Skip to main content

Insights on the REV of Source Shale from Nano- and Micromechanics

  • Chapter
  • First Online:
New Frontiers in Oil and Gas Exploration

Abstract

Nano. In the past decade, chemical, physical, and mechanical characterization of source rock reservoirs has moved towards micro- and nano-scale analyses. This is primarily driven by the fact that the representative elementary volume (REV) for characterizing shales is at the nanometer scale. Nanoindentation is now used in many industrial and university laboratories to measure both stiffness and strength and other mechanical properties of materials, such as anisotropic Young’s moduli and plastic yielding parameters. However, standardized methods of testing and analysis are yet to be developed.

Micro. The shale matrix, composed of nano-granular clay and microscale non-clay minerals, also includes the hydrocarbon source material kerogen. This biopolymer is interbedded and intertwined with the clay and non-clay minerals at almost all scales. Kerogen not only has a Young’s modulus in compression but also has a substantial Young’s modulus value in tension and much higher tensile strength than rocks in general. This fact has now been observed at the micro- and nanoscale during nanoindentation while monitoring in situ via scanning electron microscopy (SEM). Load and unload experiments with micro-Newton forces (μN) and nanometer (nm) displacements have clearly shown the elastic nature of kerogen in the shale gas matrix.

Macro. Given that the organic matter has an elastic Young’s moduli in tension, and viscoelastic characteristics, it is therefore capable of re-healing the hydraulic fracture. This is a major reason for our more or less unsuccessful gas shale stimulations. Keeping the fracture open even after proppant placement has proven to not be enough for gas and oil shale optimal well productivity. New macro-scale testing techniques are needed to evaluate the mechanical properties of shales that have not been possible to imagine outside of recent advances in nano- and micro-scale analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richard, P., Nicodemi, M., Delannay, R., Ribière, P., & Bideau, D. (2005). Slow relaxation and compaction of granular systems. Nature Materials, 4, 121–128.

    Article  Google Scholar 

  2. Han, Y., & Cundall, P. A. (2013). LBM-DEM modeling of fluid-solid interaction in porous media. International Journal for Numerical and Analytical Methods, 37(10), 1391–1407.

    Article  Google Scholar 

  3. Hornby, B. E., Schwartz, L. M., & Hudson, J. A. (1994). Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics, 59(10), 1570–1583.

    Article  Google Scholar 

  4. Wenk, H.-R., Lonardelli, I., Franz, H., Nihei, K., & Nakagawa, S. (2007). Preferred orientation and elastic anisotropy of illite-rich shale. Geophysics, 72(2), E69–E75.

    Article  Google Scholar 

  5. Abousleiman, Y., Ulm, F. -J. (2003). “TheGeoGenome™ Industry Consortium” JIP internal report, The Poromechanics Institute, Oklahoma University and Massachusetts Institute of Technology.

    Google Scholar 

  6. Zeszotarski, J. C., Chromik, R. R., Vinci, R. P., Messmer, M. C., Michels, R., & Larsen, J. W. (2004). Imaging and mechanical property measurements of kerogen via nanoindentation. Geochimica et Cosmochimica Acta, 68(20), 4113–4119.

    Article  Google Scholar 

  7. Ulm, F.-J., & Abousleiman, Y. (2006). The nano granular nature of shale. Acta Geotechnica, 1(2), 77–88.

    Article  Google Scholar 

  8. Ulm, F.-J., Constantinides, G., Delafargue, A., Abousleiman, Y., Ewy, R., Duranti, L., et al. (2005). Material invariant poromechanics properties of shales. In Y. Abousleiman, A. H.-D. Cheng, & F.-J. Ulm (Eds.), Poromechanics III. Biot centennial (1905-2005) (pp. 637–644). London: A.A. Balkema Publishers.

    Chapter  Google Scholar 

  9. Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12, 155–164.

    Article  MATH  Google Scholar 

  10. Podio, A. L., Gregory, A. R., & Gray, K. E. (1968). Dynamic properties of dry- and water-saturated green river shale under stress. Society of Petroleum Engineers Journal, 8(4).

    Google Scholar 

  11. Abousleiman, Y., Cheng, A. H.-D., Cui, L., Detournay, E., & Roegiers, J.-C. (1996). Mandel’s problem revisited: Consolidation of a porous anisotropic rock. Geotechnique, 46(2), 187–195.

    Article  Google Scholar 

  12. Abousleiman, Y., Hoang, S., & Liu, C. (2014). Anisotropic porothermoelastic solution and hydro-thermal effects on fracture width in hydraulic fracturing. International Journal for Numerical and Analytical Methods, 38(5), 493–517.

    Article  Google Scholar 

  13. Ekbote, S., & Abousleiman, Y. (2006). Porochemoelastic solution for an inclined borehole in a transversely isotropic formation. Journal of Engineering Mechanics ASCE, 132(7), 754–763.

    Article  Google Scholar 

  14. Vernik, L., & Nur, A. (1992). Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics, 57(5), 727–735.

    Article  Google Scholar 

  15. Abousleiman, Y., & Cui, L. (1998). Poroelastic solutions in transversely isotropic media for wellbore and cylinders. International Journal of Solids and Structures, 35(34-35), 4905–4930.

    Article  MATH  Google Scholar 

  16. Abousleiman, Y., Hoang, S., & Tran, M. (2010). Mechanical characterization of small shale samples subjected to fluid exposure using the inclined direct shear testing device. International Journal of Rock Mechanics and Mining Sciences, 47(3), 355–367.

    Article  Google Scholar 

  17. Ortega, J. A., Ulm, F.-J., & Abousleiman, Y. (2007). The effect of the nanogranular nature of shale on their poroelastic behavior. Acta Geotechnica, 2(3), 155–182.

    Article  Google Scholar 

  18. Ortega, A., Ulm, F.-J., & Abousleiman, Y. (2009). The nanogranular acoustic signature of shale. Geophysics, 74(3), 65–84.

    Article  Google Scholar 

  19. Allan, M., Kanitpanyacharoen, W., & Vanorio, T. (2015). A multiscale methodology for the analysis of velocity anisotropy in organic-rich shale. Geophysics, 80(4), C73–C88.

    Article  Google Scholar 

  20. Frazer, D., Abad, M. D., Krumwiede, D., Back, C. A., Khalifa, H. E., Deck, C. P., et al. (2015). Localized mechanical property assessment of SiC/SiC composite materials. Composites Part A: Applied Science & Manufacturing, 70, 93–101.

    Article  Google Scholar 

  21. Abousleiman, Y. N., Hull, K. L., Han, Y., Al-Muntasheri, G., Hosemann, P., Parker, S., et al. (2016). The granular and polymer composite nature of kerogen-rich shale. Acta Geotechnica. doi:10.1007/s11440-016-0435-y.

    Google Scholar 

  22. Kelemen, S. R., Walters, C. C., Ertas, D., Kwiatek, L. M., & Curry, D. J. (2006). Petroleum expulsion part 2. Organic matter type and maturity effects on kerogen swelling by solvents and thermodynamic parameters for kerogen from regular solution theory. Energy & Fuels, 20(1), 301–308.

    Article  Google Scholar 

  23. Passey, Q. R., Bohacs, K. M., Esch, W. L., Klimentidis, R., & Sinha, S. (2010). From oil-prone source rock to gas-producing shale reservoir—geologic and petrophysical characterization of unconventional shale gas reservoirs. CPS/SPE International Oil & Gas Conference & Exhibition in China, Beijing, 8–10 June.

    Google Scholar 

  24. Abousleiman, Y., Tran, M., Hoang, S., Bobko, C., Ortega, J. A., Ulm, F. -J. (2007). Geomechanics field and lab characterization of Woodford shale: The next gas play. SPE Annual Technical Conference, Society of Petroleum Engineers, Anaheim, CA, 11–14 November.

    Google Scholar 

  25. Abousleiman, Y., Tran, M., Hoang, S., Ortega, J. A., & Ulm, F. -J. (2009) GeoMechanics field characterization of the two prolific U.S. mid-west gas plays with advanced wire-line logging tools. SPE Annual Technical Conference, New Orleans, Louisiana, 4–7 October.

    Google Scholar 

  26. Bennett, K. C., Berla, L. A., Nix, W. D., & Borja, R. I. (2015). Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales. Acta Geotechnica, 10, 1–14.

    Article  Google Scholar 

  27. Abousleiman, Y., Tran, M., Hoang, S., Ulm, F. -J., Ortega, J. A., & Bobko, C. (2013). Method of predicting mechanical properties of rocks using mineral compositions provided by in-situ logging tools. U.S. Patent: 8,380,437.

    Google Scholar 

  28. Sierra, R., Tran, M. H., Abousleiman, Y. N., & Slatt, R. M. (2011). Woodford shale mechanical properties and the impacts of lithofacies. 44th U.S. Rock Mechanics Symposium and 5th U.S. Canada Rock Mechanics Symposium, Salt Lake City, Utah, 27–30 June.

    Google Scholar 

  29. Slatt, R., & Abousleiman, Y. (2011). Merging sequence stratigraphy and geomechanics for unconventional gas shales. The Leading Edge, 30(3), 274–282.

    Article  Google Scholar 

  30. Maio, D. D., & Roberts, S. G. (2005). Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams. Journal of Materials Research, 20, 299–302.

    Article  Google Scholar 

  31. Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564–1583.

    Article  Google Scholar 

  32. Oliver, W. C., & Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 19(1), 3–20.

    Article  Google Scholar 

  33. Delafargue, A., & Ulm, F.-J. (2004). Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters. Journal of Solids and Structures, 41(26), 7351–7360.

    Article  MATH  Google Scholar 

  34. Chen, S. H., & Feng, B. (2011). Size effect in micro-scale cantilever beam bending. Acta Mechanica, 219, 291–307.

    Article  MATH  Google Scholar 

  35. Bazant, Z. P., & Oh, B. H. (1984). Deformation of progressively cracking reinforced concrete beams. ACI Journal, 81(3), 268–278.

    Google Scholar 

  36. Bhandari, A., Han, J., & Parsons, R. L. (2015). Two-dimensional DEM analysis of behavior of geogrid-reinforced uniform granular bases under a vertical cyclic load. Acta Geotechnica, 10, 469–480.

    Article  Google Scholar 

  37. Newman, D. A., & Bennett, D. G. (1990). The effect of specimen size and stress rate for the Brazilian test—a statistical analysis. Rock Mechanics and Rock Engineering, 23, 123–134.

    Article  Google Scholar 

  38. Chang, S. H., Lee, C. I., & Jeon, S. (2002). Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Engineering Geology, 66, 79–97.

    Article  Google Scholar 

  39. Kuruppu, M. D. (1997). Fracture toughness measurement using chevron-notched semi-circular bend specimen. International Journal of Fracture, 86, L33–L38.

    Google Scholar 

  40. Claesson, J., & Bohloli, B. (2002). Brazilian test: Stress field and tensile strength of anisotropic rocks using analytical solution. International Journal of Rock Mechanics and Mining Sciences, 39, 991–1004.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Aramco for allowing the publication of this work. The second author would like to specially acknowledge the GeoMechanics Gas Shale Consortium at the integrated Poromechanics Institute, University of Oklahoma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younane N. Abousleiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hull, K.L., Abousleiman, Y.N. (2016). Insights on the REV of Source Shale from Nano- and Micromechanics. In: Jin, C., Cusatis, G. (eds) New Frontiers in Oil and Gas Exploration. Springer, Cham. https://doi.org/10.1007/978-3-319-40124-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40124-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40122-5

  • Online ISBN: 978-3-319-40124-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics