Advertisement

The Engineering Perspective

  • Giovanni BiglinoEmail author
  • Silvia Schievano
  • Tain-Yen Hsia
  • Andrew M. Taylor
Chapter

Abstract

Experimental and computational models can provide insight into complex congenital heart defects, including single ventricle physiology, with the advantage of performing parametric studies [11–14]. Numerical simulations of the hybrid procedure for palliation of hypoplastic left heart syndrome (HLHS) are feasible, and can provide valuable understanding, such as variations in systemic and cerebral oxygen delivery or changes in ventricular energetics comparing the hybrid approach vs. the traditional Norwood procedure.

References

  1. 1.
    Xenos M, Karakitsos D, Labropoulos N, Tassiopoulos A, Bilfinger TV, Bluestein D. Comparative study of flow in right-sided and left-sided aortas: numerical simulations in patient-based models. Comput Methods Biomech Biomed Engin. 2015;18(4):414–25.CrossRefPubMedGoogle Scholar
  2. 2.
    DeCampli WM, Argueta-Morales IR, Divo E, Kassab AJ. Computational fluid dynamics in congenital heart disease. Cardiol Young. 2012;22(6):800–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Ladisa Jr JF, Taylor CA, Feinstein JA. Aortic coarctation: recent developments in experimental and computational methods to assess treatments for this simple condition. Prog Pediatr Cardiol. 2010;30(1):45–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Celestin C, Guillot M, Ross-Ascuitto N, Ascuitto R. Computational fluid dynamics characterization of blood flow in central aorta to pulmonary artery connections: importance of shunt angulation as a determinant of shear stress-induced thrombosis. Pediatr Cardiol. 2015;36(3):600–15.CrossRefPubMedGoogle Scholar
  5. 5.
    Goubergrits L, Riesenkampff E, Yevtushenko P, Schaller J, Kertzscher U, Hennemuth A, Berger F, Schubert S, Kuehne T. MRI-based computational fluid dynamics for diagnosis and treatment prediction: clinical validation study in patients with coarctation of aorta. J Magn Reson Imaging. 2015;41(4):909–16.CrossRefPubMedGoogle Scholar
  6. 6.
    Slesnick TC, Yoganathan AP. Computational modeling of Fontan physiology: at the crossroads of pediatric cardiology and biomedical engineering. Int J Cardiovasc Imaging. 2014;30(6):1073–84.CrossRefPubMedGoogle Scholar
  7. 7.
    Bossers SS, Cibis M, Gijsen FJ, Schokking M, Strengers JL, Verhaart RF, Moelker A, Wentzel JJ, Helbing WA. Computational fluid dynamics in Fontan patients to evaluate power loss during simulated exercise. Heart. 2014;100(9):696–701.CrossRefPubMedGoogle Scholar
  8. 8.
    Haggerty CM, Restrepo M, Tang E, de Zélicourt DA, Sundareswaran KS, Mirabella L, Bethel J, Whitehead KK, Fogel MA, Yoganathan AP. Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis. J Thorac Cardiovasc Surg. 2014;148(4):1481–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Corsini C, Baker C, Kung E, Schievano S, Arbia G, Baretta A, Biglino G, Migliavacca F, Dubini G, Pennati G, Marsden A, Vignon-Clementel I, Taylor A, Hsia TY, Dorfman A; Modeling of Congenital Hearts Alliance (MOCHA) Investigators. An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Comput Methods Biomech Biomed Engin. 2014;17(14):1572–89Google Scholar
  10. 10.
    de Vecchi A, Nordsletten DA, Remme EW, Bellsham-Revell H, Greil G, Simpson JM, Razavi R, Smith NP. Inflow typology and ventricular geometry determine efficiency of filling in the hypoplastic left heart. Ann Thorac Surg. 2012;94(5):1562–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Pekkan K, Dasi LP, Nourparvar P, Yerneni S, Tobita K, Fogel MA, Keller B, Yoganathan A. In vitro hemodynamic investigation of the embryonic aortic arch at late gestation. J Biomech. 2008;41(8):1697–706.CrossRefPubMedGoogle Scholar
  12. 12.
    Dubini G, de Leval MR, Pietrabissa R, Montevecchi FM, Fumero R. A numerical fluid mechanical study of repaired congenital heart defects. Application to the total cavopulmonary connection. J Biomech. 1996;29(1):111–21.CrossRefPubMedGoogle Scholar
  13. 13.
    Bove EL, de Leval MR, Migliavacca F, Guadagni G, Dubini G. Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2003;126(4):1040–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Migliavacca F, Pennati G, Dubini G, Fumero R, Pietrabissa R, Urcelay G, Bove EL, Hsia TY, de Leval MR. Modeling of the Norwood circulation: effects of shunt size, vascular resistances, and heart rate. Am J Physiol Heart Circ Physiol. 2001;280(5):H2076–86.PubMedGoogle Scholar
  15. 15.
    Hsia TY, Cosentino D, Corsini C, Pennati G, Dubini G, Migliavacca F; Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical Norwood palliations for hypoplastic left heart syndrome. Circulation. 2011;Sep 13;124 Suppl 11:S204–10.Google Scholar
  16. 16.
    Corsini C, Cosentino D, Pennati G, Dubini G, Hsia TY, Migliavacca F. Multiscale models of the hybrid palliation for hypoplastic left heart syndrome. J Biomech. 2011;44(4):767–70.CrossRefPubMedGoogle Scholar
  17. 17.
    Baker CE, Corsini C, Cosentino D, Dubini G, Pennati G, Migliavacca F, Hsia TY; Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Effects of pulmonary artery banding and retrograde aortic arch obstruction on the hybrid palliation of hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2013;146(6):1341–8.Google Scholar
  18. 18.
    Ceballos A, Argueta-Morales IR, Divo E, Osorio R, Caldarone CA, Kassab AJ, Decampli WM. Computational analysis of hybrid Norwood circulation with distal aortic arch obstruction and reverse Blalock-Taussig shunt. Ann Thorac Surg. 2012;94(5):1540–50.CrossRefPubMedGoogle Scholar
  19. 19.
    Shimizu S, Kawada T, Une D, Shishido T, Kamiya A, Sano S, Sugimachi M. Hybrid stage I palliation for hypoplastic left heart syndrome has no advantage on ventricular energetics: a theoretical analysis. Heart Vessels. 2014 Nov 29. [Epub ahead of print].Google Scholar
  20. 20.
    Moghadam ME, Migliavacca F, Vignon-Clementel IE, Hsia TY, Marsden AL; Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Optimization of shunt placement for the Norwood surgery using multi-domain modeling. J Biomech Eng. 2012;134(5):051002.Google Scholar
  21. 21.
    Marsden AL, Bernstein AJ, Reddy VM, Shadden SC, Spilker RL, Chan FP, Taylor CA, Feinstein JA. Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J Thorac Cardiovasc Surg. 2009;137(2):394–403.e2Google Scholar
  22. 22.
    Yang W, Vignon-Clementel IE, Troianowski G, Reddy VM, Feinstein JA, Marsden AL. Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: a case series computational fluid dynamics study. J Thorac Cardiovasc Surg. 2012;143(5):1086–97.CrossRefPubMedGoogle Scholar
  23. 23.
    Yang W, Chan FP, Reddy VM, Marsden AL, Feinstein JA. Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure. J Thorac Cardiovasc Surg. 2015;149(1):247–55.CrossRefPubMedGoogle Scholar
  24. 24.
    Young A, Gourlay T, McKee S, Danton MH. Computational modelling of the hybrid procedure in hypoplastic left heart syndrome: a comparison of zero-dimensional and three-dimensional approach. Med Eng Phys. 2014;36(11):1549–53.CrossRefPubMedGoogle Scholar
  25. 25.
    Mansi T, Voigt I, Leonardi B, Pennec X, Durrleman S, Sermesant M, Delingette H, Taylor AM, Boudjemline Y, Pongiglione G, Ayache N. A statistical model for quantification and prediction of cardiac remodelling: application to tetralogy of Fallot. IEEE Trans Med Imaging. 2011;30(9):1605–16.CrossRefPubMedGoogle Scholar
  26. 26.
    Biglino G, Corsini C, Schievano S, Dubini G, Giardini A, Hsia TY, Pennati G, Taylor AM; Mocha Collaborative Group. Computational models of aortic coarctation in hypoplastic left heart syndrome: considerations on validation of a detailed 3D model. Int J Artif Organs. 2014;37(5):371–81.Google Scholar
  27. 27.
    Biglino G, Giardini A, Baker C, Figliola RS, Hsia TY, Taylor AM, Schievano S; MOCHA Collaborative Group. In vitro study of the Norwood palliation: a patient-specific mock circulatory system. ASAIO J. 2012;58(1):25–31.Google Scholar
  28. 28.
    Biglino G, Giardini A, Baker C, Figliola RS, Hsia TY, Taylor AM, Schievano S; MOCHA Collaborative Group. Implementing the Sano modification in an experimental model of first-stage palliation of hypoplastic left heart syndrome. ASAIO J. 2013;59(1):86–9.Google Scholar
  29. 29.
    Biglino G, Verschueren P, Zegels R, Taylor AM, Schievano S. Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing. J Cardiovasc Magn Reson. 2013;15:2.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Giovanni Biglino
    • 1
    Email author
  • Silvia Schievano
    • 1
  • Tain-Yen Hsia
    • 1
  • Andrew M. Taylor
    • 1
  1. 1.Institute of Cardiovascular ScienceUniversity College London & Cardiorespiratory Unit, Great Ormond Street Hospital for Children, NHS Foundation TrustLondonUK

Personalised recommendations