Skip to main content

Advancement in Numerical Simulations of Gas Hydrate Dissociation in Porous Media

  • Chapter
  • First Online:
Book cover New Frontiers in Oil and Gas Exploration
  • 1405 Accesses

Abstract

The amount of research on gas hydrates has been rising dramatically due to the significant role gas hydrates play as a persistent trouble for gas industry, a promising energy source, and a potential threat to environment. In the energy exploration perspective, numerical simulations play a major role in improving our understanding of the fundamentals gas hydrate dissociation as well as hydrate reservoir behaviors. This chapter presents an integrative review on the computer simulation models of gas hydrate dissociation, which have boomed since their first appearance in 1980s. Necessary background knowledge for gas hydrates and the existing investigations on this topic are firstly summarized. A unified framework is then developed for the purpose of integrating and classifying the existing models. The major mechanisms involved in the phase change process are illustrated and explained on the level of governing equations. The similarities and discrepancies among the models are demonstrated and discussed using this framework. Discussions continue on the auxiliary relationships for describing the material properties based on their categories. The various auxiliary relationships employed in the existing computational models are summarized and compared. Finally, the results obtained by previous simulations as well as other laboratory or field data are discussed. Noteworthy trends in the numerical simulations of gas hydrates behaviors are also unveiled. Recommendations are provided for future research. By providing an overview of the topic area, this chapter intends to provide scientific basis to understand the existing gas hydrate simulation models as well as serve as a guide for future research on advanced gas hydrate simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selim M. S. & Sloan, E. D. (1985). Modeling of the dissociation of in-situ hydrate. SPE 1985 California Regional Meeting, Bakersfield, CA, March 27–29.

    Google Scholar 

  2. Bishnoi, P. R., & Natarajan, V. (1996). Formation and decomposition of gas hydrates. Fluid Phase Equilibria, 117, 168–177.

    Article  Google Scholar 

  3. Englezos, P. (1993). Clathrate hydrates. Industrial and Engineering Chemistry Research, 32, 1251–1274.

    Article  Google Scholar 

  4. Kneafsey, T. J., Tomutsa, L., Moridis, G. J., Seol, Y., Freifeld, B. M., Taylor, C. E., et al. (2007). Methane hydrate formation and dissociation in a partially saturated core-scale sand sample. Journal of Petroleum Science and Engineering, 56, 108–126.

    Article  Google Scholar 

  5. Bayles, G. A., Sawyer, W. K., & Malone, R. D. (1986). A steam cycling model for gas production from a hydrate reservoir. Chemical Engineering Communication, 47, 225–245.

    Article  Google Scholar 

  6. Holder, G. D., & Angert, P. F. (1982). Simulation of gas production from a reservoir containing both gas hydrates and free natural gas. SPE Annual Technical Conference and Exhibition, 26–29 September 1982, New Orleans, Louisiana.

    Google Scholar 

  7. Ahmadi, G., Ji, C., & Smith, D. H. (2007). Natural gas production from hydrate dissociation: an axisymmetric model. Journal of Petroleum Science and Engineering, 58, 245–258.

    Article  Google Scholar 

  8. Hong, H., Pooladi-Darvish, M., & Bishnoi, P. R. (2003). Analytical modeling of gas production from hydrates in porous media. Journal of Canadian Petroleum Technology, 42(11), 45–56.

    Article  Google Scholar 

  9. Katz, D. L. (1971). Depths to which frozen gas fields (gas hydrates) may be expected. Journal of Petroleum Technology, 23(4), 419–423.

    Article  Google Scholar 

  10. Makogon, Y. F. (1965). Hydrate formation in the gas-bearing beds under permafrost conditions. Gazovaia Promyshlennost, 5, 14–15.

    Google Scholar 

  11. Makogon, Y. F. (1997). Hydrates of natural gas. Tulsa, Oklahoma: Penn Well Books.

    Google Scholar 

  12. Sun, X., Nanchary, N., & Mohanty, K. K. (2005). 1-D modeling of hydrate depressurization in porous media. Transport in Porous Media, 58, 315–338.

    Article  Google Scholar 

  13. Janicki, G., Schluter, S., Hennig, T., Lyko, H., & Deergerg, G. (2011). Simulation of methane recovery from gas hydrates combined with storing carbon dioxide as hydrates. Journal of Geological Research, 2011, 1–15.

    Article  Google Scholar 

  14. Phale, H. A., Zhu, T., White, M. D., & McGrail B. P. (2006). Simulation study on injection of CO2-microemulsion for methane recovery from gas hydrate reservoirs. SPE Gas Technology Symposium, Calgary, Alberta, Canada, 15–17 May 2006.

    Google Scholar 

  15. Burshears, M., O’Brien, T. J., & Malone, R. D. (1986). A multi-phase, multi-dimensional, variable composition simulation of gas production from a conventional gas reservoir in contact with hydrates. Unconventional Gas Technology Symposium of the Society of Petroleum Engineers, Louisville, KY, May 18–21.

    Google Scholar 

  16. Rempel, A. W., & Buffett, B. A. (1997). Formation and accumulation of gas hydrate in porous media. Journal of Geophysical Research, 102(5), 151–164.

    Google Scholar 

  17. Kvenvolden, K. A., Carlson, P. R., & Threlkeld, C. N. (1993). Possible connection between two Alaskan catastrophes occurring 25 years apart (1964 and 1989). Geology, 21, 813–816.

    Article  Google Scholar 

  18. Booth, J. S., Rowe, M. M., & Fischer, K. M. (1996). Offshore gas hydrate sample database with an overview and preliminary analysis. U.S. Geological Survey, Open File Report 96-272, Denver, Colorado.

    Google Scholar 

  19. MacDonald, G. J. (1990). The future of methane as an energy resource. Annual Review of Energy, 15, 53–83.

    Article  Google Scholar 

  20. White, M. D., & McGrail, B. P. (2008). Numerical simulation of methane hydrate production from geologic formations via carbon dioxide injection. 2008 Offshore Technology Conference, Houston, Texas, 5–8 May.

    Google Scholar 

  21. Nazridoust, K., & Ahmadi, G. (2007). Computational modeling of methane hydrate dissociation in a sandstone core. Chemical Engineering Science, 62, 6155–6177.

    Article  Google Scholar 

  22. Sun, X., & Mohanty, K. K. (2006). Kinetic simulation of methane hydrate formation and dissociation in porous media. Chemical Engineering Science, 61, 3476–3495.

    Article  Google Scholar 

  23. Hammerschmidt, E. G. (1934). Formation of gas hydrates in natural gas transmission lines. Industrial, 26(8), 851–855.

    Google Scholar 

  24. Makogon, Y. F., Holditch, S. A., & Makogon, T. Y. (2007). Natural gas-hydrates—a potential energy source for the 21st Century. Journal of Petroleum Science and Engineering, 56, 14–31.

    Article  Google Scholar 

  25. Maksimov, A. M. (1992). Mathematical model of the volume dissociation of gas-phase hydrates in a porous medium with water-phase mobility. Moscow: Institute for Gas and Oil Problems, Academy of Sciences of the USSR and GKNO of the USSR.

    Google Scholar 

  26. Dickens, G. R. (2003). Rethinking the global carbon cycle with a large dynamic and microbially mediated gas hydrate capacitor. Earth and Planetary Science Letters, 213, 169–183.

    Article  Google Scholar 

  27. Kennett, J. P., Cannariato, K. G., Hendy, I. L., & Behl, R. J. (2000). Carbon isotopic evidence for methane hydrate stability during Quaternary Interstadials. Science, 288, 128–133.

    Article  Google Scholar 

  28. Kayen, R. E., & Lee, H. J. (1991). Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort Sea margin. Marine Georesources & Geotechnology, 10, 125–141.

    Article  Google Scholar 

  29. Paull, C. K., Buelow, W. J., Ussler, W., & Borowski, W. S. (1996). Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments. Geology, 24, 143–146.

    Article  Google Scholar 

  30. Moridis, G. J., & Sloan, E. D. (2006). Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments. LBNL-52568, Berkeley, CA: Lawrence Berkeley National Laboratory.

    Google Scholar 

  31. Moridis, G. J., & Collett, T. S. (2003). Strategies for gas production from hydrate accumulations under various geologic conditions. LBNL-52568, Berkeley, CA: Lawrence Berkeley National Laboratory

    Google Scholar 

  32. Moridis, G. J., Kneafsey, T. J., Kowalsky, M., & Reagan, M. (2006). Numerical, laboratory and field studies of gas production from natural hydrate accumulations in geologic media. Berkeley, CA: Earth Science Division, Lawrence Berkeley National Laboratory.

    Google Scholar 

  33. Esmaeilzadeh, F., Zeighami, M. E., & Fathi, J. (2008). 1-D modeling of hydrate decomposition in porous media. Proceedings of World Academy of Science, Engineering and Technology, 41, 647–653.

    Google Scholar 

  34. Hyndman, R. D., & Davis, E. E. (1992). A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. J. Geophys. Res., 97, 7025–7041.

    Article  Google Scholar 

  35. Kowalsky, M. B., & Moridis, G. J. (2007). Comparison of kinetic and equilibrium reaction models in simulating gas hydrate behavior in porous media. Berkeley, CA: Earth Science Division, Lawrence Berkeley National Laboratory.

    Google Scholar 

  36. Uddin, M., Coombe, D., Law, D., & Gunter, B. (2008). Numerical studies of gas hydrate formation and decomposition in a geological reservoir. Journal of Energy Resources Technology, 130, 032501-1–032501-14.

    Google Scholar 

  37. White, M. D., Wurstner, S. K., & McGrail, B. P. (2009). Numerical studies of methane production from Class 1 gas hydrate accumulations enhanced with carbon dioxide injection. Marine and Petroleum Geology, 28(2), 546–560.

    Article  Google Scholar 

  38. Goel, N. (2006). In situ methane hydrate dissociation with carbon dioxide sequestration: current knowledge and issues. Journal of Petroleum Science and Engineering, 51, 169–184.

    Article  Google Scholar 

  39. Kamath, V. A., & Godbole, S. P. (1987). Evaluation of hot-brine simulation technique for gas production from natural gas hydrates. Journal of Petroleum Technology, 39, 1379–1388.

    Google Scholar 

  40. Sloan, E. D., & Koh, C. A. (2007). Clathrate hydrates of natural gases (3rd ed.). Boca Raton: CRC Press.

    Book  Google Scholar 

  41. Graue, A., Kvamme, B., Baldwin, B., Stevens, J., Howard, J., & Aspenes, E. (2006). Environmentally friendly CO2 storage in hydrate reservoirs benefits from associated spontaneous methane production. In Proceedings of the Offshore Technology Conference (OTC-18087), Huston, Texas, United States.

    Google Scholar 

  42. Stevens, J., Howard, J., Baldwin, B., Ersland, B., Huseb, J., & Graue, A. (2008). Experimental hydrate formation and production scenarios based on CO2 sequestration. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada, July 6–10, 2008.

    Google Scholar 

  43. McGruire, P. L. (1982). Methane hydrate gas production by thermal stimulation. Proceedings of the Fourth Canadian Permafrost Conference, H.M. French (ed.), Calgary.

    Google Scholar 

  44. Selim, M. S., & Sloan, E. D. (1990). Hydrate dissociation in sediments. SPE Reservoir Engineering, 5(2), 245–251.

    Article  Google Scholar 

  45. Yousif, M. H., Abass, H. H., Selim, M. S., & Sloan, E. D. (1991). Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media. SPE Reservoir Engineering, 6(1), 69–76.

    Article  Google Scholar 

  46. Guo, T., Wu, B., Zhu, Y., Fan, S., & Chen, G. (2004). A review on the gas hydrate research in China. Journal of Petroleum Science and Engineering, 41, 11–20.

    Article  Google Scholar 

  47. Sloan, E. D. (2003). Clathrate hydrate measurements: microscopic mesoscopic, and macroscopic. The Journal of Chemical Thermodynamics, 35, 41–53.

    Article  Google Scholar 

  48. Pooladi-Darvish, M. (2004). Gas production from hydrate reservoirs and its modeling. Society of Petroleum Engineers, 56(6), 65–71.

    Google Scholar 

  49. Davy, H. (1881). The bakerian lecture on some of the combinations of oxymuriatic gas and oxygen, and on the chemical relations of these principles to inflammable bodies. Philosophical Transactions of the Royal Society, London 1811,101, (Part I), pp. 1-35.

    Google Scholar 

  50. Faraday, M. (1823). On fluid chlorine. Philosophical Transactions of the Royal Society B: Biological Sciences, London, 113, 160–165.

    Article  Google Scholar 

  51. Davidson, D. W. (1973). Gas hydrates. In F. Frank (Ed.), Water: A comprehensive treatise (Vol. 2, pp. 115–234). New York: Plenum Press. Chapter 3.

    Google Scholar 

  52. Deaton, W. M., & Frost, E. M. Jr. (1946). US Bureau of Mines Monograph 8, No. 8.

    Google Scholar 

  53. Chersky, N. J., & Makogon, Y. F. (1970). Solid gas world reserves are enormous. Oil Gas International, 10(8), 82–84.

    Google Scholar 

  54. Makogon, Y. F., Trebin, F. A., Trofimuk, A. A., Tsarev, V. P., & Chersky, N. V. (1972). Detection of a pool of natural gas in a solid (hydrate gas) state. Doklady Akademii Nauk SSSR, 196, 203–206. originally published in Russian, 1971.

    Google Scholar 

  55. Shipley, T. H., Houston, K. J., Buffler, R. T., Shaub, F. J., McMillen, K. J., Ladd, J. W., et al. (1979). Seismic evidence for widespread possible gad hydrate horizons on continental slopes and rises. American Association of Petroleum Geologists Bulletin, 63, 2204–2213.

    Google Scholar 

  56. Stoll, R. D., & Bryan, G. M. (1979). Physical properties of sediments containing gas hydrates. Journal of Geophysical Research, 84, 1629–1634.

    Article  Google Scholar 

  57. Finlay, P., & Krason, J. (1990). Evaluation of geological relationships to gas hydrate formation and stability: Summary report., Gas Energy Rev. Vol., 18, 12–18.

    Google Scholar 

  58. Beauchamp, B. (2004). Natural gas hydrates: myths facts and issues. Comptes Rendus Geoscience, 226, 751–765.

    Article  Google Scholar 

  59. Kim, J., Yang, D., & Rutqvist, J. (2011). Numerical studies on two-way coupled fluid flow and geomechanics in hydrate deposits. SPE Reservoir Simulation Symposium, Woodlands, Texas, 21–23 February.

    Google Scholar 

  60. Klar, A., & Soga, K. (2005). Coupled deformation-flow analysis for methane hydrate production by depressurized wells. Proceeding of 3rd International Biot Conference on Poromechanics, pp. 653–659.

    Google Scholar 

  61. Koh, C. A., & Sloan, E. D. (2007). Natural gas hydrates: recent advances and challenges in energy and environmental applications. American Institute of Chemical Engineers, 53(7), 1636–1643.

    Article  Google Scholar 

  62. Kwon, T., Song, K., & Cho, G. (2010). Destabilization of marine gas hydrate-bearing sediments induced by a hot wellbore: a numerical approach. Energy Fuels, 24, 5493–5507.

    Article  Google Scholar 

  63. Li, L., Cheng, Y., Zhang, Y., Cui, Q., & Zhao, F. (2011). A fluid-solid coupling model of wellbore stability for hydrate bearing sediments. Procedia Engineering, 18, 363–368.

    Article  Google Scholar 

  64. Rutqvist, J., Moridis, G. J., Grover, T., & Collett, T. (2009). Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production. Journal of Petroleum Science and Engineering, 67, 1–12.

    Article  Google Scholar 

  65. Yamamoto, K. (2008). Methane hydrate bearing sediments: a new subject of geomechanics. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), 1–6 October 2008, Goa, India.

    Google Scholar 

  66. Gudmundsson, J., & Borrehaug, A. (1996) Frozen hydrate for transport of natural gas. Proc. 2nd Int. Conf.on Natural Gas Hydrates, pp. 415–422.

    Google Scholar 

  67. Gudmundsson, J., Andersson, V., Levik, O. I., Mork, M., & Borrehaug, A. (2000). Hydrate technology for capturing stranded gas. Ann. NY Acad. Science, 912, 403–410.

    Article  Google Scholar 

  68. Stern, L. A., Circone, S., Kirby, S. H., & Durham, W. B. (2001). Anomalous preservation of pure methane hydrate at 1 atm. The Journal of Physical Chemistry, 105(9), 1756–1762.

    Article  Google Scholar 

  69. Takaoki, T., Hirai, K., Kamei, M., & Kanda, H. (2005). Study of natural gas hydrate (NGH) carriers. Proceedings of the Fifth International Conference on Natural Gas Hydrates, June 13-16, Trondheim, Norway. Paper 4021.

    Google Scholar 

  70. Florusse, L. J., Peters, C. J., Schoonman, J., Hester, K. C., Koh, C. A., Dec, S. F., et al. (2004). Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science., 306(5695), 469–471.

    Article  Google Scholar 

  71. Mao, W. L., Mao, H., Goncharov, A. F., Struzhkin, V. V., Guo, Q., Hu, J., et al. (2002). Hydrogen clusters in clathrate hydrate. Science, 297, 2247–2249.

    Article  Google Scholar 

  72. Hunt, S. C. (1992). Gas hydrate thermal energy storage system. United States Patent No. 5140824.

    Google Scholar 

  73. Guo, K. H., Shu, B. F. & Yang, W. J. (1996). Advances and applications of gas hydrate thermal energy storage technology. Proceedings of 1st Trabzon Int. Energy and Environment

    Google Scholar 

  74. Chen, G. J., Sun, C. Y., Ma, C. F., & Guo, T. M. (2002). A new technique for separating (Hydrogen + Methane) gas mixtures using hydrate technology. Proceedings of the 4th International Conference on Gas Hydrates, May 19-23, 2002, Yokohama, Japan, pp. 1016–1020.

    Google Scholar 

  75. Pawar, R. J., & Zyvoloski, G. A. (2005). Numerical simulation of gas production from methane hydrate reservoirs. Proceedings of the Fifth International Conference on Gas Hydrates, Trondheim, Norway, pp. 259–267.

    Google Scholar 

  76. McGuire, P. L. (1981). Methane hydrate gas production by thermal stimulation. Proceedings of the Fourth Canadian Permafrost Conference, March 2-6, 1981, Calgary, Alberta.

    Google Scholar 

  77. Goel, N., Wiggins, M., & Shah, S. (2001). Analytical modeling of gas recovery from in situ hydrates dissociation. Journal of Canadian Petroleum Technology, 29, 115–127.

    Google Scholar 

  78. Ji, C., Ahmadi, G., & Smith, D. H. (2001). Natural gas production from hydrate decomposition by depressurization. Chemical Engineering Science, 56, 5801–5814.

    Article  Google Scholar 

  79. Vasil’ev, V. N., Popov, V. V., & Tsypkin, G. G. (2006). Numerical investigation of the decomposition of gas hydrates coexisting with gas in natural reservoirs. Fluid Dynamics, 41(4), 599–605.

    Article  MATH  Google Scholar 

  80. Bai, Y., Li, Q., Li, X., & Du, Y. (2008). The simulation of nature gas production from ocean gas hydrate reservoir by depressurization. Science in China Series E: Technological Sciences, 51(8), 1272–1282.

    Article  MATH  Google Scholar 

  81. Bai, Y., Li, Q., Li, X., & Du, Y. (2008). The simulation of nature gas production from ocean gas hydrate reservoir by depressurization. Science in China Series E: Technological Sciences, 51(8), 1272–1282.

    Article  MATH  Google Scholar 

  82. Tsypkin, G. G. (2007). Analytical solution of the nonlinear problem of gas hydrate dissociation in a formation. Fluid Dynamics, 42(5), 798–806.

    Article  MathSciNet  MATH  Google Scholar 

  83. Gerami, S., & Pooladi-Darvish, M. (2007). Predicting gas generation by depressurization of gas hydrates where the sharp-interface assumption is not valid. Journal of Petroleum Science and Engineering, 56, 146–164.

    Article  Google Scholar 

  84. Hong, H., & Pooladi-Darvish, M. (2005). Simulation of depressurization for gas production from gas hydrate reservoirs. Journal of Canadian Petroleum Technology, 44(11), 39–46.

    Article  Google Scholar 

  85. Mandelcorn, L. (1959). Clathrates. Chemical Reviews, 59, 827–839.

    Article  Google Scholar 

  86. van der Waals, J. H., & Platteeuw, J. C. (1959). Clathrate Solutions. Advances in Chemical Physics, 2, 1–57.

    Google Scholar 

  87. Byk, S. S., & Fomina, V. J. (1968). Gas Hydrates. Russian Chemical Reviews, 37(6), 469–491.

    Article  Google Scholar 

  88. Hand, J. H., Katz, D. L., & Verma, V. K. (1974). Review of gas hydrates with implication for ocean sediments. In I. R. Kaplan (Ed.), Natural Gases in Marine Sediments (pp. 179–194). New York: Plenum.

    Chapter  Google Scholar 

  89. Jeffrey, G. A., & McMullan, R. K. (1967). The clathrate hydrates. Progress in inorganic chemistry, 8, 43–108.

    Article  Google Scholar 

  90. Jeffrey, G. A. (1984). Hydrate inclusion compounds. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1(3), 211–222.

    Article  Google Scholar 

  91. Holder, G. D., Zetts, S. P., & Pradham, N. (1988). Phase behavior in systems containing clathrate hydrates. Reviews in Chemical Engineering, 5(l), 1–69.

    Article  Google Scholar 

  92. Makogon, Y. F. (1981). Hydrates of natural gas. Tulsa, OK: Penn Well Publishing. (translated by W. J. Cieslewicz).

    Google Scholar 

  93. Berecz, E., & Balla-Achs, M. (1983). Studies in Inorganic Chemistry 4: Gas Hydrates (pp. 184–188). Amsterdam: Elsevier.

    Google Scholar 

  94. Cox, J. L. (1983). Natural gas hydrates: Properties, occurrence and recovery. Woburn, MA: Butterworth Publiehere.

    Google Scholar 

  95. Sloan, E. D. (1990). Clathrate hydrates of natural gases. New York: Dekker.

    Google Scholar 

  96. Sloan, E. D., Jr. (1998). Clathrate hydrates of natural gases (2nd ed.). New York, NY: Marcel Deckker Inc.

    Google Scholar 

  97. Buffett, B. A. (2000). Clathrate hydrates. Annual Review of Earth and Planetary Sciences, 28, 477–507.

    Article  Google Scholar 

  98. Koh, C. A. (2002). Towards a fundamental understanding of natural gas hydrates. Chemical Society Reviews, 31, 157–167.

    Article  Google Scholar 

  99. Waite, W. F., Santamarina, J. C., Cortes, D. D., Dugan, B., Espinoza, D. N., Germaine, J., et al. (2009). Physical properties of hydrate-bearing soils. Reviews of Geophysics, 47, RG4003.

    Article  Google Scholar 

  100. Sung, W., Lee, H., Lee, H., & Lee, C. (2002). Numerical study for production performances of a methane hydrate reservoir stimulated by inhibitor injection. Energy Sources, 24, 499–512.

    Article  Google Scholar 

  101. Tonnet, N., & Herri, J. M. (2009). Methane hydrates bearing synthetic sediments-experimental and numerical approaches of the dissociation. Chemical Engineering Science, 64(19), 4089–4100.

    Article  Google Scholar 

  102. Yu, F., Song, Y., Liu, W., Li, Y., & Lam, W. (2011). Analyses of stress strain behavior and constitutive model of artificial methane hydrate. Journal of Petroleum Science and Engineering, 77, 183–188.

    Article  Google Scholar 

  103. Bagheri, M., & Settari, A. (2008). Modeling of geomechanics in naturally fractured reservoirs. SPE Reservoir Evaluation & Engineering, 11(1), 108–118.

    Article  Google Scholar 

  104. Freeman, T. L, Chalatumyk, R. J., & Bogdanov, I. I. (2009). Geomechanics of heterogeneous bitumen carbonates. SPE Reservoir Simulation Symposium, 2-4 February 2009, The Woodlands, Texas.

    Google Scholar 

  105. Kosloff, D., Scott, R., & Scranton, J. (1980). Finite element simulation of Wilmington oil field subsidence: I linear modelling. Tectonophysics, 65, 339–368.

    Article  Google Scholar 

  106. Lewis, R. W., & Schreflei, B. A. (1998). The finite element method in the deformation and consolidation of porous media. Wiley, Chichester, Great Britain, 2nd edition.

    Google Scholar 

  107. Merle, H. A., Kentie, C. J. P., van Opstal, G. H. C., & Schneider, G. M. G. (1976). The Bachaquero study—a composite analysis of the behavior of a compaction drive/solution gas drive reservoir. Journal of Petroleum Technology, 28(9), 1107–1115.

    Article  Google Scholar 

  108. Morris, J. P. (2009). Simulations of injection-induced mechanical deformation: A study of the In Salah CO2 storage project. Society of Exploration Geophysicists 2009 Summer Research Workshop, Banff, Canada, August, 2009.

    Google Scholar 

  109. Rutqvist, J., & Moridis, G. J. (2009). Numerical Studies on the Geomechanical Stability of Hydrate-Bearing Sediments. SPE Journal, 14(2), 267–282.

    Article  Google Scholar 

  110. Allen, M. B. (1954). In: M.B. Allen, G.A. Behie, and J.A. Trangenstein (Eds.), Multiphase flow in porous media: Mechanics, mathematics, and numerics. New York, Berlin: Springer-Verlag, 1988.

    Google Scholar 

  111. Kimoto, S., Oka, F., Fushita, T., & Fujiwaki, M. (2007). A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation. Computers and Geotechnics, 34, 216–228.

    Article  Google Scholar 

  112. Garg, S. K., Pritchett, J. W., Katoh, A., Baba, K., & Fujii, T. (2008). A mathematical model for the formation and dissociation of methane hydrates in the marine environment. Journal of Geophysical Research, 113, B01201.

    Article  Google Scholar 

  113. Phirani, J., & Mohanty, K. L. (2010). Kinetic simulation of CO 2 flooding of methane hydrates. SPE Annual Technical Conference and Exhibition, Florence, Italy, 19–22 September.

    Google Scholar 

  114. Liu, Y., & Gamwo, I. K. (2012). Comparison between equilibrium and kinetic models for methane hydrate dissociation. Chemical Engineering Science, 69, 193–200.

    Article  Google Scholar 

  115. Tsypkin, G. G. (1998). Decomposition of gas hydrates in low-temperature reservoirs. Fluid Dynamics, 33(1), 82–90.

    Article  MATH  Google Scholar 

  116. Ruan, X., Song, Y., Zhao, J., Liang, H., Yang, M., & Li, Y. (2012). Numerical simulation of methane production from hydrates induced by different depressurizing approaches. Energies, 5, 438–458.

    Article  Google Scholar 

  117. Liu, X., & Flemings, P. B. (2007). Dynamics multiphase flow model of hydrate formation in marine sediments. Journal of Geophysical Research, 112, B03101.

    Google Scholar 

  118. Liu, Y., Strumendo, M., & Arastoopour, H. (2008). Numerical simulation methane production from a methane hydrate formation. Industrial & Engineering Chemistry Research, 47, 2817–2828.

    Article  Google Scholar 

  119. Masuda, Y., Kurihara, M., Ohuchi, H., & Sato, T. (2002). A field-scale simulation study on gas productivity of formations containing gas hydrates. Proceedings of 4th International Conference on Gas Hydrates, Yokohama, Japan, May 19–23.

    Google Scholar 

  120. Schnurle, P., & Liu, C. (2011). Numerical modeling of gas hydrate emplacements in oceanic sediments. Marine and Petroleum Geology, 28, 1856–1869.

    Article  Google Scholar 

  121. Scott, D. M., Das, D. K., & Subbaihaannadurai, V. (2006). A finite element computational method for gas hydrate. Part I: theory. Petroleum Science and Technology, 24, 895–909.

    Article  Google Scholar 

  122. Campbell, G. S. (1985). Soil physics with BASIC: transport models for soil-plant systems (1st ed.). BV Amsterdam, Netherlands: Elsevier Sci.

    Google Scholar 

  123. De Vries, D. A. (1963). Thermal properties of soils. In W. R. van Wijk (Ed.), Physics of plant environment (pp. 210–235). Amsterdam: North-Holland Publ. Co.

    Google Scholar 

  124. Bai, Y., Li, Q., Li, F., & Du, Y. (2009). Numerical simulation on gas production from a hydrate reservoir underlain by a free gas zone. Chinese Science Bulletin, 54, 865–872.

    Google Scholar 

  125. Du, Q., Li, Y., Li, S., Sun, J., & Jiang, Q. (2007). Mathematical model for natural gas hydrate production by heat injection. Petroleum Exploration and Development, 34(4), 470–487.

    Google Scholar 

  126. Ng, M. Y. A., Klar, A., & Soga, K. (2008). Coupled soil deformation-flow-thermal analysis of methane production in layered methane hydrate soils. 2008 Offshore Technology Conference, Houston, Texas, 5–8 May.

    Google Scholar 

  127. Tsypkin, G. G. (1993). Mathematical model of the dissociation of gas hydrates coexisting with ice in natural reservoirs. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 84-92, March–April.

    Google Scholar 

  128. Chen, Z., Bai, W., & Xu, W. (2005). Prediction of stability zones and occurrence zones of multiple composition natural gas hydrate in marine sediment. Chinese Journal of Geophysics, 48(4), 939–945.

    Article  Google Scholar 

  129. Williams, P. J. (1964). Specific heat and apparent specific heat of frozen soils. pp. 225–229. In 1st International Conference of Permafrost, 1964, National Academy of Sciences, Washington, DC.

    Google Scholar 

  130. Anderson, D. M., & Morgenstern, N.R. (1973). Physics, chemistry and mechanics of frozen ground: A review. In Proceeding of 2nd International Conference of Permafrost, Yakutsk, Siberia, 13-28 July 1973, National Academy of Sciences, Washington, DC, pp. 257–288.

    Google Scholar 

  131. Quintard, M., & Whitaker, S. (1995). Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments. International Journal of Heat and Mass Transfer, 38(15), 2779–2796.

    Article  MATH  Google Scholar 

  132. Henninges, J., Schrötter, J., Erbas, K., & Huenges, E. (2002). Temperature field of the Mallik gas hydrate occurrence. Implications on phase changes and thermal properties, GEO Technologien 2002.

    Google Scholar 

  133. Perry, R. H., & Chilton, C. H. (1973). Chemical engineers handbook. New York, NY: McGraw Hill.

    Google Scholar 

  134. Waite, W. F., Stern, L. A., Kirby, S. H., Winters, W. J., & Mason, D. H. (2007). Simultaneous determination of thermal conductivity thermal diffusivity and specific heat in sl methane hydrate. Geophysical Journal International, 169, 767–774.

    Article  Google Scholar 

  135. Liu, Z., Sun, Y., & Yu, X. (2012). Theoretical basis for Modeling Porous Geomaterials under Frost Actions: A Review. Soil Science Society of America Journal, 76(2), 313–330.

    Article  MathSciNet  Google Scholar 

  136. Johansen, O. (1975). Thermal conductivity of soils. Ph.D. dissertation. Norwegian University of Science and Technology, Trondheim (CRREL draft transl. 637, 1977).

    Google Scholar 

  137. Cote, J., & Konrad, J. M. (2005). A generalized thermal conductivity model for soils and construction materials. Canadian Geotechnical Journal, 42, 443–458.

    Article  Google Scholar 

  138. Lu, S., Ren, T., Gong, Y., & Horton, R. (2007). An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Science Society of America Journal, 71, 8–14.

    Article  Google Scholar 

  139. Gaddipati, M. (2008). Code comparison of methane hydrate reservoir simulators using CMG STARS, Master Thesis. West Virginia University, Morgantown, West Virginia.

    Google Scholar 

  140. Sean, W., Sato, T., Yamasaki, A., & Kiyono, F. (2007). CFD and experimental study on methane hydrate dissociation part No. dissociation under water flow. American Institute of Chemical Engineers, 53(1), 262–274.

    Article  Google Scholar 

  141. Kimoto, S., Oka, F., & Fushita, T. (2011). A chemo-thermo-mechanically coupled analysis of ground deformation induced by methane hydrate dissociation. Bifurcations, Instabilities and Degradations in Geomaterials, Springer Series in Geomechanics and Geoengineering, 0, 145–165.

    Google Scholar 

  142. Konno, Y., Oyama, H., Nagao, J., Masuda, Y., & Kurihara, M. (2010). Numerical analysis of the dissociation experimental of naturally occurring gas hydrate in sediment cores obtained at the Eastern Nankai Trough, Japan. Energy Fuels, 24(12), 6353–6358.

    Article  Google Scholar 

  143. Civan, F. C. (2001). Scale effect on porosity and permeability: Kinetics, model and correlation. AIChE Journal, 47(2), 271–287.

    Article  Google Scholar 

  144. Jeannin, L., Bayi, A., Renard, G., Bonnefoy, O., & Herri, J. M. (2002). Formation and dissociation of methane hydrates in sediments part II: numerical modeling. Proceeding of 4th International Conference on Gas Hydrates, Yokahama, Japan, May 19–23.

    Google Scholar 

  145. Sung, W., Huh, D., Ryu, B., & Lee, H. (2000). Development and application of gas hydrate reservoir simulator based on depressurizing mechanism. Korean Journal of Chemical Engineering, 17(3), 344–350.

    Article  Google Scholar 

  146. Van Genuchten, M. T. (1980). A close-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Science Society of America Journal, 44, 892–898.

    Article  Google Scholar 

  147. Parker, J. C., Lenhard, R. J., & Kuppusamy, T. (1987). A parametric model for constitutive properties governing multiphase flow in porous media. Water Resources Research, 23, 618–624.

    Article  Google Scholar 

  148. Bear, J. (1972). Dynamics of Fluids in Porous Media. Mineola, NY: Dover.

    MATH  Google Scholar 

  149. Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Papers, No. 3, Colorado State University, Fort Collins.

    Google Scholar 

  150. Lake, L. W. (1989). Enhanced Oil Recovery. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  151. Gamwo, I. K., & Liu, Y. (2010). Mathematical modeling and numerical simulation of methane production in a hydrate reservoir. Industrial & Engineering Chemistry Research, 49, 5231–5245.

    Article  Google Scholar 

  152. Verigin, N. N., No, L. K., & Khalikov, G. A. (1980). Linear problem of the dissociation of the hydrates of a gas in a porous medium. Fluid Dynamics, 15(1), 144–147.

    Article  Google Scholar 

  153. Willhite, P. G. (1986). Water flooding. Society of Petroleum Engineers Textbook Series (Vol. 3). Texas: Society of Petroleum Engineers.

    Google Scholar 

  154. Williams, P. J., & Smith, M. W. (1989). The frozen earth: Fundamentals of geocryology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  155. Fayer, M. J. (2000). UNSAT-H version 3.0: Unsaturated soil water and heat flow model, theory, user manual, and examples. Rep. 13249.Pac. Northwest Natl. Lab., Richland, WA.

    Google Scholar 

  156. Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31, 521–532.

    Article  Google Scholar 

  157. Vogel, T., van Genuchten, M. T., & Cislerova, M. (2001). Effect of the shape of the soil hydraulic functions near saturation on variably saturated flow predictions. Advances in Water Resources, 24, 133–144.

    Article  Google Scholar 

  158. Grant, S. A., & Salehzadeh, A. (1996). Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions. Water Resources Research, 32(2), 261–270.

    Article  Google Scholar 

  159. Hassanizadeh, S. M., & Gary, W. G. (1993). Thermodynamic basics of capillary pressure in porous media. Water Resources Research, 29, 3389–3405.

    Article  Google Scholar 

  160. Morrow, N. R. (1969). Physics and thermodynamics of capillary. In Symposium on Flow Through Porous Media. Washington, DC: The Carnegie Inst.

    Google Scholar 

  161. Burdine, N. T. (1953). Relative permeability calculations from pore-size distribution data. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 198, 71–78.

    Google Scholar 

  162. Childs, E. C., & Collis-George, G. (1950). The permeability of porous materials. Proceedings of the Royal Society of London. Series A, 201, 392–405.

    Article  Google Scholar 

  163. Webb, S. W. (1998). Gas-phase diffusion in porous media-evaluation of an advective-dispersive formulation and the dusty-gas model for binary mixtures. Journal of Porous Media, 1(2), 187–199.

    MATH  Google Scholar 

  164. Pruess, K., & Moridis, G. (1999). TOUGH2 User’s Guide, Version 2.0. LBNL-43134. Lawrence Berkley National Laboratory, University of California, Berkley, CA.

    Google Scholar 

  165. Yaws, C. L. (1995). Handbook of Transport Property Data: Viscosity, Thermal Conductivity, and Diffusion Coefficients of Liquids and Gases. Houston, TX: Gulf Publishing Company.

    Google Scholar 

  166. Haeckel, M., & Wallmann K., et al. (2010). Main equations for gas hydrate modeling. SUGAR Internal Communication.

    Google Scholar 

  167. Ahmadi, G., Ji, C., & Smith, D. H. (2004). Numerical solution for natural gas production from methane hydrate dissociation. Journal of Petroleum Science and Engineering, 41, 269–285.

    Article  Google Scholar 

  168. Peaceman, D.W. (1977). Fundamentals of numerical reservoir simulation. Amsterdam: Elsevier Scientific Pub. Co.

    Google Scholar 

  169. Weast, R. C. (1987). CRC handbook of chemistry and physics. Boca Raton: CRC Press, Inc.

    Google Scholar 

  170. Shpakov, V. P., Tse, J. S., Tulk, C. A., Kvamme, B., & Belosludov, V. R. (1998). Elastic moduli calculation and instability in structure I methane clathrate hydrate. Chemical Physics Letters, 282(2), 107–114.

    Article  Google Scholar 

  171. Tsimpanogiannis, I. N., & Lichtner, P. C. (2007). Parametric study of methane hydrate dissociation in oceanic sediments driven by thermal stimulation. Journal of Petroleum Science and Engineering, 56, 165–175.

    Article  Google Scholar 

  172. Sloan, E. D. (1998). Clathrate hydrates of natural gases (2nd ed.). New York, NY: Marcel Dekker.

    Google Scholar 

  173. Moridis, G. J. (2002). Numerical studies of gas production from methane hydrates. SPE Journal, 8(4), 1–11.

    Google Scholar 

  174. Bakker, R. (1998). Improvements in clathrate modeling II: The H2O-CO2-CH4-N2-C2H6 fluid system. In J. P. Henriet & J. Mienert (Eds.), Gas hydrates: Relevance to world margin stability and climate change (Vol. 137, pp. 75–105). London: Geological Society Special Publication.

    Google Scholar 

  175. Adisasmito, S., Frank, R. J., & Sloan, E. D. (1991). Hydrates of carbon dioxide and methane mixtures. Journal of Chemical & Engineering Data, 36, 68–71.

    Article  Google Scholar 

  176. Moridis, G. J. (2003). Nummerical Studies of Gas Production from Methane Hydrates. SPE Journal, 8(4), 359–370.

    Article  Google Scholar 

  177. Tishchenko, P., Hensen, C., Wallmann, K., & Wong, C. S. (2005). Calculation of the stability and solubility of methane hydrate in seawater. Chemical Geology, 219, 37–52.

    Article  Google Scholar 

  178. Holder, G. D., & John, V. T. (1985). Thermodynamics of multicomponent hydrate forming mixtures. Fluid Phase Equilibria, 14, 353–361.

    Article  Google Scholar 

  179. Kim, H. C., Bishnoi, P. R., Heidemann, R. A., & Rizvi, S. S. H. (1987). Kinetics of methane hydrate decomposition. Chemical Engineering Science, 42(7), 1645–1653.

    Article  Google Scholar 

  180. Peng, D., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64.

    Article  Google Scholar 

  181. Amyx, J. W., Bass, D. M., & Whiting, R. L. (1960). Petroleum reservoir engineering-physical properties. New York City: McGraw-Hill Book Co.

    Google Scholar 

  182. Englezos, P., Kalogerakis, N., Dholabhai, P. D., & Bishnoi, P. R. (1987). Kinetics of formation of methane and ethane gas hydrates. Chemical Engineering Science, 42, 2647–2658.

    Article  Google Scholar 

  183. Boswell, R., Kleinberg, R., Collett, T., & Frye M. (2007). Exploration priorities for methane gas hydrate resources. Fire in the Ice, 1194 Spring/Summer 2007. pp. 11-13. (USDOE National Energy Technology Laboratory, Hydrate Newsletter).

    Google Scholar 

  184. Yamamoto, K., Yasuda, M., & Osawa, O. (2005). Geomechanical condition of deep water unconsolidated and hydrate related sediments off the Pacific coast of central Japan. Proceeding of 5th International Conference on Gas Hydrate, Trondheim, Norway, Vol.3, 922 (Paper ref.3031), 13–16 June, 2005.

    Google Scholar 

  185. Brugada, J., Cheng, Y. P., Soga, K., & Santamarina, J. C. (2010). Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution. Granular Matter, 12(5), 517–525.

    Article  Google Scholar 

  186. Soga, K., Lee, S. L., Ng, M. Y. A., & Klar, A. (2006). Characterization and engineering properties of methane hydrate soils. Proceedings of the Second International Workshop on Characterization and Engineering Properties of Natural Soils, Singapore, 29 November-1 December, Taylor & Francis, London.

    Google Scholar 

  187. Durham, W., Kirby, S., & Stern, L. (2003). The strength and rheology of methane hydrate. Journal of Geophysical Research, A, Space Physics, 108, 2182–2193.

    Google Scholar 

  188. Nixon, M. F., & Grozic, J. L. H. (2007). Submarine slope failure due to hydrate dissociation: A preliminary quantification. Canadian Geotechnical Journal, 44, 314–325.

    Article  Google Scholar 

  189. Xu, W., & Germanovich, L. N. (2006). Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach. Journal of Geophysical Research, 111, B01104.

    Google Scholar 

  190. Santamarina, J. C., & Ruppel, C. (2008). The impact of hydrate saturation on the mechanical ,electrical, and thermal properties of hydrate-bearing sand, silts, and clay. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008).

    Google Scholar 

  191. Ran, H., Silin, D. B., & Patzek, T. W. (2008). Micromechanics of hydrate dissociation in marine sediments by grain-scale simulations. 2008 SPE Western Regional and Pacific Section AAPG Joint Meeting, Bakersfield, CA, 31 March-2 April.

    Google Scholar 

  192. Masui, A., Miyazaki, K., Haneda, H., Ogata, Y., & Aoki, K. (2008). Mechanical characteristics of natural and artificial gas hydrate bearing sediments. Proceedings of the 6th International Conference on Gas Hydrates, ICGH.

    Google Scholar 

  193. Winters, W. J., Pecher, I. A., Waite, W. F., & Mason, D. H. (2004). Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate. American Mineralogist, 89, 1221–1227.

    Article  Google Scholar 

  194. Hyodo, M., Nakata, Y., Yoshimoto, N., & Ebinuma, T. (2005). Basic research on the mechanical behavior of methane hydrate-sediments mixture. Soils & Foundations, 45(1), 75–85.

    Google Scholar 

  195. Masui, A., Haneda, H., Ogata, Y., & Aoki, K. (2005). The effect of saturation degree of methane hydrate on the shear strength of synthetic methane hydrate sediments. Proceedings of the 5th International Conference on Gas Hydrates (ICGH 2005), pp. 2657–2663.

    Google Scholar 

  196. Winters, W. J., Waite, W. F., Mason, D. H., Gilbert, L. Y., & Pecher, I. A. (2007). Methane gas hydrate effect on sediment acoustic and strength properties. Journal of Petroleum Science and Engineering, 56, 127–135.

    Article  Google Scholar 

  197. Hyodo, M., Nakata, Y., Yoshimoto, N., & Orense, R. (2007). Shear behavior of methane hydrate-bearing sand. Proceedings of the 17th International Offshore and Polar Engineering Conference, ISOPE, pp. 1326–1333.

    Google Scholar 

  198. Aziz, K., & Settari, A. (1979). Petroleum reservoir simulation. Imprint London: Applied Science Publishers.

    Google Scholar 

  199. Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.

    Article  MATH  Google Scholar 

  200. Wang, H. F. (2000). Theory of linear poroelasticity: With applications to geomechanics and hydrogeology. Princeton, NJ: Princeton University Press.

    Google Scholar 

  201. Bishop, A. W. (1959). The principle of effective stress.□Teknisk. Ukeblad, 106(39), 859–863.

    Google Scholar 

  202. Fredlund, D. G., & Morgenstern, N. R. (1977). Stress state variables for unsaturated soils. Journal of Geotechnical Engineering, ASCE, 103(5), 447–466.

    Google Scholar 

  203. Lu, N., & Likos, W. J. (2006). Suction stress characteristic curve for unsaturated soil. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 131–142.

    Article  Google Scholar 

  204. Coussy, O. (Ed.). (2004). Poromechanics. Chichester, England: John Wiley & Sons, ltd.

    MATH  Google Scholar 

  205. Schrefler, B. A., & Gawin, D. (1996). The effective stress principle: incremental or finite form. International Journal for Numerical and Analytical Methods in Geomechanics, 20(11), 785–814.

    Article  Google Scholar 

  206. Chin, L. Y., Silpngarmlert, S., & Schoderbek, D. A. (2011). Subsidence prediction by coupled modeling of geomechanics and reservoir simulation for methane hydrate reservoirs. 45th U.S. Rock Mechanics/Geomechanics Symposium, June 26-29, 2011, San Francisco, CA.

    Google Scholar 

  207. Morland, L. W., Foulser, R., & Garg, S. K. (2004). Mixture theory for a fluid-saturated isotropic elastic matrix. International Journal of Geomechanics, 4(3), 207–215.

    Article  Google Scholar 

  208. Dominic, K., & Hilton, D. (1987). Gas production from depressurization of bench-scale methane hydrate reservoirs. US Department of Energy, DOE/METC-87/4073, pp. 1–9.

    Google Scholar 

  209. Kamath, V. A., Mutalik, P. N., Sira, J. H., & Patil, S. L. (1991). Experimental study of brine injection and depressurization methods for dissociation of gas hydrates. SPE Formation. Evaluation, 6(4), 477–484.

    Google Scholar 

  210. Li, S., Chen, Y., & Du, Q. (2005). Sensitivity analysis in numerical simulation of natural gas hydrate production. Geoscience, 19(1), 108–112.

    Google Scholar 

  211. Yang, X., Sun, C., Su, K., Yuan, Q., Li, Q., & Chen, G. (2012). A three-dimensional study on the formation and dissociation of methane in porous sediment by depressurization. Energy Conversion and Management, 56, 1–7.

    Article  Google Scholar 

  212. Bai, Y., & Li, Q. (2010). Simulation of gas production from hydrate reservoir by the combination of warm water flooding and depressurization. Science China, 53, 2469–2475.

    Article  MATH  Google Scholar 

  213. Hovland, M., Judd, A. (Eds.). (1988). Seabed pockmarks and seepages. Impact on Geology, Biology and the Marine Environment, Graham and Trotman, London, 1988, pp. 293.

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by the US National Science Foundation via project CMMI-0856407.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, Z., Yu, X. (2016). Advancement in Numerical Simulations of Gas Hydrate Dissociation in Porous Media. In: Jin, C., Cusatis, G. (eds) New Frontiers in Oil and Gas Exploration. Springer, Cham. https://doi.org/10.1007/978-3-319-40124-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40124-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40122-5

  • Online ISBN: 978-3-319-40124-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics