A., Ho, T.A., Civan, F., et al. (2015). The dynamics of hydraulic fracture water confined in nano-pores in shale reservoirs. Journal of Unconventional Oil and Gas Resources, 9, 31–39.

    Article  Google Scholar 

  36. Tenney, C. M., & Cygan, R. T. (2014). Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles. Environmental Science & Technology, 48(3), 2035–2042.

    Article  Google Scholar 

  37. Low, B. T., Xiao, Y., & Chung, T. S. (2009). Amplifying the molecular sieving capability of polyimide membranes via coupling of diamine networking and molecular architecture. Polymer, 50(14), 3250–3258.

    Article  Google Scholar 

  38. Mahurin, S. M., Hillesheim, P. C., Yeary, J. S., Jiang, D.-E., & Dai, S. (2012). High CO 2 solubility, permeability and selectivity in ionic liquids with the tetracyanoborate anion. RSC Advances, 2(31), 11813–11819.

    Article  Google Scholar 

  39. Kim, J., Abouelnasr, M., Lin, L.-C., & Smit, B. (2013). Large-scale screening of zeolite structures for CO2 membrane separations. Journal of the American Chemical Society, 135(20), 7545–7552.

    Article  Google Scholar 

  40. Adibi, M., Barghi, S.H., & Rashtchian, D. (2011). Predictive models for permeability and diffusivity of CH 4 through imidazolium-based supported ionic liquid membranes. Journal of Membrane Science, 371(1), 127–133.

    Article  Google Scholar 

  41. Yuanyan, G., Cussler, E. L., & Lodge, T. P. (2012). Aba-triblock copolymer ion gels for CO 2 separation applications. Journal of Membrane Science, 423, 20–26.

    Google Scholar 

  42. Bahukudumbi, P, & Ford, D. M. (2006). Molecular modeling study of the permeability-selectivity trade-off in polymeric and microporous membranes. Industrial & Engineering Chemistry Research, 45(16), 5640–5648.

    Article  Google Scholar 

  43. Comesaña-Gándara, B., José, G., Hernández, A., Jo, H. J., Lee, Y. M., de Abajo, J., et al. (2015). Gas separation membranes made through thermal rearrangement of ortho-methoxypolyimides. RSC Advances, 5(124), 102261–102276.

    Article  Google Scholar 

  44. Fried, J. R. (2006). Gas diffusion and solubility in poly (organophosphazenes): Results of molecular simulation studies. Journal of Inorganic and Organometallic Polymers and Materials, 16(4), 407–418.

    Article  Google Scholar 

  45. Song, Q., Cao, S., Pritchard, R. H., Ghalei, B., Al-Muhtaseb, S. A., Terentjev, E. M., et al. (2014). Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Nature Communications, 5:4813, doi:10.1038/ncomms5813.

  46. Diestel, L., Liu, X. L., Li, Y. S., Yang, W. S., & Caro, J. (2014). Comparative permeation studies on three supported membranes: Pure ZIF-8, pure polymethylphenylsiloxane, and mixed matrix membranes. Microporous and Mesoporous Materials, 189, 210–215

    Article  Google Scholar 

  47. Au, H. (2012). Molecular Dynamics Simulation of Nanoporous Graphene for Selective Gas Separation. PhD thesis, Massachusetts Institute of Technology.

    Google Scholar 

  48. Bera, D., Bandyopadhyay, P., Ghosh, S., Banerjee, S., & Padmanabhan, V. (2015). Highly gas permeable aromatic polyamides containing adamantane substituted triphenylamine. Journal of Membrane Science, 474, 20–31.

    Article  Google Scholar 

  49. Ohs, B., Lohaus, J., & Wessling, M. (2016). Optimization of membrane based nitrogen removal from natural gas. Journal of Membrane Science, 498, 291–301.

    Article  Google Scholar 

  50. Gale, W. W., & Sandvik, E. I. (1973). Tertiary surfactant flooding: Petroleum sulfonate composition-efficacy studies. Society of Petroleum Engineers Journal, 13(04), 191–199.

    Article  Google Scholar 

  51. Fathi, Z., & Ramirez, F. W. (1984). Optimal injection policies for enhanced oil recovery: Part 2-surfactant flooding. Society of Petroleum Engineers Journal, 24(03), 333–341.

    Article  Google Scholar 

  52. Shuler, P., Blanco, M., Jang, S. S., Lin, S.-T., Maiti, P., Wu, Y., et al. (2004). Lower cost methods for improved oil recovery (IOR) via surfactant flooding. DoE Project Report.

    Google Scholar 

  53. Rosen, M. J., Wang, H., Shen, P., & Zhu, Y. (2005). Ultralow interfacial tension for enhanced oil recovery at very low surfactant concentrations. Langmuir, 21(9), 3749–3756.

    Article  Google Scholar 

  54. Al-Amodi, A. O., Al-Mubaiyedh, U. A., Sultan, A. S., Kamal, M. S., & Hussein, I. A. (2015). Novel fluorinated surfactants for enhanced oil recovery in carbonate reservoirs. The Canadian Journal of Chemical Engineering, 94(3), 454–460.

    Google Scholar 

  55. Babu, K., Maurya, N. K., Mandal, A., & Saxena, V. K. (2015). Synthesis and characterization of sodium methyl ester sulfonate for chemically-enhanced oil recovery. Brazilian Journal of Chemical Engineering, 32(3), 795–803.

    Article  Google Scholar 

  56. Yuan, C.-D., Pu, W.-F., Wang, X.-C., Sun, L., Zhang, Y.-C., & Cheng, S. (2015). Effects of interfacial tension, emulsification, and surfactant concentration on oil recovery in surfactant flooding process for high temperature and high salinity reservoirs. Energy & Fuels, 29(10), 6165–6176.

    Article  Google Scholar 

  57. Co, L., Zhang, Z., Ma, Q., Watts, G., Zhao, L., Shuler, P.J., et al. (2015). Evaluation of functionalized polymeric surfactants for EOR applications in the Illinois basin. Journal of Petroleum Science and Engineering, 134, 167–175.

    Article  Google Scholar 

  58. Babu, K., Pal, N., Bera, A., Saxena, V. K., & Mandal, A. (2015). Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery. Applied Surface Science, 353, 1126–1136.

    Article  Google Scholar 

  59. Husin, H., Ibrahim, M. N., Hassan, Z., Taib, N. M., Hamid, K. H. K., Ab Lah, N. K. I. N., & Shayuti, M. S. (2015). Overview on chemical-based, bio-based and natural-based surfactants in EOR applications. In ICGSCE 2014 (pp. 3–9). Singapore: Springer.

    Chapter  Google Scholar 

  60. Taiwo, O. A., & Olafuyi, O. A. (2015). Surfactant and surfactant-polymer flooding for light oil: A gum arabic approach. Petroleum & Coal, 57(3), 205–215.

    Google Scholar 

  61. Kittisrisawai, S., & Beatriz Romero-Zerón, L. (2015). Complexation of surfactant/β-cyclodextrin to inhibit surfactant adsorption onto sand, kaolin, and shale for applications in enhanced oil recovery processes. part iii: Oil displacement evaluation. Journal of Surfactants and Detergents, 18(5), 797–809.

    Google Scholar 

  62. Zhan, W., Pengyuan, Z., Guangwen, C., Haikui, Z., Yun, J., & Jianfeng, C. (2015). Synthesis of petroleum sulfonate surfactant with ultra-low interfacial tension in rotating packed bed reactor. China Petroleum Processing & Petrochemical Technology, 17(1), 59–68.

    Google Scholar 

  63. Luan, H., Wu, Y., Wu, W., Zhang, W., Chen, Q., Zhang, H., et al. (2015). Study on cardanolbetaine surfactants for ultralow interfacial tension in a low range of surfactant concentration and wide range of temperature applied in compound flooding. Tenside Surfactants Detergents, 52(1), 29–34.

    Article  Google Scholar 

  64. Fletcher, P. D., Savory, L. D., Woods, F., Clarke, A., & Howe, A. M. (2015). Model study of enhanced oil recovery by flooding with aqueous surfactant solution and comparison with theory. Langmuir, 31(10), 3076–3085.

    Article  Google Scholar 

  65. Chen, X., Feng, Q., Sepehrnoori, K., Goudarzi, A., & Bai, B. (2015). Mechanistic modeling of gel microsphere surfactant displacement for enhanced oil recovery after polymer flooding. In SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers.

    Google Scholar 

  66. Jin, L., Jamili, A., Harwell, J. H., Shiau, B. J., & Roller, C. (2015). Modeling and interpretation of single well chemical tracer tests (SWCTT) for pre and post chemical EOR in two high salinity reservoirs. In SPE Production and Operations Symposium. Society of Petroleum Engineers.

    Google Scholar 

  67. Keshtkar, S., Sabeti, M., & Mohammadi, A. H. (2015). Numerical approach for enhanced oil recovery with surfactant flooding. Petroleum, 2(1), 98–107.

    Google Scholar 

  68. Danaev, N., Akhmed-Zaki, D., Mukhambetzhanov, S., & Imankulov, T. (2015). Mathematical modelling of oil recovery by polymer/surfactant flooding. In Mathematical Modeling of Technological Processes (pp. 1–12). Springer International Publishing.

    Google Scholar 

  69. Alshehri, A. J., & Khatib, A. M. (2015). Implementation time of chemical flood and its impact on ultimate recovery. In IOR 2015—18th European Symposium on Improved Oil Recovery.

    Google Scholar 

  70. Hosseini-Nasab, S. M., Padalkar, C., Battistutta, E., & Zitha, P. L. (2015). Mechanistic modelling of alkaline/surfactant/polymer flooding process at under-optimum salinity condition for enhanced oil recovery. In SPE Asia Pacific Enhanced Oil Recovery Conference. Society of Petroleum Engineers.

    Google Scholar 

  71. Tavassoli, S., Korrani, A. K. N., Pope, G. A., & Sepehrnoori, K. (2015). Low salinity surfactant flooding—A multi-mechanistic enhanced oil recovery method. In SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers.

    Google Scholar 

  72. Liu, Q., Yuan, S., Yan, H., & Zhao, X. (2012). Mechanism of oil detachment from a silica surface in aqueous surfactant solutions: Molecular dynamics simulations. The Journal of Physical Chemistry B, 116(9), 2867–2875.

    Article  Google Scholar 

  73. Tokiwa, Y., Sakamoto, H., Takiue, T., Aratono, M., & Matsubara, H. (2015). Effect of alkane chain length and counterion on the freezing transition of cationic surfactant adsorbed film at alkane mixture-water interfaces. The Journal of Physical Chemistry B, 119(20), 6235–6241.

    Google Scholar 

  74. Tamam, L., Pontoni, D., Sapir, Z., Yefet, S., Sloutskin, E., Ocko, B. M., et al. (2011). Modification of deeply buried hydrophobic interfaces by ionic surfactants. Proceedings of the National Academy of Sciences, 108(14), 5522–5525.

    Article  Google Scholar 

  75. Wang, S., Li, Z., Liu, B., Zhang, X., & Yang, Q. (2015). Molecular mechanisms for surfactant-aided oil removal from a solid surface. Applied Surface Science, 359, 98–105.

    Article  Google Scholar 

  76. Wang, Y., Xu, H., Yu, W., Bai, B., Song, X., & Zhang, J. (2011). Surfactant induced reservoir wettability alteration: Recent theoretical and experimental advances in enhanced oil recovery. Petroleum Science, 8(4), 463–476.

    Article  Google Scholar 

  77. Giraldo, J., Benjumea, P., Lopera, S., Cortés, F. B., & Ruiz, M. A. (2013). Wettability alteration of sandstone cores by alumina-based nanofluids. Energy & Fuels, 27(7), 3659–3665.

    Article  Google Scholar 

  78. Roustaei, A., Saffarzadeh, S., & Mohammadi, M. (2013). An evaluation of modified silica nanoparticles’ efficiency in enhancing oil recovery of light and intermediate oil reservoirs. Egyptian Journal of Petroleum, 22(3), 427–433.

    Article  Google Scholar 

  79. Castro Dantas, T. N., Soares A, P. J., Wanderley Neto, A. O., Dantas Neto, A. A., & Barros Neto, E. L. (2014). Implementing new microemulsion systems in wettability inversion and oil recovery from carbonate reservoirs. Energy & Fuels, 28(11), 6749–6759.

    Google Scholar 

  80. Hou, B.-F., Wang, Y.-F., & Huang, Y. (2015). Study of spontaneous imbibition of water by oil-wet sandstone cores using different surfactants. Journal of Dispersion Science and Technology, 36(9), 1264–1273.

    Article  Google Scholar 

  81. Hou, B.-F., Wang, Y.-F., & Huang, Y. (2015). Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants. Applied Surface Science, 330, 56–64.

    Article  Google Scholar 

  82. Mohammed, M., & Babadagli, T. (2015). Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems. Advances in Colloid and Interface Science, 220, 54–77.

    Article  Google Scholar 

  83. Hou, B., Wang, Y., Cao, X., Zhang, J., Song, X., Ding, M., et al. (2015). Mechanisms of enhanced oil recovery by surfactant-induced wettability alteration. Journal of Dispersion Science and Technology, 37(9), 1259–1267.

    Google Scholar 

  84. Ragab, A. M. S., & Hannora, A. E. (2015). An experimental investigation of silica nano particles for enhanced oil recovery applications. In SPE North Africa Technical Conference and Exhibition. Society of Petroleum Engineers.

    Google Scholar 

  85. Zargartalebi, M., Kharrat, R., & Barati, N. (2015). Enhancement of surfactant flooding performance by the use of silica nanoparticles. Fuel, 143, 21–27.

    Article  Google Scholar 

  86. Umar, M., Novriansyah, A., Rita, N., & Husbani, A. (2015). Effect of nanosilica injection to oil recovery factor in low porosity and permeability reservoir. Jurnal Intelek, 9(2), 11–13.

    Google Scholar 

  87. Ahmadi, M. A., & Shadizadeh, S. R. (2013). Induced effect of adding nano silica on adsorption of a natural surfactant onto sandstone rock: Experimental and theoretical study. Journal of Petroleum Science and Engineering, 112, 239–247.

    Article  Google Scholar 

  88. Zeyghami, M., Kharrat, R., & Ghazanfari, M. H. (2014). Investigation of the applicability of nano silica particles as a thickening additive for polymer solutions applied in EOR processes. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36(12), 1315–1324.

    Article  Google Scholar 

  89. Dai, C., Wang, S., Li, Y., Gao, M., Liu, Y., Sun, Y., et al. (2015). The first study of surface modified silica nanoparticles in pressure-decreasing application. RSC Advances, 5(76), 61838–61845.

    Article  Google Scholar 

  90. Bayat, A. E., Junin, R., Shamshirband, S., & Chong, W. T. (2015). Transport and retention of engineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks. Scientific Reports, 5:14264, doi:10.1038/srep14264.

  91. Bayat, A. E., Junin, R., Mohsin, R., Hokmabadi, M., & Shamshirband, S. (2015). Influence of clay particles on Al2O3 and TiO2 nanoparticles transport and retention through limestone porous media: Measurements and mechanisms. Journal of Nanoparticle Research, 17(5), 1–14.

    Article  Google Scholar 

  92. Kazemzadeh, Y., Eshraghi, S. E., Sourani, S., & Reyhani, M. (2015). An interface-analyzing technique to evaluate the heavy oil swelling in presence of nickel oxide nanoparticles. Journal of Molecular Liquids, 211, 553–559.

    Article  Google Scholar 

  93. Nazari Moghaddam, R., Bahramian, A., Fakhroueian, Z., Karimi, A., & Arya, S. (2015). Comparative study of using nanoparticles for enhanced oil recovery: Wettability alteration of carbonate rocks. Energy & Fuels, 29(4), 2111–2119.

    Article  Google Scholar 

  94. Cheraghian, G., & Hendraningrat, L. (2015). A review on applications of nanotechnology in the enhanced oil recovery part b: Effects of nanoparticles on flooding. International Nano Letters, 6(1), 1–10.

    Google Scholar 

  95. Bhuiyan, M. H. U., Saidur, R., Mostafizur, R. M., Mahbubul, I. M., & Amalina, M. A. (2015). Experimental investigation on surface tension of metal oxide–water nanofluids. International Communications in Heat and Mass Transfer, 65, 82–88.

    Article  Google Scholar 

  96. Bayat, A. E., Junin, R., Derahman, M. N., & Samad, A. A. (2015). TiO 2 nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions. Chemosphere, 134, 7–15.

    Article  Google Scholar 

  97. Sygouni, V., & Chrysikopoulos, C. V. (2015). Characterization of TiO 2 nanoparticle suspensions in aqueous solutions and TiO 2 nanoparticle retention in water-saturated columns packed with glass beads. Chemical Engineering Journal, 262, 823–830.

    Article  Google Scholar 

  98. Al-Marshed, A., Hart, A., Leeke, G., Greaves, M., & Wood, J. (2015). Optimization of heavy oil upgrading using dispersed nanoparticulate iron oxide as a catalyst. Energy & Fuels, 29(10), 6306–6316.

    Article  Google Scholar 

  99. Tang, J., Quinlan, P. J., & Tam, K. C. (2015). Stimuli-responsive pickering emulsions: Recent advances and potential applications. Soft Matter, 11(18), 3512–3529.

    Article  Google Scholar 

  100. de Lara, L. S., Michelon, M. F., Metin, C. O., Nguyen, Q. P., & Miranda, C. R. (2012). Interface tension of silica hydroxylated nanoparticle with brine: A combined experimental and molecular dynamics study. The Journal of Chemical Physics, 136(16), 164702.

    Article  Google Scholar 

  101. Metin, C. O., Lake, L. W., Miranda, C. R., & Nguyen, Q. P. (2011). Stability of aqueous silica nanoparticle dispersions. Journal of Nanoparticle Research, 13(2), 839–850.

    Article  Google Scholar 

  102. Rigo, V. A., de Lara, L. S., & Miranda, C. R. (2014). Energetics of formation and hydration of functionalized silica nanoparticles: An atomistic computational study. Applied Surface Science, 292, 742–749.

    Article  Google Scholar 

  103. Wu, D., Guo, X., Sun, H., & Navrotsky, A. (2015). Energy landscape of water and ethanol on silica surfaces. The Journal of Physical Chemistry C, 119(27), 15428–15433.

    Article  Google Scholar 

  104. de Lara, L. S., Michelon, M. F., & Miranda, C. R. (2012). Molecular dynamics studies of fluid/oil interfaces for improved oil recovery processes. The Journal of Physical Chemistry B, 116(50), 14667–14676.

    Article  Google Scholar 

  105. Liu, B., Shi, J., Wang, M., Zhang, J., Sun, B., Shen, Y., et al. (2015). Reduction in interfacial tension of water-oil interface by supercritical CO 2 in enhanced oil recovery processes studied with molecular dynamics simulation. The Journal of Supercritical Fluids, 111, 171–178.

    Google Scholar 

  106. Zhao, L., Tao, L., & Lin, S. (2015). Molecular dynamics characterizations of the supercritical CO2-mediated hexane–brine interface. Industrial & Engineering Chemistry Research, 54(9), 2489–2496.

    Article  Google Scholar 

  107. Li, J.-J., Zhu, L.-T., & Luo, Z.-H. (2016). Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation. Chemical Engineering Journal, 287, 474–481.

    Article  Google Scholar 

  108. Alzahrani, S., & Mohammad, A. W. (2014). Challenges and trends in membrane technology implementation for produced water treatment: A review. Journal of Water Process Engineering, 4, 107–133.

    Article  Google Scholar 

  109. Drioli, E., Ali, A., Lee, Y. M., Al-Sharif, S. F., Al-Beirutty, M., & Macedonio, F. (2015). Membrane operations for produced water treatment. Desalination and Water Treatment, 57(31), 1–19.

    Google Scholar 

  110. Bakshi, A. K., Ghimire, R., Sheridan, E., & Kuhn, M. (2015). Treatment of produced water using silicon carbide membrane filters. Advances in Bioceramics and Porous Ceramics VIII: Ceramic Engineering and Science Proceedings, 36(5), 91.

    Google Scholar 

  111. Frisk, S., Lim, H. S., Bates, L. C., Andrin, P., & El-Borno, B. (2014). Produced water treatment in oil recovery, October 8 2014. US Patent App. 14/509,201.

    Google Scholar 

  112. Tao, M., Xue, L., Liu, F., & Jiang, L. (2014). An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation. Advanced Materials, 26(18), 2943–2948.

    Article  Google Scholar 

  113. Yuan, T., Meng, J., Hao, T., Wang, Z., & Zhang, Y. (2015). A scalable method toward superhydrophilic and underwater superoleophobic PVDF membranes for effective oil/water emulsion separation. ACS Applied Materials & Interfaces, 7(27), 14896–14904.

    Article  Google Scholar 

  114. Ou, R., Wei, J., Jiang, L., Simon, G. P., & Wang, H. (2015). Robust thermo-responsive polymer composite membrane with switchable superhydrophilicity and superhydrophobicity for efficient oil-water separation. Environmental Science & Technology, 50(2), 906–914.

    Google Scholar 

  115. Sasaki, K., Tenjimbayashi, M., Manabe, K., & Shiratori, S. (2015). Asymmetric superhydrophobic/superhydrophilic cotton fabrics designed by spraying polymer and nanoparticles. ACS Applied Materials & Interfaces, 8(1), 651–659.

    Google Scholar 

  116. Zhu, H., & Guo, Z. (2016). Understanding the separations of oil/water mixtures from immiscible to emulsions on super-wettable surfaces. Journal of Bionic Engineering, 13(1), 1–29.

    Article  Google Scholar 

  117. Si, Y., & Guo, Z. (2015). Superwetting materials of oil-water emulsion separation. Chemistry Letters, 44(7), 874–883.

    Google Scholar 

  118. Zhu, H., & Guo, Z. (2015). Order separation of oil/water mixtures by superhydrophobic/superoleophilic Cu (OH) 2-thioled films. Chemistry Letters, 44(10), 1431–1433.

    Article  Google Scholar 

  119. Kota, A. K., Kwon, G., Choi, W., Mabry, J. M., & Tuteja, A. (2012). Hygro-responsive membranes for effective oil–water separation. Nature Communications, 3, 1025.

    Google Scholar 

  120. Gondal, M. A., Sadullah, M. S., Dastageer, M. A., McKinley, G. H., Panchanathan, D., & Varanasi, K. K. (2014). Study of factors governing oil–water separation process using TiO2 films prepared by spray deposition of nanoparticle dispersions. ACS Applied Materials & Interfaces, 6(16), 13422–13429.

    Article  Google Scholar 

  121. Deng, D., Prendergast, D. P., MacFarlane, J., Bagatin, R., Stellacci, F., & Gschwend, P. M. (2013). Hydrophobic meshes for oil spill recovery devices. ACS Applied Materials & Interfaces, 5(3), 774–781.

    Article  Google Scholar 

  122. Lin, X., Lu, F., Chen, Y., Liu, N., Cao, Y., Xu, L., et al. (2015). One-step breaking and separating emulsion by tungsten oxide coated mesh. ACS Applied Materials & Interfaces, 7(15), 8108–8113.

    Article  Google Scholar 

  123. Si, Y., Fu, Q., Wang, X., Zhu, J., Yu, J., Sun, G., et al. (2015). Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano, 9(4), 3791–3799.

    Article  Google Scholar 

  124. Huang, M., Si, Y., Tang, X., Zhu, Z., Ding, B., Liu, L., et al. (2013). Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. Journal of Materials Chemistry A, 1(45), 14071–14074.

    Article  Google Scholar 

  125. Xiang, Y., Shen, J., Wang, Y., Liu, F., & Xue, L. (2015). A pH-responsive PVDF membrane with superwetting properties for the separation of oil and water. RSC Advances, 5(30), 23530–23539.

    Article  Google Scholar 

  126. Cao, P.-F., Mangadlao, J. D., & Advincula, R. C. (2015). Stimuli-responsive polymers and their potential applications in oil-gas industry. Polymer Reviews, 55(4), 706–733.

    Article  Google Scholar 

  127. Che, H., Huo, M., Peng, L., Fang, T., Liu, N., Feng, L., et al. (2015). CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angewandte Chemie International Edition, 54(31), 8934–8938.

    Article  Google Scholar 

  128. Wang, X., Yu, J., Sun, G., & Ding, B. (2015). Electrospun nanofibrous materials: A versatile medium for effective oil/water separation. Materials Today, doi:10.1016/j.mattod.2015.11.010.

  129. Kwon, G., Post, E., & Tuteja, A. (2015). Membranes with selective wettability for the separation of oil–water mixtures. MRS Communications, 5(03), 475–494.

    Article  Google Scholar 

  130. Yimer, Y. Y., Jha, K. C., & Tsige, M. (2014). Epitaxial transfer through end-group coordination modulates the odd–even effect in an alkanethiol monolayer assembly. Nanoscale, 6(7), 3496–3502.

    Article  Google Scholar 

  131. Li, S., Li, N., Yang, S., Liu, F., & Zhou, J. (2014). The synthesis of a novel magnetic demulsifier and its application for the demulsification of oil-charged industrial wastewaters. Journal of Materials Chemistry A, 2(1), 94–99.

    Article  Google Scholar 

  132. Flores, J. A., Pavía-Sanders, A., Chen, Y., Pochan, D. J., & Wooley, K. L. (2015). Recyclable hybrid inorganic/organic magnetically active networks for the sequestration of crude oil from aqueous environments. Chemistry of Materials, 27(10), 3775–3782.

    Google Scholar 

  133. Hu, L., Gao, S., Zhu, Y., Zhang, F., Jiang, L., & Jin, J. (2015). An ultrathin bilayer membrane with asymmetric wettability for pressure responsive oil/water emulsion separation. Journal of Materials Chemistry A, 3(46), 23477–23482.

    Article  Google Scholar 

  134. Yang, Y., Tong, Z., Ngai, T., & Wang, C. (2014). Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water. ACS Applied Materials & Interfaces, 6(9), 6351–6360.

    Article  Google Scholar 

  135. Solomon, B. R., Hyder, Md. N., & Varanasi, K. K. (2014). Separating oil-water nanoemulsions using flux-enhanced hierarchical membranes. Scientific Reports, 4:5504, doi:10.1038/srep05504.

  136. Wang, Z.-X., Lau, C.-H., Zhang, N.-Q., Bai, Y.-P., & Shao, L. (2015). Mussel-inspired tailoring of membrane wettability for harsh water treatment. Journal of Materials Chemistry A, 3(6), 2650–2657.

    Article  Google Scholar 

  137. Wang, B., Liang, W., Guo, Z., & Liu, W. (2015). Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chemical Society Reviews, 44(1), 336–361.

    Article  Google Scholar 

  138. Jiménez-Ángeles, F., & Firoozabadi, A. (2014). Nucleation of methane hydrates at moderate subcooling by molecular dynamics simulations. The Journal of Physical Chemistry C, 118(21), 11310–11318.

    Article  Google Scholar 

  139. Peters, B., Zimmermann, N. E. R., Beckham, G. T., Tester, J. W., & Trout, B. L. (2008). Path sampling calculation of methane diffusivity in natural gas hydrates from a water-vacancy assisted mechanism. Journal of the American Chemical Society, 130(51), 17342–17350.

    Article  Google Scholar 

  140. Sarupria, S., & Debenedetti, P. G. (2012). Homogeneous nucleation of methane hydrate in microsecond molecular dynamics simulations. The Journal of Physical Chemistry Letters, 3(20), 2942–2947.

    Article  Google Scholar 

  141. Barnes, B. C., & Sum, A. K. (2013). Advances in molecular simulations of clathrate hydrates. Current Opinion in Chemical Engineering, 2(2), 184–190.

    Article  Google Scholar 

  142. Sum, A. K., Wu, D. T., & Yasuoka, K. (2011). Energy science of clathrate hydrates: Simulation-based advances. MRS Bulletin, 36(03), 205–210.

    Article  Google Scholar 

  143. Bi, Y., & Li, T. (2014). Probing methane hydrate nucleation through the forward flux sampling method. The Journal of Physical Chemistry B, 118(47), 13324–13332.

    Article  Google Scholar 

  144. Małolepsza, E., & Keyes, T. (2015). Pathways through equilibrated states with coexisting phases for gas hydrate formation. The Journal of Physical Chemistry B, 119(52), 15857–15865.

    Article  Google Scholar 

  145. Yagasaki, T., Matsumoto, M., & Tanaka, H. (2015). Adsorption mechanism of inhibitor and guest molecules on the surface of gas hydrates. Journal of the American Chemical Society, 137(37), 12079–12085.

    Article  Google Scholar 

  146. Yagasaki, T., Matsumoto, M., & Tanaka, H. (2015). Effects of thermodynamic inhibitors on the dissociation of methane hydrate: A molecular dynamics study. Physical Chemistry Chemical Physics, 17(48), 32347–32357.

    Article  Google Scholar 

  147. Walsh, M. R., Koh, C. A., Sloan, E. D., Sum, A. K., & Wu, D. T. (2009). Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science, 326(5956), 1095–1098.

    Article  Google Scholar 

  148. Vatamanu, J., & Kusalik, P. G. (2006). Unusual crystalline and polycrystalline structures in methane hydrates. Journal of the American Chemical Society, 128(49), 15588–15589.

    Article  Google Scholar 

  149. Anim-Danso, E., Zhang, Y., & Dhinojwala, A. (2013). Freezing and melting of salt hydrates next to solid surfaces probed by infrared–visible sum frequency generation spectroscopy. Journal of the American Chemical Society, 135(23), 8496–8499.

    Article  Google Scholar 

  150. Zhang, Y., Anim-Danso, E., & Dhinojwala, A. (2014). The effect of a solid surface on the segregation and melting of salt hydrates. Journal of the American Chemical Society, 136(42), 14811–14820.

    Article  Google Scholar 

  151. Jha, K. C., Anim-Danso, E., Bekele, S., Eason, G., & Tsige, M. (2016). On modulating interfacial structure towards improved anti-icing performance. Coatings, 6(1), 3.

    Article  Google Scholar 

  152. Sa, J.-H., Kwak, G.-H., Lee, B. R., Park, D.-H., Han, K., & Lee, K.-H. (2013). Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation. Scientific Reports, 3:2428, doi:10.1038/srep02428.

  153. Gokhale, S., Xu, Y., & Joy, A. (2013). A library of multifunctional polyesters with “peptide-like” pendant functional groups. Biomacromolecules, 14(8), 2489–2493.

    Article  Google Scholar 

  154. Swanson, J. P., Monteleone, L. R., Haso, F., Costanzo, P. J., Liu, T., & Joy, A. (2015). A library of thermoresponsive, coacervate-forming biodegradable polyesters. Macromolecules, 48(12), 3834–3842.

    Article  Google Scholar 

  155. Oluwunmi, P. A., Finney, A. R., & Rodger, P. M. (2015). Molecular dynamics screening for new kinetic inhibitors of methane hydrate. Canadian Journal of Chemistry, 93(9), 1043–1049.

    Article  Google Scholar 

  156. Patel, H. A., Je, S. H., Park, J., Jung, Y., Coskun, A., & Yavuz, C. T. (2014). Directing the structural features of N2-phobic nanoporous covalent organic polymers for CO2 capture and separation. Chemistry-A European Journal, 20(3), 772–780.

    Article  Google Scholar 

  157. Qian, D., Lei, C., Hao, G.-P., Li, W.-C., & Lu, A.-H. (2012). Synthesis of hierarchical porous carbon monoliths with incorporated metal–organic frameworks for enhancing volumetric based CO2 capture capability. ACS Applied Materials & Interfaces, 4(11), 6125–6132.

    Article  Google Scholar 

  158. Bali, S., Chen, T. T., Chaikittisilp, W., & Jones, C. W. (2013). Oxidative stability of amino polymer–alumina hybrid adsorbents for carbon dioxide capture. Energy & Fuels, 27(3), 1547–1554.

    Article  Google Scholar 

  159. Chaikittisilp, W., Khunsupat, R., Chen, T. T., & Jones, C. W. (2011). Poly (allylamine)–mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Industrial & Engineering Chemistry Research, 50(24), 14203–14210.

    Article  Google Scholar 

  160. Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R. B., Bland, A. E., et al. (2008). Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences, 20(1), 14–27.

    Article  Google Scholar 

  161. Goeppert, A., Czaun, M., May, R. B., Surya Prakash, G. K., Olah, G. A., & Narayanan, S. R. (2011). Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. Journal of the American Chemical Society, 133(50), 20164–20167.

    Article  Google Scholar 

  162. Drage, T. C., Snape, C. E., Stevens, L. A., Wood, J., Wang, J., Cooper, A. I., et al. (2012). Materials challenges for the development of solid sorbents for post-combustion carbon capture. Journal of Materials Chemistry, 22(7), 2815–2823.

    Article  Google Scholar 

  163. Choi, S., Drese, J. H., & Jones, C. W. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854.

    Article  Google Scholar 

  164. Chatti, R., Bansiwal, A. K., Thote, J. A., Kumar, V., Jadhav, P., Lokhande, S. K., et al. (2009). Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies. Microporous and Mesoporous Materials, 121(1), 84–89.

    Article  Google Scholar 

  165. Herm, Z. R., Swisher, J. A., Smit, B., Krishna, R., & Long, J. R. (2011). Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. Journal of the American Chemical Society, 133(15), 5664–5667.

    Article  Google Scholar 

  166. Li, P., Zhang, S., Chen, S., Zhang, Q., Pan, J., & Ge, B. (2008). Preparation and adsorption properties of polyethylenimine containing fibrous adsorbent for carbon dioxide capture. Journal of Applied Polymer Science, 108(6), 3851–3858.

    Article  Google Scholar 

  167. Wang, Q., Luo, J., Zhong, Z., & Borgna, A. (2011). CO2 capture by solid adsorbents and their applications: Current status and new trends. Energy & Environmental Science, 4(1), 42–55.

    Article  Google Scholar 

  168. Patel, H. A., Je, S. H., Park, J., Chen, D. P., Jung, Y., Yavuz, C. T., et al. (2013). Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nature Communications, 4, 1357.

    Article  Google Scholar 

  169. Byun, J., Je, S.-H., Patel, H. A., Coskun, A., & Yavuz, C. T. (2014). Nanoporous covalent organic polymers incorporating tröger’s base functionalities for enhanced CO 2 capture. Journal of Materials Chemistry A, 2(31), 12507–12512.

    Article  Google Scholar 

  170. Patel, H. A., Karadas, F., Byun, J., Park, J., Deniz, E., Canlier, A., et al. (2013). Highly stable nanoporous sulfur-bridged covalent organic polymers for carbon dioxide removal. Advanced Functional Materials, 23(18), 2270–2276.

    Article  Google Scholar 

  171. Patel, H. A., Karadas, F., Canlier, A., Park, J., Deniz, E., Jung, Y., et al. (2012). High capacity carbon dioxide adsorption by inexpensive covalent organic polymers. Journal of Materials Chemistry, 22(17), 8431–8437.

    Article  Google Scholar 

  172. Khalilpour, R., Abbas, A., Lai, Z., & Pinnau, I. (2012). Modeling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas. AIChE Journal, 58(5), 1550–1561.

    Article  Google Scholar 

  173. Zhang, Y.-T., Zhang, L., Chen, H.-L., & Zhang, H.-M. (2010). Selective separation of low concentration CO 2 using hydrogel immobilized ca enzyme based hollow fiber membrane reactors. Chemical Engineering Science, 65(10), 3199–3207.

    Article  Google Scholar 

  174. Ren, J., Wang, R., Zhang, H.-Y., Li, Z., Liang, D. T., & Tay, J. H. (2006). Effect of PVDF dope rheology on the structure of hollow fiber membranes used for CO 2 capture. Journal of Membrane Science, 281(1), 334–344.

    Article  Google Scholar 

  175. Kim, S., Han, S. H., & Lee, Y. M. (2012). Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO 2 capture. Journal of Membrane Science, 403, 169–178.

    Article  Google Scholar 

  176. Guiver, M. D., & Lee, Y. M. (2013). Polymer rigidity improves microporous membranes. Science, 339(6117), 284–285.

    Article  Google Scholar 

  177. McKeown, N. B., Budd, P. M., Msayib, K. J., Ghanem, B. S., Kingston, H. J., Tattershall, C. E., et al. (2005). Polymers of intrinsic microporosity (PIMs): Bridging the void between microporous and polymeric materials. Chemistry-A European Journal, 11(9), 2610–2620.

    Article  Google Scholar 

  178. Budd, P. M., Msayib, K. J., Tattershall, C. E., Ghanem, B. S., Reynolds, K. J., McKeown, N. B., et al. (2005). Gas separation membranes from polymers of intrinsic microporosity. Journal of Membrane Science, 251(1), 263–269.

    Article  Google Scholar 

  179. Budd, P. M., McKeown, N. B., & Fritsch, D. (2005). Free volume and intrinsic microporosity in polymers. Journal of Materials Chemistry, 15(20), 1977–1986.

    Article  Google Scholar 

  180. Budd, P. M., Makhseed, S. M., Ghanem, B. S., Msayib, K. J., Tattershall, C. E., & McKeown, N. B. (2004). Microporous polymeric materials. Materials Today, 7(4), 40–46.

    Article  Google Scholar 

  181. Peng, F., Lu, L., Sun, H., Wang, Y., Liu, J., & Jiang, Z. (2005). Hybrid organic-inorganic membrane: Solving the tradeoff between permeability and selectivity. Chemistry of Materials, 17(26), 6790–6796.

    Article  Google Scholar 

  182. Swaidan, R., Ghanem, B., Litwiller, E., & Pinnau, I. (2015). Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity. Macromolecules, 48(18), 6553–6561.

    Article  Google Scholar 

  183. Jo, H. J., Soo, C. Y., Dong, G., Do, Y. S., Wang, H. H., Lee, M. J., et al. (2015). Thermally rearranged poly (benzoxazole-co-imide) membranes with superior mechanical strength for gas separation obtained by tuning chain rigidity. Macromolecules, 48(7), 2194–2202.

    Article  Google Scholar 

  184. Li, J.-R., Sculley, J., & Zhou, H.-C. (2011). Metal–organic frameworks for separations. Chemical Reviews, 112(2), 869–932.

    Article  Google Scholar 

  185. Chen, Z., Xiang, S., Arman, H. D., Mondal, J. U., Li, P., Zhao, D., et al. (2011). Three-dimensional pillar-layered copper (ii) metal-organic framework with immobilized functional oh groups on pore surfaces for highly selective CO2/CH4 and C2H2/CH4 gas sorption at room temperature. Inorganic Chemistry, 50(8), 3442–3446.

    Article  Google Scholar 

  186. Andirova, D., Cogswell, C. F., Lei, Y., & Choi, S. (2016). Effect of the structural constituents of metal organic frameworks on carbon dioxide capture. Microporous and Mesoporous Materials, 219, 276–305.

    Article  Google Scholar 

  187. Venna, S. R., & Carreon, M. A. (2015). Metal organic framework membranes for carbon dioxide separation. Chemical Engineering Science, 124, 3–19.

    Article  Google Scholar 

  188. Buchan, I., Ryder, M. R., & Tan, J.-C. (2015). Micromechanical behavior of polycrystalline metal–organic framework thin films synthesized by electrochemical reaction. Crystal Growth & Design, 15(4), 1991–1999.

    Article  Google Scholar 

  189. Seth, S., Savitha, G., & Moorthy, J. N. (2015). Carbon dioxide capture by a metal–organic framework with nitrogen-rich channels based on rationally designed triazole-functionalized tetraacid organic linker. Inorganic Chemistry, 54(14), 6829–6835.

    Article  Google Scholar 

  190. Keskin, S., & Sholl, D. S. (2008). Assessment of a metal-organic framework membrane for gas separations using atomically detailed calculations: CO2, CH4, N2, H2 mixtures in MOF-5. Industrial & Engineering Chemistry Research, 48(2), 914–922.

    Article  Google Scholar 

  191. Erucar, I., & Keskin, S. (2012). Computational screening of metal organic frameworks for mixed matrix membrane applications. Journal of Membrane Science, 407, 221–230.

    Article  Google Scholar 

  192. Watanabe, T., & Sholl, D. S. (2012). Accelerating applications of metal–organic frameworks for gas adsorption and separation by computational screening of materials. Langmuir, 28(40), 14114–14128.

    Article  Google Scholar 

  193. Krishna, R., & van Baten, J. M. (2011). Investigating the potential of MgMOF-74 membranes for CO 2 capture. Journal of Membrane Science, 377(1), 249–260.

    Article  Google Scholar 

  194. Pillai, R. S., Benoit, V., Orsi, A., Llewellyn, P. L., Wright, P. A., & Maurin, G. (2015). Highly selective CO2 capture by small pore scandium-based metal–organic frameworks. The Journal of Physical Chemistry C, 119(41), 23592–23598.

    Article  Google Scholar 

  195. Yang, Q., Liu, D., & Zhong, C. (2015). Molecular modeling of gas separation in metal–organic frameworks. In Metal-Organic Frameworks: Materials Modeling Towards Engineering Applications (p. 295). Pan Stanford Publishing.

    Google Scholar 

  196. Erucar, I., & Keskin, S. (2013). High CO2 selectivity of an amine-functionalized metal organic framework in adsorption-based and membrane-based gas separations. Industrial & Engineering Chemistry Research, 52(9), 3462–3472.

    Article  Google Scholar 

  197. Adatoz, E., Avci, A. K., & Keskin, S. (2015). Opportunities and challenges of MOF-based membranes in gas separations. Separation and Purification Technology, 152, 207–237.

    Article  Google Scholar 

  198. Shah, M., McCarthy, M. C., Sachdeva, S., Lee, A. K., & Jeong, H.-K. (2012). Current status of metal–organic framework membranes for gas separations: Promises and challenges. Industrial & Engineering Chemistry Research, 51(5), 2179–2199.

    Article  Google Scholar 

  199. Jeazet, H. B. T., Staudt, C., & Janiak, C. (2012). Metal–organic frameworks in mixed-matrix membranes for gas separation. Dalton Transactions, 41(46), 14003–14027.

    Article  Google Scholar 

  200. Ismail, A. F., Khulbe, K. C., & Matsuura, T. (2015). Gas separation membrane materials and structures. In Gas Separation Membranes (pp. 37–192). Springer International Publishing.

    Google Scholar 

  201. Hojniak, S. D., Khan, A. L., Hollóczki, O., Kirchner, B., Vankelecom, I. F. J., Dehaen, W., et al. (2013). Separation of carbon dioxide from nitrogen or methane by supported ionic liquid membranes (SILMs): Influence of the cation charge of the ionic liquid. The Journal of Physical Chemistry B, 117(48), 15131–15140.

    Google Scholar 

  202. Chen, Y., Hu, Z., Gupta, K. M., & Jiang, J. (2011). Ionic liquid/metal–organic framework composite for CO2 capture: A computational investigation. The Journal of Physical Chemistry C, 115(44), 21736–21742.

    Article  Google Scholar 

  203. Dai, Z., Noble, R. D., Gin, D. L., Zhang, X., & Deng, L. (2016). Combination of ionic liquids with membrane technology: A new approach for CO 2 separation. Journal of Membrane Science, 497, 1–20.

    Article  Google Scholar 

  204. Bara, J. E., Gabriel, C. J., Carlisle, T. K., Camper, D. E., Finotello, A., Gin, D. L., et al. (2009). Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. Chemical Engineering Journal, 147(1), 43–50.

    Article  Google Scholar 

  205. Ramdin, M. (2015). CO2 Capture with Ionic Liquids: Experiments and Molecular Simulations. PhD thesis, TU Delft, Delft University of Technology.

    Google Scholar 

  206. Tomé, L. C., Isik, M., Freire, C. S. R., Mecerreyes, D., & Marrucho, I. M. (2015). Novel pyrrolidinium-based polymeric ionic liquids with cyano counter-anions: High performance membrane materials for post-combustion CO 2 separation. Journal of Membrane Science, 483, 155–165.

    Article  Google Scholar 

  207. Benavides, R. E., Jana, S. C., & Reneker, D. H. (2012). Nanofibers from scalable gas jet process. ACS Macro Letters, 1(8), 1032–1036.

    Article  Google Scholar 

  208. Zhu, H., Jha, K. C., Bhatta, R. S., Tsige, M., & Dhinojwala, A. (2014). Molecular structure of poly (methyl methacrylate) surface. i. Combination of interface-sensitive infrared–visible sum frequency generation, molecular dynamics simulations, and ab initio calculations. Langmuir, 30(39), 11609–11618.

    Article  Google Scholar 

  209. Jha, K. C., Zhu, H., Dhinojwala, A., & Tsige, M. (2014). Molecular structure of poly (methyl methacrylate) surface ii: Effect of stereoregularity examined through all-atom molecular dynamics. Langmuir, 30(43), 12775–12785.

    Article  Google Scholar 

  210. Jha, K. C., Dhinojwala, A., & Tsige, M. (2015). Local structure contributions to surface tension of a stereoregular polymer. ACS Macro Letters, 4(11), 1234–1238.

    Article  Google Scholar 

  211. Müller, T. E., Leitner, W., Markewitz, P., & Kuckshinrichs, W. (2015). Opportunities for utilizing and recycling CO2. In Carbon Capture, Storage and Use (pp. 67–100). Springer International Publishing.

    Google Scholar 

  212. Darensbourg, D. J., & Yeung, A. D. (2012). Thermodynamics of the carbon dioxide–epoxide copolymerization and kinetics of the metal-free degradation: A computational study. Macromolecules, 46(1), 83–95.

    Article  Google Scholar 

  213. Talapaneni, S. N., Buyukcakir, O., Je, S. H., Srinivasan, S., Seo, Y., Polychronopoulou, K., et al. (2015). Nanoporous polymers incorporating sterically confined n-heterocyclic carbenes for simultaneous CO2 capture and conversion at ambient pressure. Chemistry of Materials, 27(19), 6818–6826.

    Article  Google Scholar 

Download references

Acknowledgements

This work was made possible by funding from ACS Petroleum Research Fund (ACS PRF 54801- ND5) and National Science Foundation (NSF DMR-1410290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesfin Tsige .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jha, K.C., Singh, V., Tsige, M. (2016). Interfacial Engineering for Oil and Gas Applications: Role of Modeling and Simulation. In: Jin, C., Cusatis, G. (eds) New Frontiers in Oil and Gas Exploration. Springer, Cham. https://doi.org/10.1007/978-3-319-40124-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40124-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40122-5

  • Online ISBN: 978-3-319-40124-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics