Skip to main content

Recent Advances in Global Fracture Mechanics of Growth of Large Hydraulic Crack Systems in Gas or Oil Shale: A Review

  • Chapter
  • First Online:

Abstract

This chapter reviews the recent progress toward computer simulation of the growth of vast systems of branched hydraulic cracks needed for the efficient extraction of gas or oil from shale strata. It is emphasized that, to achieve significant gas extraction, the spacing of parallel hydraulic cracks must be on the order of 0.1 m, which means that the fracturing of the entire fracking stage would require creating about a million vertical cracks. Another emphasized feature is that the viscous flow of fracking water along the hydraulic cracks must be combined with Darcy diffusion of a large amount of water into the pores and flaws in shale. The fracture mechanics on the global scale is handled by the crack band model with gradual postpeak softening and a localization limiter in the form of a material characteristic length. Small scale computer simulations demonstrate that the computational approach produces realistically looking results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adachi, J., Siebrits, E., Peirce, A., & Desroches, J. (2007). Computer simulation of hydraulic fractures. International Journal of Rock Mechanics and Mining Sciences, 44(5), 739–757.

    Google Scholar 

  2. Adachi, J. I., & Detournay, E. (2008). Plane strain propagation of a hydraulic fracture in a permeable rock. Engineering Fracture Mechanics, 75, 4666–4694.

    Article  Google Scholar 

  3. American Petroleum Institute. (1998). Recommended Practices for Core Analysis. API RP40.

    Google Scholar 

  4. Bažant, Z. P., Caner, F. C., Adley, M. D., & Akers, S. A. (2000). Microplane model M4 for concrete: I. Formulation with work-conjugate deviatoric stress. Journal of Engineering Mechanics ASCE, 126(9), 944–953.

    Article  Google Scholar 

  5. Bažant, Z. P., & Cedolin, L. (1991). Stability of structures: Elastic, inelastic, fracture and damage theories. New York: Oxford University Press (also 2nd ed. Dover Publ. 2003, 3rd ed. World Scientific 2010).

    Google Scholar 

  6. Bažant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Materials and Structures, 16, 155–177.

    Google Scholar 

  7. Bažant, Z. P., & Ohtsubo, H. (1977). Stability conditions for propagation of a system of cracks in a brittle solid. Mechanics Research Communications, 4(5), 353–366.

    Article  MATH  Google Scholar 

  8. Bažant, Z. P., & Ohtsubo, H. (1978). Geothermal heat extraction by water circulation through a large crack in dry hot rock mass. International Journal for Numerical and Analytical Methods in Geomechanics, 2(4), 317–327.

    Google Scholar 

  9. Bažant, Z. P., Ohtsubo, R., & Aoh, K. (1979). Stability and post-critical growth of a system of cooling and shrinkage cracks. International Journal of Fracture, 15, 443–456.

    Article  Google Scholar 

  10. Bažant, Z. P., & Planas, J. (1998). Fracture and size effect in concrete and other quasibrittle material. Boca Raton: CRC Press.

    Google Scholar 

  11. Bažant, Z. P., Salviato, M., Chau, V. T., Viswanathan, H., & Zubelewicz, A. (2014). Why fracking works. ASME Journal of Applied Mechanics, 81(Oct.), 101010-1–101010-10.

    Google Scholar 

  12. Bažant, Z. P., & Wahab, A. B. (1979). Instability and spacing of cooling or shrinkage cracks. ASCE Journal of Engineering Mechanics, 105, 873–889.

    Google Scholar 

  13. Bear, J. (1988). Dynamics of fluids in porous media. Mineola, NY: Dover Publications, ISBN 0486656756.

    MATH  Google Scholar 

  14. Beckwith, R. (2010). Hydraulic fracturing: The fuss, the facts, the future. Journal of Petroleum Technology, 63(12), 34–41.

    Article  Google Scholar 

  15. Bunger, A. (2013). Analysis of the power input needed to propagate multiple hydraulic fractures. International Journal of Solids and Structures, 50. doi:12.1016/j.ijsolstr.2013.01.004.

    Google Scholar 

  16. Bunger, A., Detournay, E., & Garagash, D. (2005). Toughness-dominated hydraulic fracture with leak-off. International Journal of Fracture, 134(02), 175–190.

    Article  MATH  Google Scholar 

  17. Bunger, A., Jeffrey, R. G., & Zhang, X. (2014). Constraints on simultaneous growth of hydraulic fractures from multiple perforation clusters in horizontal wells. SPE Journal, 19(04), 608–620.

    Article  Google Scholar 

  18. Bunger, A., & Pierce, A. (2014). Numerical simulation of simultaneous growth of multiple fracturing interacting hydraulic fractures from horizontal wells. In Proceedings of ASCE Shale Energy Conference, Pittsburgh, PA.

    Google Scholar 

  19. Bunger, A. P., & Cardella, D. J. (2015). Spatial distribution of production in a Marcellus Shale well: Evidence for hydraulic fracture stress interaction. Journal of Petroleum Science and Engineering, 133, 162–166.

    Article  Google Scholar 

  20. Červenka, J., Bažant, Z.P., & Wierer, M. (2005). Equivalent localization element for crack band approach to mesh-sensitivity in microplane model. International Journal for Numerical Methods in Engineering, 62(5), 700–726.

    Article  MATH  Google Scholar 

  21. Chau, V. T., Bažant, Z. P. & Su, Y. (2016). Growth model of large branched 3D hydraulic system in gas or oil shale. Philosophical Transactions. Accepted.

    Google Scholar 

  22. Cipolla, C. L., Mayerhofer, M. J., & Warpinski, N. R. (2009). Fracture design considerations in horizontal wells drilled in unconventional gas reservoirs. In SPE Hydraulic Fracturing Technology Conference, 19–21 January, Texas.

    Google Scholar 

  23. Cui, X., Bustin A. M. M., & Bustin R. M. (2009). Measurements of gas permeability and diffusivity of tight reservoir rocks: Different approaches and their applications. Geofluids, 9, 208–223.

    Article  Google Scholar 

  24. Detournay, E. (2004). Propagation regimes of fluid-driven fractures in impermeable rocks. International Journal of Geomechanics, 4, 35. doi:10.1061/(ASCE)1532-3641(2004)4:1(35).

    Article  Google Scholar 

  25. Detournay, E. (2016). Mechanics of hydraulic fractures. Annual Review of Fluid Mechanics, 48(1), 311–339.

    Article  MATH  Google Scholar 

  26. Detournay, E., & Peirce, A. (2014). On the moving boundary conditions for a hydraulic fracture. International Journal of Engineering Science, 84, 147–155.

    Article  Google Scholar 

  27. Eymard, R., Gallouet, T. R., & Herbin, R. (2000). The finite volume method. In P. G. Ciarlet & J. L. Lions (Eds.), Handbook of numerical analysis (Vol. VII, pp. 713–1020). Amsterdam: North-Holland

    Google Scholar 

  28. Gale, J. F. W. (2002). Specifying lengths of horizontal wells in fractured reservoirs. SPE Reservoir Evaluation & Engineering, 78600, 266–272.

    Article  Google Scholar 

  29. Gale, J. F. W., Reed, R. M., & Holder, J. (2007). Natural fractures in the Barnett shale and their importance for fracture treatments. American Association of Petroleum Geologists Memoirs, 91(4), 603–622.

    Article  Google Scholar 

  30. Garagash, D., & Detournay, E. (2000). The tip region of a fluid-driven fracture in an elastic medium. Journal of Applied Mechanics, 67(1), 183–192.

    Article  MATH  Google Scholar 

  31. Guidry, K., Luffel D., & Curtis J. (1995). Development of laboratory and petrophysical techniques for evaluating shale reservoirs - final technical report, Gas Shale Project Area, Restech, Inc., GRI Contract No. 5086-213-1390.

    Google Scholar 

  32. Haifeng, Z., Hang, L. Guohua C., Yawei, L., Jun, S., & Peng, R. (2013). New insight into mechanisms of fracture network generation in shale gas reservoir. Journal of Petroleum Science and Engineering, 110, 193–198.

    Article  Google Scholar 

  33. Javadpour, F. (2009). Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstones). Journal of Canadian Petroleum Technology, 48, 16–21.

    Article  Google Scholar 

  34. Javadpour, F., Fisher, D., & Unsworth, M. (2007). Nanoscale gas flow in shale gas sediments. Journal of Canadian Petroleum Technology, 46, 55–61.

    Google Scholar 

  35. Lecampion, B. (2009). An extended finite element method for hydraulic fracture problems. Communications in Numerical Methods in Engineering, 25(2), 121–133.

    Article  MathSciNet  MATH  Google Scholar 

  36. Louck, R.G., Reed, R.M., Ruppel, S.C., & Jarvie, D.M. (2009). Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. Journal of Sedimentary Research, 79, 848–861.

    Article  Google Scholar 

  37. Mason, J. E. (2011). Well production profiles assess Fayetteville shale gas potential. Oil & Gas Journal, 109(11), 76–76.

    Google Scholar 

  38. Maurel, O., Reess, T., Matallah, M., de Ferron, A., Chen, W., La Borderie, C., et al. (2010). Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar. Cement and Concrete Research, 40, 1631–1638.

    Article  Google Scholar 

  39. Metwally, Y. M., & Sondergeld C. H. (2010). Measuring low permeabilities of gas-sands and shales using a pressure transmission technique. International Journal of Rock Mechanics and Mining, 48, 1135–1144.

    Article  Google Scholar 

  40. Montgomery, C. T., & Smith, M. B. (2010). Hydraulic fracturing: History of an enduring technology. Journal of Petroleum Technology, 63(12), 26–32.

    Article  Google Scholar 

  41. Nemat-Nasser, S., Keer, L. M., & Parihar, K. S. (1976). Unstable growth of thermally induced interacting cracks in Brittle solids. International Journal of Solids and Structures 14, 409–430.

    Google Scholar 

  42. Olson, J. E. (2004). Predicting fracture swarms: The influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock. Journal of the Geological Society of London, 231, 73–87.

    Article  Google Scholar 

  43. Patankar, S. V. (1980). Numerical heat transfer and fluid flow. New York: Hemisphere Publishing Corporation.

    MATH  Google Scholar 

  44. Rijken, P., & Cooke, M. L. (2001). Role of shale thickness on vertical connectivity of fractures: Application of crack-bridging theory to the Austin Chalk, Texas. Tectonophysics, 337, 117–133.

    Article  Google Scholar 

  45. Society of Petroleum Engineers. (2010). Legends of Hydraulic Fracturing (CDROM), ISBN:978-1-55563-298-4.

    Google Scholar 

  46. Soeder, D. J. (1988). Porosity and permeability of eastern Devonian gas shale. SPE Formation Evaluation, 3, 116–124.

    Article  Google Scholar 

  47. Song, W., Jinzhou, Z., & Yongming, L. (2014). Hydraulic fracturing simulation of complex fractures growth in naturally fractured shale gas reservoir. Arabian Journal for Science and Engineering, 39(10), 7411–7419.

    Article  Google Scholar 

  48. Stevenson, A. C. (1945). Complex potentials in two-dimensional elasticity. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 184, No. 997, pp. 129–179). The Royal Society.

    Google Scholar 

  49. Tang, Y., Tang, X., & Wang, G. Y. (2011). Summary of hydraulic fracturing technology in shale gas development. Geological Bulletin of China, 30, 393–399.

    Google Scholar 

  50. Timoshenko, S., & Goodier, J. N. (1970). Theory of elasticity. New York: McGraw Hill.

    MATH  Google Scholar 

  51. Versteeg, H., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method. New York: Pearson Education Limited.

    Google Scholar 

  52. Weng, X. (2015). Modeling of complex hydraulic fractures in naturally fractured formation. Journal of Unconventional Oil and Gas Resources, 9, 114–135.

    Article  Google Scholar 

  53. Zoback, M. D. (2007). Reservoir geomechanics. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  54. Zou, Y., Zhang, S., Ma, X., Zhou, T., & Zeng, B. (2016). Numerical investigation of hydraulic fracture network propagation in naturally fractured shale formations. Journal of Structural Geology, 84, 1–13.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the U.S. Department of Energy through subcontract No. 37008 of Northwestern University with Los Alamos National Laboratory is gratefully acknowledged. Ramifications of fracturing analysis from concrete to shale were partially supported by ARO grant W911NF-15-101240 to Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk P. Bažant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bažant, Z.P., Chau, V.T. (2016). Recent Advances in Global Fracture Mechanics of Growth of Large Hydraulic Crack Systems in Gas or Oil Shale: A Review. In: Jin, C., Cusatis, G. (eds) New Frontiers in Oil and Gas Exploration. Springer, Cham. https://doi.org/10.1007/978-3-319-40124-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40124-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40122-5

  • Online ISBN: 978-3-319-40124-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics