Skip to main content

Geomechanics and Elastic Anisotropy of Shale Formations

  • Chapter
  • First Online:
New Frontiers in Oil and Gas Exploration
  • 1340 Accesses

Abstract

Deep shales are the most abundant yet least characterized sedimentary rocks in petroleum industry while they have become significant sources of hydrocarbon unconventional resources. This chapter aims to fulfill an investigation of anisotropy in this rock type in several different facets through integration of field and lab data. I seek to generate key information to better understand elastic anisotropy as well as in situ stresses to better perform drilling, well completion, perforating, and hydraulic fracturing for the purpose of geomechanical modeling.

The first step was to study the anisotropic behavior of shale formations. For such a purpose three necessary independent shear moduli, elastic stiffness coefficients, and principal stresses are calculated and measured. The parameters then are used to generate shear radial profiles and slowness-frequency plots to analyze formation anisotropy, type, and origin.

The next step was to evaluate direction and magnitude of the minimum and maximum anisotropic principal horizontal stresses as the governing element in geomechanical modeling. I also analyzed wellbore behavior and predicted wellbore failure under stress alteration caused by drilling. Elastic anisotropy of the formation is considered in 3D numerical models and calculations, which has improved the results considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EIA. (2010). Shale gas plays/lower 48 states.

    Google Scholar 

  2. EIA. (2011). Review of energy recourses: U.S. shale gas and shale oil plays.

    Google Scholar 

  3. Zimmerman, R. W., Jeager, J., & Cook, N. (2007). Fundamentals of rock mechanics (4th ed.). Malden, MA: Blackwell Publishing.

    Google Scholar 

  4. Tsvankin, I. (2005). Seismic signatures and analysis of reflection data in anisotropic media (2nd ed.). New York: Elsevier Science.

    Google Scholar 

  5. Pistre, V., Kinoshita, T., Endo, T., Schilling, K., Pabon, J., Sinha, B., Plona, T., Ikegamiand, T., & Johnson, D. (2005). A new modular wireline logging sonic tool for measurement of 3D (Azimuthal, radial and Axial) formation acoustic properties, In Proceedings of SPWLA 46th Annual Logging Symposium, New Orleans, June 26–29.

    Google Scholar 

  6. Winterstein, D. F. (1990). Velocity anisotropy terminology for geophysicists. Geophysics, 55, 1070–1088.

    Article  Google Scholar 

  7. Tsvankin, I. (1997). Reflection move-out and parameter estimation for horizontal transverse isotropy. Geophysics, 62, 614–629.

    Article  Google Scholar 

  8. Armstrong, P., Ireson, D., Chmela, B., Dodds, K., Esmersoy, C., Miller, D., et al. (1994). The promise of elastic anisotropy. Oilfield Review, 6(4), 36–47.

    Google Scholar 

  9. Hornby, B. E. (1994). The elastic properties of shales. PhD thesis, University of Cambridge.

    Google Scholar 

  10. Sayers, C. (2005). Seismic anisotropy of shales. Geophysics, 64, 93–98.

    Article  Google Scholar 

  11. Sayers, C. (1994). The elastic anisotropy of shales. Journal of Geophysical Research, 99, 767–774. Solid Earth.

    Article  Google Scholar 

  12. Vernik, L., & Liu, X. (1997). Velocity anisotropy in shales. A petrophysical study. Geophysics, 62, 521–532.

    Article  Google Scholar 

  13. Walsh, J., Sinha, B. K., & Donald, A. (2006). Formation anisotropy parameters using borehole sonic data. SPWLA 74th Annual Logging Symposium. June 4–7.

    Google Scholar 

  14. Higgings, S., Goodwin, S., Donald, Q., Donald, A., Bratton, T., & Tracy, G. (2008). Anisotropic stress models improve completion design in the Baxter shale. In Proceedings of SPE ATCE, Denver, September 21–24, SPE 115736.

    Google Scholar 

  15. Nye, J. F. (1985). Physical properties of crystals. Oxford: Oxford University Press.

    MATH  Google Scholar 

  16. Hornby, B. E. (1998). Experimental laboratory determination of the dynamic elastic properties of wet, drained shales. Journal of Geophysical Research, 103(B12)

    Google Scholar 

  17. Johnston, J. E., & Christensen, N. I. (1995). Seismic anisotropy of shales. Journal of Geophysical Research, 100, 5991–6003.

    Article  Google Scholar 

  18. Vernik, L., & Nur, A. (1992). Petrophysical classification of siliciclastics for lithology and porosity prediction from seismic velocities. Bulletin of the American Association of Petroleum Geologists, 76, 1295–1309.

    Google Scholar 

  19. Vernik, L., & Nur, A. (1990). Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics, 57, 727–735.

    Article  Google Scholar 

  20. Prasad, M., & Mukerji, T. (2003). Analysis of microstructural textures and wave propagation characteristics in shales. 73th Annual International Meeting, SEG, Expanded Abstracts, (pp. 1648–1651).

    Google Scholar 

  21. Mukerji, T., & Prasad, M. (2004). Analysis of microstructural textures and wave propagation characteristics in shales. Retrieved February 9, 2010. http://www.osti.gov/bridge/servlets/purl/89053-yafcdC/890503.pdf.

  22. Mukerji, T., & Prasad, M. (2007). Image processing of acoustic microscopy data to estimate textural scales and anisotropy in shales. Acoustical Imaging, 28, 21–29.

    Article  Google Scholar 

  23. Arroyo Franco, J. L., Mercado Ortiz, M. A., De, G. S., Renlie, L., & Williams, S. (2006). Sonic investigation in and around the borehole. Oilfield Review, 18(1), 14–31.

    Google Scholar 

  24. Plona, T., Kane, M., Sinha, B., Walsh, J. & Viloria, O. (2000). Using acoustic anisotropy. SPWLA 41th Annual Logging Symposium. June 4–7.

    Google Scholar 

  25. Plona, T., Sinha, B., Kane, M., Shenoy, R., Bose, S., Walsh, J., Endo, T., Ikegami, T., & Skelton, O. (2002). Mechanical damage detection and anisotropy evaluation using dipole sonic dispersion analysis. SPWLA 43th Annual Logging Symposium. June 2–5.

    Google Scholar 

  26. Sinha, B., Vissapragada, B., Renlie, L., & Skomedal, E., (2006). Horizontal stress magnitude estimation using the three shear moduli—a Norwegian Sea case study. In Proceedings of SPE ATCE, San Antonio, 24–27 September, SPE 103079.

    Google Scholar 

  27. Sinha, B., Vissapragada, B., Renlie, L., & Tysse, S. (2006). Radial profiling of the three formation shear moduli and its application to well completions. Journal of Geophysics, 71(6), E65–E77.

    Article  Google Scholar 

  28. Ostadhassan, M., Zeng Z., & Jabbari, H. Anisotropy analysis in shale by acquiring advanced sonic data-Bakken shale case study. AAPG 2012 Annual Convention & Exhibition, Long Beach, CA, USA.

    Google Scholar 

  29. Ostadhassan, M., Zeng Z., & Zamiran, S. Geomechanical modeling of an anisotropic formation-Bakken case study. ARMA 2012-221, Chicago, USA

    Google Scholar 

  30. Duseault, M. B. (1994). Analysis of borehole stability. Computer Methods and Advances in Geomechanics Belkema 125–137.

    Google Scholar 

  31. Fam, M. A., Dusseault, M. B., & Fooks, J. C. (2003). Drilling in mudrocks: Rock behavior issues. Journal of Petroleum Science and Engineering, 38, 155–166.

    Article  Google Scholar 

  32. Fjaer, A., Holt, R., Raaen, A., Risnes, R., & Horsud, P. (1992). Petroleum related rock mechanics. Elsevier Publishing.

    Google Scholar 

  33. McLean, M. R. (1987). Wellbore stability analysis. PhD Thesis, University of London. LTK.

    Google Scholar 

  34. Xu, G. (2007). Wellbore stability in geomechanics. Ph.D. thesis, University of Nottingham.

    Google Scholar 

  35. Maury, V. (1994). Rock failure mechanisms identification: A key for wellbore stability and reservoir behavior problem, SPE 28049 presented at the SPE/ISRM Rock Mechanics in Petroleum Engineering Conference held in Delft, The Netherlands, August 29–31.

    Google Scholar 

  36. Li, X., Cui, L., & Rogegiers, J. C. (1998). Thermoporoelastic analyses of inclined borehole. SPE/ISRM, Eurock 98, Norway.

    Google Scholar 

  37. Charlez, P. A. (1997). Rock mechanics. Vol 2: Petroleum applications. Editions Technip.

    Google Scholar 

  38. Van Oort, E. (2003). On the physical and chemical stability of shales. Journal of Petroleum Science & Engineering, 38, 213–235.

    Article  Google Scholar 

  39. Hale, A. H., Mody, F. K., & Salisbury, D. P. (1992). Experimental investigation of the influence of chemical potential on wellbore stability. IADC/SPE Paper 23885, presented at the 1992 IADC/SPE Drilling Conference in New Orleans, Louisiana, February 18–21.

    Google Scholar 

  40. Hubbert, M. K., & Willis, D. G. (1957). Mechanics of hydraulic fracturing. Transactions of American Institute of Mining Engineering, 210, 153–168.

    Google Scholar 

  41. Fairhurst, C. (1968). Methods of determining in situ rock stress at great depth. TR1-68 Missouri River Div. Corps of Engineering.

    Google Scholar 

  42. Bradley, W. B. (1979). Failure of inclined boreholes. Journal of Energy Resources Technology, 101, 232–239.

    Article  Google Scholar 

  43. Santareli, F. J. & Brown, E. T. (1987). Performance of deep boreholes in rock with a confining pressure dependent elastic modulus. Proceedings of 60th International Society of Rock Mechanics. (Vol. 2. pp 1217–1222). Rotterdam: Balkema.

    Google Scholar 

  44. Aadnoy, B. S., & Chenevert, M. E. (1987). Stability of highly inclined boreholes. SPE Drilling Engineering, 12, 264–374.

    Google Scholar 

  45. Ong, S. H., & Roegiers, J. C. (1993). Influence of anisotropies in borehole stability. Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 30(7), 1069–1075.

    Article  Google Scholar 

  46. Roegiers, J. C. & Detournay, E. (1998). Considerations on failures initiation in inclined boreholes. Proceedings of 29th U. S. Rock Symposium. Rotterdam: Balkema.

    Google Scholar 

  47. Mody, F. K., & Hale, A. H. (1993). A borehole stability model to coupled the mechanics and chemistry of drilling fluid shale interaction. 10th SPE Drilling Conference. Amsterdam.

    Google Scholar 

  48. Sherwood, J. D., & Bailey, L. (1994). Swelling of shale around a cylindrical wellbore. Proceedings of the Royal Society of London. 161–184.

    Google Scholar 

  49. Biot, M. A., & Willis, D. G. (1957). The elastic coefficient of the theory of consolidation. Journal of Applied Mechanics, 24, 594–601.

    MathSciNet  Google Scholar 

  50. Gnirk, P. F. (1972). The mechanical behavior of the uncased wellbores situated in elastic/plastic media under hydrostatic stress. SPEJ 45–59.

    Google Scholar 

  51. Papamichos, E., & Vardoulakis, I. (1995). Shear band formation in sand according to non-coaxial plasticity model. Geotechnique, 45(5), 649–661.

    Article  Google Scholar 

  52. Yu, H. S. (2000). Cavity expansion methods in geomechanics. Kluwer Academic Publishers.

    Google Scholar 

  53. Ostadhassan, M. (2013). Geomechanics and elastic anisotropy of the Bakken Formation, Williston Basin. Ph.D. thesis, University of North Dakota.

    Google Scholar 

  54. Jaeger, J. C., & Cook, N. W. G. (1979). Fundamentals of rock mechanics (Vol. 3). New York: Chapman & Hall.

    Google Scholar 

  55. Plumb, R. A., Edwards, S., Pidcock, G., Lee, D., & Stace, B. (2000). The mechanical earth model and its application to high risk well construction projects. In Proceedings of IADC/SPE Drilling Conference, New Orleans, 23–25 February, IADC/SPE 59128.

    Google Scholar 

  56. Plumb, R.A., Hooyman, P., Vineengen, D., Dutta, N., Ritchie, G., & Bennaceur, K. (2004). A new geomechanics process reduces operational risks from exploration to production. In Proceedings of the NARMS, Houston, June 5–9, ARMA/NARMS 04-616.

    Google Scholar 

  57. Sayers, C., Russel, C., Pelorosso, M., Adachi, J., Pastor, J., Singh, V., Tagbor, K. & Hooyman, P. (2009). Determination of rock strength using advanced sonic log interpretation techniques. In Proceedings of the SPE ATCE, New Orleans, 4–7 October, SPE 124161.

    Google Scholar 

  58. Sayers, C., Kisra, S., Tagbor, K., Taleghani, A. D. & Adachi, J. (2007). Calibrating the mechanical properties and in-situ stresses using acoustic radial profiles. In Proceedings of the SPE ATCE, Anaheim, November 11–14, SPE 110089.

    Google Scholar 

  59. Ostadhassan, M., Benson, S., & Zamiran, S. Stress analysis and wellbore stability in unconventional reservoirs. ARMA 2013-150, San Francisco, USA

    Google Scholar 

  60. Thiercelin, M. J., & Plumb, R. A. (1994). Core based predictions of lithologic stress contrasts in east Texas formations. Journal of SPE Formation Evaluation, 9(14), 251–258.

    Article  Google Scholar 

  61. Gutierz, M., Braunsdor, N., & Couzens, B. (2006). Calibration and ranking of pore pressure prediction models. TLE 1516–1523.

    Google Scholar 

  62. Sayers, C. (2006). An introduction to velocity-based pore pressure estimation. TLE, 1496–1500.

    Google Scholar 

  63. Eaton, B. (1972). Graphical method predicts geopressures world wide. World Oil, 182, 51–56.

    Google Scholar 

  64. Mouchet, J., & Mitchell, A. (1989). Abnormal pressure while drilling. Elf Acquitane Manuels Techniques 2, Boussens, France.

    Google Scholar 

  65. Ruth, P., & Hillis, R. (2000). Estimating pore pressure in the Cooper Basin, South Australia: Sonic log method in an uplifted basin. Journal of Exploration Geophysics, 31, 441–447.

    Article  Google Scholar 

  66. Waters, G., Lewis, R., & Bently, D. (2011). The effect of mechanical properties anisotropy in the generation of hydraulic fractures in organic shales. In Proceedings of SPE ATCE. Denver, 30 Oct–2 Nov, SPE 146776.

    Google Scholar 

  67. Amadei, B., Savage, W., & Swolfs, H. (1987). Gravitational stresses in anisotropic rock masses. Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 24(1), 5–14.

    Article  Google Scholar 

  68. Mavko, G., Mukerji, T., & Dvorkin, J. (1998). The rock physics handbook, tools for seismic analysis in porous media. New York: Cambridge University Press. 329 p.

    Google Scholar 

  69. Sinha, B., Vissapragada, B., Wendt, A., Kongslien, M., Eser, H., Skomedal, E., Renile, L., & Pedersen, E. (2007). Estimation of formation stresses using radial variation of three shear moduli- a case study from a high-pressure, high-temperature reservoir in Norwegian continental shelf. In Proceedings of SPE ATCE, Anaheim, November 11–14, SPE 109842.

    Google Scholar 

  70. Bowers, G. (1995). Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction. Journal of SPE Drilling & Completion, 10(2), 89–95.

    Article  Google Scholar 

  71. Sinha, B. K., Wang, J., Kisra, S., Li, J., Pistre, V., Bratton, T., Sanders, M. & Jun, C. (2008). Estimation of borehole stresses using sonic data. 49th Annual Logging Symposium, May 25–28, Austin, TX.

    Google Scholar 

  72. Chang, C., Zoback, M., & Khaksar, A. (2006). Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 51, 223–237.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ostadhassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ostadhassan, M. (2016). Geomechanics and Elastic Anisotropy of Shale Formations. In: Jin, C., Cusatis, G. (eds) New Frontiers in Oil and Gas Exploration. Springer, Cham. https://doi.org/10.1007/978-3-319-40124-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40124-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40122-5

  • Online ISBN: 978-3-319-40124-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics