Skip to main content

Experimental and Numerical Investigation of Mechanical Interactions of Proppant and Hydraulic Fractures

  • Chapter
  • First Online:
New Frontiers in Oil and Gas Exploration
  • 1389 Accesses

Abstract

Hydraulic fracturing has recently received a great amount of attention not only for its economic importance but also for its potential environmental impact. The basic intention of the hydraulic fracturing process is to increase the productivity of the stimulated well by maximizing the reservoir’s permeability, but the permeability of the fractured reservoir is strongly affected by the apertures of the fractures. Proppants are often utilized during hydraulic fracturing to aid the retention of the fracture aperture, and laboratory experiments and field observations have shown a strong correlation between the volume of proppant deployed in hydraulic fracturing operations and reservoir productivity. However, the factors controlling proppant performance in real rock fractures are still poorly understood. Considering the high cost of a hydraulic fracturing treatment, a more informed selection of design parameters, such as proppant size, shape, concentration and properties, fracture fluid viscosity, and pumping schedule is needed. A better understanding of the behavior of fluid and proppant within a fracture and their relationship to fracture conductivity is of great practical interest. The goal of this chapter is to provide a summary of recent experimental and numerical investigations on the interactions of proppant and hydraulic fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboud, R. S., & Melo, R. C. B. (2007). Past technologies emerge due to lightweight proppant technology: Case histories applied on mature fields. SPE 107184.

    Google Scholar 

  2. Adachi, J. I., Siebrits, E., Peirce, A., & Desroches, J. (2007). Computer simulation of hydraulic fractures. International Journal of Rock Mechanics and Mining Sciences, 44, 739–757.

    Article  Google Scholar 

  3. American Petroleum Institute. (1989). Recommended practices for evaluating short term proppant pack conductivity. API-RP-61.

    Google Scholar 

  4. Awoleke, O., Romero, J., Zhu, D., & Hill, A. D. (2012). Experimental investigation of propped fracture conductivity in tight gas reservoirs using factorial design. SPE 151963.

    Google Scholar 

  5. Barree, R. D., & Conway, M. W. (1994). Experimental and numerical modeling of convective proppant transport. SPE 28564.

    Google Scholar 

  6. Barree, R. D., Cox, S. A., Barree, V. L., & Conway, M. W. (2003). Realistic assessment of proppant pack conductivity for material selection. SPE 84306.

    Google Scholar 

  7. Bobet, A., Fakhimi, A., Johnson, S., Morris, J., Tonon, F., & Yeung, M. R. (2009). Numerical models in discontinuous media: Review of advances for rock mechanics applications. Journal of Geotechnical and Geoenvironmental Engineering ASCE, 135(11), 1547–1561.

    Article  Google Scholar 

  8. Bortolan, N. L., & Khanna, A. (2013). The performance of hydraulic fractures partially filled with compressible proppant. Australian Journal of Structural Engineering, 10, 185–197.

    Google Scholar 

  9. Bortolan, N. L., & Kotousov, A. (2012). Residual opening of hydraulically stimulated fractures filled with granular particles. Journal of Petroleum Science and Engineering, 100, 24–29.

    Article  Google Scholar 

  10. Bortolan, N. L., & Kotousov, A. (2013). On the residual opening of hydraulic fractures. International Journal of Fracture, 181, 127–137.

    Article  Google Scholar 

  11. Bortolan, N. L., & Kotousov, A. (2013). Residual opening of hydraulic fractures filled with compressible proppant. International Journal of Rock Mechanics and Mining Sciences, 61, 223–230.

    Article  Google Scholar 

  12. Bortolan, N. L., Kotousov, A., & Bedrikovetsky, P. (2011). Application of contact theory to evaluation of elastic properties of low consolidated porous media. International Journal of Fracture, 168(2), 267–276.

    Article  MATH  Google Scholar 

  13. Bortolan, N. L, Kotousov, A., & Bedrikovetsky, P. (2011). Elastic properties of porous media in the vicinity of the percolation limit. Journal of Petroleum Science and Engineering, 78(2), 328–333.

    Article  MATH  Google Scholar 

  14. Bortolan, N. L., Khanna, A., & Kotousov, A. (2015). Conductivity and performance of hydraulic fractures partially filled with compressible proppant packs. International Journal of Rock Mechanics and Mining Sciences, 74, 1–9.

    Article  Google Scholar 

  15. Brannon, H. D., Malone, M. R., Richards, A. R., Wood, W. D., Edgeman, J. R., & Bryant, J. L. (2004) Maximizing fracture conductivity with proppant partial monolayers: Theoretical curiosity or highly productive reality? SPE 90698.

    Google Scholar 

  16. Brannon, H. D., & Starks, T.R. (2009). Maximizing return-on-fracturing-investment by using ultra-lightweight proppants to optimize effective fracture area: Can less be more? SPE 119385.

    Google Scholar 

  17. Card, R. J., Howard, P. R., & Feraud, J. P. (1995). A novel technology to control proppant back production. SPE 31007.

    Google Scholar 

  18. Castro, J. C. C. (2011). Evaluation and effect of fracturing fluids on fracture conductivity in tight gas reservoirs using dynamic fracture conductivity test. Master Thesis, Department of Petroleum Engineering, Texas A&M University.

    Google Scholar 

  19. Chambers, R. W., & Meise, K. D. (2005). Comparison of fracture geometries utilizing ultralightweight proppants provide evidence that partial monolayer can be created: A case history. SPE 96818.

    Google Scholar 

  20. Chapman, M., & Palisch, T. (2014). Fracture conductivity–Design considerations and benefits in unconventional reservoirs. Journal of Petroleum Science and Engineering, 124, 407–415.

    Article  Google Scholar 

  21. Chen, T., Wang, Y., Yan, C., Wang, H., Xu, Y., & Ma, R. (2015). Preparation of heat resisting poly(methyl methacrylate)/graphite composite microspheres used as ultra-lightweight proppants. Journal of Applied Polymer Science, 132, 41924.

    Google Scholar 

  22. Clark, P. E., & Guler, N. (1983). Prop transport in vertical fractures: Settling velocity correlations. SPE 11636.

    Google Scholar 

  23. Clark, P. E., & Quadir, J. A. (1981). Prop transport in hydraulic fractures: A critical review of particle settling velocity equations. SPE 9866.

    Google Scholar 

  24. Clifton, R. J., & Wang, J.-J. (1988). Multiple fluids, proppant transport, and thermal effects in three-dimensional simulation of hydraulic fracturing. SPE 18198.

    Google Scholar 

  25. Conway, M. W., & O’Connell, L. (2013). Conductivity variations between piston designs. Stim-Lab Proppant Consortium Meeting, Rohnert Park, CA, July 18–19.

    Google Scholar 

  26. Cooke, Jr. C. E. (1973). Conductivity of fracture proppants in multiple layers. Journal of Petroleum Technology, 25, 1101–1107.

    Article  Google Scholar 

  27. Cooke, Jr. C. E. (1975). Effect of fracturing fluids on fracture conductivity. Journal of Petroleum Technology, 27, 1273–1282.

    Article  Google Scholar 

  28. Craddock, D. L., Goza, B. T., & Bishop, J. C. (1983). A case history–fracturing the morrow in southern Blaine and western Canadian counties, Oklahoma. SPE 11567.

    Google Scholar 

  29. Cundall, P. A. (1988). Formulation of a 3-dimensional distinct element model. International Journal of Rock Mechanics and Mining Sciences, 25, 107–116.

    Article  Google Scholar 

  30. Cundall, P. A. (1990). Numerical modeling of jointed and faulted rock. In Proceedings of the international conference on mechanics of jointed and faulted rock (pp. 11–18).

    Google Scholar 

  31. Cundall, P.A., & Hart, D. H. (1992). Numerical modeling of discontinua. Engineering with Computers, 9, 13.

    Google Scholar 

  32. Cundall, P. A., & Strack, O. D. L. (1979). Discrete numerical model for granular assemblies. Geotechnique, 29, 47–65.

    Article  Google Scholar 

  33. Cundall, P. A., & Strack, O. D. L. (1980). A discrete numerical model for granular assemblies—reply. Geotechnique, 30, 335–336.

    Article  Google Scholar 

  34. Dam, D. B., Pater, C. J., & Romijn, R. (2000). Analysis of hydraulic fracture closure in laboratory experiments. SPE 65066.

    Google Scholar 

  35. Daneshy, A. A. (1978). Numerical solution of sand transport in hydraulic fracturing. SPE 5636.

    Google Scholar 

  36. Darin, S. R., & Huitt, J. L. (1959). Effect of a partial monolayer of propping agent on fracture flow capacity. SPE 1291-G.

    Google Scholar 

  37. Deng, S, Li, H., Ma, G., Huang, H., & Li, X. (2014). Simulation of shale–proppant interaction in hydraulic fracturing by the discrete element method. International Journal of Rock Mechanics and Mining Sciences, 70, 219–228.

    Article  Google Scholar 

  38. Densirimongkol, J. (2009). The role of acidizing in proppant fracturing in carbonate reservoirs. Master Thesis, Department of Petroleum Engineering, Texas A&M University.

    Google Scholar 

  39. Donaldson, E. C., Alam, W., & Begum, N. (2013). Hydraulic fracturing explained: Evaluation, implementation, and challenges. Houston: Gulf Publishing.

    Book  Google Scholar 

  40. Dontsov, E. V., & Peirce, A. P. (2015). Proppant transport in hydraulic fracturing: Crack tip screen-out in KGD and P3D models. International Journal of Solids and Structures, 63, 206–218.

    Article  Google Scholar 

  41. Economides, M. J., & Martin, T. (2007). Modern fracturing—enhancing natural gas production. Houston: BJ Services Company.

    Google Scholar 

  42. Economides, M. J., & Nolte, K. G. (2000). Reservoir stimulation (3rd ed.). New York: Wiley.

    Google Scholar 

  43. Fjaer, E., Holt, R. M., Horsrud, P., Raaen, A. M., & Risnes, R. (2008). Petroleum related rock mechanics (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  44. Fredd, C. N., McConnell, S. B., Boney, C. L., & England, K. W. (2001). Experimental study of fracture conductivity for water-fracturing and conventional fracturing applications. SPE 74138.

    Google Scholar 

  45. Freening, G. (2007). Analysis of pharmaceutical powder compaction using multiplicative hyperelasto-plastic theory. Powder Technology, 172, 103–112.

    Article  Google Scholar 

  46. Gadde, P. B., Liu, Y., Norman, J., Bonnecaze, R., & Sharma, M.M. (2004). Modeling proppant settling in water-fracs. SPE 89875.

    Google Scholar 

  47. Gaurav, A., Dao, E. K., & Mohanty, K. K. (2012). Evaluation of ultra-light-weight proppants for shale fracturing. Journal of Petroleum Science and Engineering, 92–93, 82–88.

    Article  Google Scholar 

  48. Gethin, D. T., Ransing, R. S., Lewis, R. W., Dutko, M., & Crook, A. J. L. (2001). Numerical comparison of a deformable discrete element model and an equivalent continuum analysis for the compaction of ductile porous material. Computers & Structures, 79, 1287–1294.

    Article  Google Scholar 

  49. Gidley, J. L., Holditch, S. A., Nierode, D. E., & Veatch, R. W. (1989). Recent advances in hydraulic fracturing. SPE Monograph (Vol. 12).

    Google Scholar 

  50. Griebel, M., Knapek, S., & Zumbusch, G. (2007). Numerical simulation of molecular dynamics. Berlin: Springer.

    MATH  Google Scholar 

  51. Gu, M., Dao, E., & Mohanty, K. K. (2015). Investigation of ultra-light weight proppant application in shale fracturing. Fuel, 150, 191–201.

    Article  Google Scholar 

  52. Guo, B. Y., Lyons, W. C., & Ghalambor, A. (2007). Hydraulic fracturing. In Petroleum production engineering: A computer-assisted approach. Houston: Gulf Publishing.

    Google Scholar 

  53. Guzek, J. J. (2014). Fracture conductivity of the Eagle Ford shale. Master Thesis, Department of Petroleum Engineering, Texas A&M University.

    Google Scholar 

  54. Haimson, B. (2004). Hydraulic fracturing and rock characterization. International Journal of Rock Mechanics and Mining Sciences, 41, 188–194.

    Article  Google Scholar 

  55. Harrington, L., & Hannah, R. R. (1975). Fracturing design using perfect support fluids for selected fracture proppant concentrations in vertical fractures. SPE 5642.

    Google Scholar 

  56. Hertz, H. (1896). In D. E. Jones & G. A. Schott (Eds.), Miscellaneous papers. New York: MacMillan.

    Google Scholar 

  57. Huitt, J. L., & McGlothlin, B. B. (1958). The propping of fractures in formations susceptible to propping-sand embedment. API-58-115.

    Google Scholar 

  58. Huitt, J. L., McGlothlin, B. B., & McDonald, J. F. (1959). The propping of fractures in formations in which propping sand crushes. API-59-120.

    Google Scholar 

  59. Itasca Consulting Group Inc. (2008). PFC2D particle flow code in 2 dimensions user’s guide, Minneapolis, MS, USA.

    Google Scholar 

  60. Itasca Consulting Group Inc. (2008). PFC3D particle flow code in 3 dimensions user’s guide, Minneapolis, MS, USA.

    Google Scholar 

  61. Itasca Consulting Group Inc. (2011). UDEC universal distinct element code user’s guide, Minneapolis, MS, USA.

    Google Scholar 

  62. Itasca Consulting Group Inc. (2013). 3DEC 3 dimensional distinct element code user’s guide, Minneapolis, MS, USA.

    Google Scholar 

  63. Jing, L., & Stephansson, O. (2007). Fundamentals of discrete element methods for rock engineering: Theory and applications. Amsterdam/Oxford: Elsevier.

    Google Scholar 

  64. Kamenov, A., Zhu, D., Hill, A. D., & Zhang, J. (2013). Laboratory measurement of hydraulic fracture conductivities in the Barnett shale. SPE 163839.

    Google Scholar 

  65. Kasza, P., & Wilk, K. (2012). Completion of shale gas formations by hydraulic fracturing. Przemysl Chemiczny, 91, 608–612.

    Google Scholar 

  66. Kaufman, P. B., Anderson, R. W., Ziegler, M., Neves, A. R., Parker, M. A., Abney, K., et al. (2007). Introducing new API/ISO procedures for proppant testing. SPE 110697.

    Google Scholar 

  67. Kern, L. R., Perkins, T. K., & Wyant, R. E. (1959). The mechanics of sand movement in fracturing. Journal of Petroleum Technology, 11, 55–57.

    Article  Google Scholar 

  68. Khanna, A., Kotousov, A., Sobey, J., & Weller, P. (2012). Conductivity of narrow fractures filled with a proppant monolayer. Journal of Petroleum Science and Engineering, 100, 9–13.

    Article  Google Scholar 

  69. Kloss, C., & Goniva, C. (2011). LIGGGHTS–Open source discrete element simulations of granular materials based on LAMMPS. Annual Meeting and Exhibition (Vol. 2); Minerals, Metals and Materials Society.

    Google Scholar 

  70. Komodromos, P., & Williams, J. R. (2001). Development and implementation of a combined discrete and finite element multibody dynamics simulation environment. Ph.D Dissertation, Massachusetts Institute of Technology.

    Google Scholar 

  71. Kotousov, A., Bortolan, N. L., & Rahman, S. S. (2011). Theoretical model for roughness induced opening of cracks subjected to compression and shear loading. International Journal of Fracture, 172(1), 9–18.

    Article  MATH  Google Scholar 

  72. Kulkarni, M. C. (2012). Mechanics of light weight proppants: A discrete approach. Ph.D. Dissertation, Department of Mechanical Engineering, Texas A&M University.

    Google Scholar 

  73. Kulkarni, M. C., & Ochoa, O. O. (2012). Mechanics of light weight proppants: A discrete approach. Composites Science and Technology, 72, 879–885.

    Article  Google Scholar 

  74. Kundert, D. P., & Smink, D. E. (1979). Improved stimulation of the Escondido sandstone. SPE 7912.

    Google Scholar 

  75. Lewis, R.W., Gethin, D. T., Yang, X. S., & Rowe, R. C. (2005). A combined finite-discrete element method for simulating pharmaceutical powder tableting. International Journal for Numerical Methods in Engineering, 62, 853–869.

    Article  MATH  Google Scholar 

  76. Lisjak, A., & Grasselli, G. (2014). A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. Journal of Rock Mechanics and Geotechnical Engineering, 6, 301–314.

    Article  Google Scholar 

  77. Mack, D. J., & Myers, R. R. (2001). Proppants: Is bigger better or is placement the key? SPE 72381.

    Google Scholar 

  78. Mader, D. (1989). Hydraulic proppant fracturing and gravel packing. New York: Elsevier Science Publishing Company Inc.

    Google Scholar 

  79. Mahrer, K. D. (1999). A review and perspective on far-field hydraulic fracture geometry studies. Journal of Petroleum Science and Engineering, 24, 13–28.

    Article  Google Scholar 

  80. Marpaung, F., Chen, F., Pongthunya, P., Zhu, D., & Hill, A. D. (2008). Measurement of gel cleanup in a propped fracture with dynamic fracture conductivity experiments. SPE 115653.

    Google Scholar 

  81. Mathur, A. K., Semary, M., Edelman, J., Maghrabia, K., Rojas, J. M. B., & Zaki, A. S. (2013). Rod-shaped proppant provides superior proppant flowback control in the Egyptian Eastern Desert. SPE 164014.

    Google Scholar 

  82. Mattson, E. D., Huang, H., Conway, M., & O’Connell, L. (2014). Discrete element modeling results of proppant rearrangement in the Cooke conductivity cell. SPE 168604.

    Google Scholar 

  83. Mayerhofer, M. J., & Meehan, D. N. (1998). Waterfracs–Results from 50 Cotton Valley wells. SPE 49104.

    Google Scholar 

  84. Mayerhofer, M. J., Richardson, M. F., Walker, R. N., Meehan, D. N., Oehler, M.W., & Browning, Jr. R. R. (1997). Proppants? We don’t need No proppants. SPE 38611.

    Google Scholar 

  85. Mobbs, A. T., & Hammond, P. S. (2001). Computer simulations of proppant transport in a hydraulic fracture. SPE 69212.

    Google Scholar 

  86. Morales, R. H., Suarez-Rivera, R., & Edelman, E. (2011). Experimental evaluation of hydraulic fracture impairment in shale reservoirs. ARMA-11-380.

    Google Scholar 

  87. Morris, J. P., Chugunov, N., & Meouchy, G. (2014) Understanding heterogeneously propped hydraulic fractures through combined fluid mechanics, geomechanics, and statistical analysis. ARMA 14-7408.

    Google Scholar 

  88. Munjiza, A. (2004). The combined finite-discrete element method. West Sussex: Wiley.

    Book  MATH  Google Scholar 

  89. Novotny, E. J. (1977). Proppant transport. SPE 6813.

    Google Scholar 

  90. Ouyang, L., Yango, T., Zhu, D., & Hill, A. D. (2011). Theoretical and experimental modeling of residual gel filter cake displacement in propped fractures. SPE 147692.

    Google Scholar 

  91. Palisch, T. T., Duenckel, R., Bazan, L., Heidt, H., & Turk, G. (2007). Determining realistic fracture conductivity and its impact on well performance–theory and field examples. SPE 106301.

    Google Scholar 

  92. Palisch, T. T., Vincent, M. C., & Handren, P. J. (2010). Slickwater fracturing: Food for thought. SPE Production & Operations, 25(3), 327–344.

    Article  Google Scholar 

  93. Papanastasiou, P. (2010) Hydraulic fracture closure in a pressure-sensitive elastoplastic medium. International Journal of Fracture, 103(2), 149–161.

    Article  Google Scholar 

  94. Penny, G. S. (1987). An evaluation of the effects of environmental conditions and fracturing fluids upon the long-term conductivity of proppants. SPE 16900.

    Google Scholar 

  95. Rahman, M. M., & Rahman, M. K. (2010). A review of hydraulic fracture models and development of an improved pseudo-3D model for stimulating tight oil/gas sand. Energy Sources Part A, 93, 1416–1436.

    Article  Google Scholar 

  96. Ramurthy, M., Barree, R. D., Kundert, D. P., Petre, E., & Mullen, M. (2011). Surface area vs conductivity type fracture treatments in shale reservoirs. SPE 140169.

    Google Scholar 

  97. Reinicke, A. (2010). Mechanical and hydraulic aspects of rockproppant systems–laboratory experiments and modelling approaches. Doctoral Dissertation, Universität Potsdam, Germany.

    Google Scholar 

  98. Reinicke, A., Rybacki, E., Stanchits, S., Huenges, E., & Dresen, G. (2010). Hydraulic fracturing stimulation techniques and formation damage mechanisms–Implications from laboratory testing of tight sandstone-proppant systems. Chemie der Erde, 70, S3, 107–117

    Article  Google Scholar 

  99. Rickards, A. R., Brannon, H. D., Wood, W. D., & Stephenson, C. J. (2006). High strength ultra lightweight proppant lends new dimensions to hydraulic fracturing applications. SPE 84308.

    Google Scholar 

  100. Roy, P., Du Frane, W. L., & Walsh, S. D. C. (2015). Proppant transport at the fracture scale: Simulation and experiment. ARMA 15–0662.

    Google Scholar 

  101. Rushing, J. A., & Sullivan, R. B. (2003). Evaluation of hybrid water-frac stimulation technology in the bossier tight gas sand play. SPE 84394.

    Google Scholar 

  102. Rushing, J. A., & Sullivan, R. B. (2007). Evaluating the impact of waterfrac technologies on gas recovery efficiency: Case studies using elliptical flow production data analysis. SPE 110187.

    Google Scholar 

  103. Schein, G. (2005). The application and technology of slickwater fracturing. SPE 108807.

    Google Scholar 

  104. Schubarth, S. K., Spivey, J. P., & Huckabee, P. T. (2006) Using reservoir modeling to evaluate stimulation effectiveness in multilayered “tight” gas reservoirs: A case history in the Pinedale Anticline area. SPE 100574.

    Google Scholar 

  105. Shokir, E. M., & Al-Quraishi, A. A. (2007). Experimental and numerical investigation of proppant placement in hydraulic fractures. SPE 107927.

    Google Scholar 

  106. Shor, R. J. (2014). Modeling proppant flow in fractures using LIGGGHTS, a scalable granular simulator. Master Thesis, Department of Petroleum and Geosystems Engineering, University of Texas at Austin.

    Google Scholar 

  107. Shor, R. J., & Sharma, M. M. (2014). Reducing proppant flowback from fractures: Factors affecting the maximum flowback rate. SPE 168649.

    Google Scholar 

  108. Terracina, J. M., Turner, J. M., Collins, D. H., & Spillars, S. E. (2010). Proppant selection and its effect on the results of fracturing treatments performed in shale formations. SPE 135502.

    Google Scholar 

  109. Unwin, A. T., & Hammond, P. S. (1995). Computer simulations of proppant transport in a hydraulic fracture. SPE 29649.

    Google Scholar 

  110. van der Vlis, A. C., Haafkens, R., Schipper, B. A., & Visser, W. (1975). Criteria for proppant placement and fracture conductivity. SPE 5637.

    Google Scholar 

  111. Vincent, M. C. (2002). Proving it–A review of 80 published field studies demonstrating the importance of increased fracture conductivity. SPE 77675.

    Google Scholar 

  112. Vincent, M. C. (2009). Examining our assumptions–Have oversimplifications jeopardized our ability to design optimal fracture treatments? SPE 119143.

    Google Scholar 

  113. Walker, R. N., Hunter, J. L., Brake, A. C., Fagin, P. A., & Steinsberger, N. (1998). Proppants, We still don’t need no proppants–A perspective of several operators. SPE 49106.

    Google Scholar 

  114. Walsh, J. B. (1981). Effect of pore pressure and confining pressure on fracture permeability. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18, 429–435.

    Article  Google Scholar 

  115. Warpinski, N. R., Moschovidis, Z. A., Parker, C. D., & Abou-Sayed, I. S. (1994). Comparison study of hydraulic fracturing models–test case: GRI staged field experiment no.3. SPE Production & Facilities, 9, 7–16.

    Article  Google Scholar 

  116. Weaver, J., Rickman, R., & Luo, H. (2008). Fracture-conductivity loss due to geochemical interactions between manmade proppants and formations. SPE 118174.

    Google Scholar 

  117. Wendorff, C. L., & Alderman, E. N. (1969). Prop-packed fractures–A reality on which productivity increase can be predicted. SPE-2452-MS.

    Google Scholar 

  118. Yew, C. H. (1997). Mechanics of hydraulic fracturing. Houston: Gulf Professional Publishing.

    Google Scholar 

  119. Zienkiewics, O. C., Chan, A. H. C., Pastor, M., Schrefler, B. A., & Shiomi, T. (1999). Computational geomechanics with special reference to earthquake engineering. West Sussex: Wiley.

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by start-up funds provided by the Department of Mechanical Engineering at State University of New York at Binghamton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congrui Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jin, C. (2016). Experimental and Numerical Investigation of Mechanical Interactions of Proppant and Hydraulic Fractures. In: Jin, C., Cusatis, G. (eds) New Frontiers in Oil and Gas Exploration. Springer, Cham. https://doi.org/10.1007/978-3-319-40124-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40124-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40122-5

  • Online ISBN: 978-3-319-40124-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics