Skip to main content

Production of Clinical-Grade Mesenchymal Stem Cells

  • Chapter
  • First Online:
  • 912 Accesses

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Recent clinical applications of stem cells have demonstrated novel therapies for chronic diseases and certain kinds of cancers. The first clinical case was treated with hematopoietic stem cells over 50 years ago. Subsequently, mesenchymal stem cells (MSCs) have been clinically applied to various diseases. Furthermore, induced pluripotent stem cells were first clinically used in the last year. Some reports suggest that clinical applications of stem cells will increase from 2017 to 2020. One important requirement for the clinical usage of stem cells is the production of stem cells. The quality of stem cells significantly affects the treatment efficiency. This chapter presents some guidelines for MSC production according to good manufacturing practice (GMP) that helps to maintain the quality of stem cells from batch to batch as well as the clinical satisfaction. Because of the advantages of MSCs, these cells may become the most popular type of stem cells for clinical applications in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ardjomandi N, Duttenhoefer F, Xavier S, Oshima T, Kuenz A, Sauerbier S (2015) In vivo comparison of hard tissue regeneration with ovine mesenchymal stem cells processed with either the FICOLL method or the BMAC method. J Craniomaxillofac Surg 43:1177–1183

    Article  CAS  PubMed  Google Scholar 

  • Bartosh TJ, Ylostalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, Lee RH, Choi H, Prockop DJ (2010) Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A 107:13724–13729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berninger MT, Wexel G, Rummeny EJ, Imhoff AB, Anton M, Henning TD, Vogt S (2013) Treatment of osteochondral defects in the rabbit’s knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. J Vis Exp, e4423

    Google Scholar 

  • Bigot N, Mouche A, Preti M, Loisel S, Renoud ML, Le Guevel R, Sensebe L, Tarte K, Pedeux R (2015) Hypoxia differentially modulates the genomic stability of clinical-grade ADSCs and BM-MSCs in long-term culture. Stem Cells 33(12):3608–20

    Google Scholar 

  • Cardoso TC, Ferrari HF, Garcia AF, Novais JB, Silva-Frade C, Ferrarezi MC, Andrade AL, Gameiro R (2012) Isolation and characterization of Wharton’s jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system. BMC Biotechnol 12:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chase LG, Lakshmipathy U, Solchaga LA, Rao MS, Vemuri MC (2010) A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Res Ther 1:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen G, Yue A, Ruan Z, Yin Y, Wang R, Ren Y, Zhu L (2014a) Human umbilical cord-derived mesenchymal stem cells do not undergo malignant transformation during long-term culturing in serum-free medium. PLoS One 9, e98565

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen G, Yue A, Ruan Z, Yin Y, Wang R, Ren Y, Zhu L (2014b) Monitoring the biology stability of human umbilical cord-derived mesenchymal stem cells during long-term culture in serum-free medium. Cell Tissue Bank 15:513–521

    Article  CAS  PubMed  Google Scholar 

  • Cholewa D, Stiehl T, Schellenberg A, Bokermann G, Joussen S, Koch C, Walenda T, Pallua N, Marciniak-Czochra A, Suschek CV et al (2011) Expansion of adipose mesenchymal stromal cells is affected by human platelet lysate and plating density. Cell Transplant 20:1409–1422

    Article  PubMed  Google Scholar 

  • de la Fuente R, Bernad A, Garcia-Castro J, Martin MC, Cigudosa JC (2010) Retraction: spontaneous human adult stem cell transformation. Cancer Res 70:6682

    Article  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Estrada JC, Albo C, Benguria A, Dopazo A, Lopez-Romero P, Carrera-Quintanar L, Roche E, Clemente EP, Enriquez JA, Bernad A et al (2012) Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Differ 19:743–755

    Article  CAS  PubMed  Google Scholar 

  • Fekete N, Gadelorge M, Furst D, Maurer C, Dausend J, Fleury-Cappellesso S, Mailander V, Lotfi R, Ignatius A, Sensebe L et al (2012) Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy 14:540–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grisendi G, Anneren C, Cafarelli L, Sternieri R, Veronesi E, Cervo GL, Luminari S, Maur M, Frassoldati A, Palazzi G et al (2010) GMP-manufactured density gradient media for optimized mesenchymal stromal/stem cell isolation and expansion. Cytotherapy 12:466–477

    Article  CAS  PubMed  Google Scholar 

  • Gruia AT, Suciu M, Barbu-Tudoran L, Azghadi SM, Cristea MI, Nica DV, Vaduva A, Muntean D, Mic AA, Mic FA (2015). Mesenchymal stromal cells differentiating to adipocytes accumulate autophagic vesicles instead of functional lipid droplets. J Cell Physiol 231(4):863–75.

    Google Scholar 

  • Guan T, Chen XL, Wei YJ, Lai Y, Xie LY, Liu ZY, Zhang XM, Liu HQ, Zhang JJ, Xie XY et al (2012) Isolation and biological characterization of human amniotic fluid-derived stem cells. Sichuan Da Xue Xue Bao Yi Xue Ban 43:15–18

    CAS  PubMed  Google Scholar 

  • Guo L, Zhou Y, Wang S, Wu Y (2014) Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids. J Cell Mol Med 18:2009–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hervy M, Weber JL, Pecheul M, Dolley-Sonneville P, Henry D, Zhou Y, Melkoumian Z (2014) Long term expansion of bone marrow-derived hMSCs on novel synthetic microcarriers in xeno-free, defined conditions. PLoS One 9, e92120

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong J, Yun J, Kim H, Kwon S-M (2015) Three-dimensional culture of mesenchymal stem cells. Tissue Eng Regen Med 12:211–221

    Article  CAS  Google Scholar 

  • Hung SP, Ho JH, Shih YR, Lo T, Lee OK (2012) Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells. J Orthop Res 30:260–266

    Article  PubMed  Google Scholar 

  • Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasten P, Vogel J, Beyen I, Weiss S, Niemeyer P, Leo A, Luginbuhl R (2008) Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference. J Biomater Appl 23:169–188

    Article  CAS  PubMed  Google Scholar 

  • Larsen S, Lewis ID (2011) Potential therapeutic applications of mesenchymal stromal cells. Pathology 43:592–604

    Article  CAS  PubMed  Google Scholar 

  • Lee HM, Joo BS, Lee CH, Kim HY, Ock JH, Lee YS (2015) Effect of Glucagon-like Peptide-1 on the differentiation of adipose-derived stem cells into osteoblasts and adipocytes. J Menopausal Med 21:93–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H (2013) Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med 2:455–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Montespan F, Deschaseaux F, Sensebe L, Carosella ED, Rouas-Freiss N (2014) Osteodifferentiated mesenchymal stem cells from bone marrow and adipose tissue express HLA-G and display immunomodulatory properties in HLA-mismatched settings: implications in bone repair therapy. J Immunol Res 2014:230346

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira PH, Boura JS, Abecasis MM, Gimble JM, da Silva CL, Cabral JM (2012) Impact of hypoxia and long-term cultivation on the genomic stability and mitochondrial performance of ex vivo expanded human stem/stromal cells. Stem Cell Res 9:225–236

    Article  CAS  PubMed  Google Scholar 

  • Perdisa F, Gostynska N, Roffi A, Filardo G, Marcacci M, Kon E (2015) Adipose-derived mesenchymal stem cells for the treatment of articular cartilage: a systematic review on preclinical and clinical evidence. Stem Cells Int 2015:597652

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierini M, Dozza B, Lucarelli E, Tazzari PL, Ricci F, Remondini D, di Bella C, Giannini S, Donati D (2012) Efficient isolation and enrichment of mesenchymal stem cells from bone marrow. Cytotherapy 14:686–693

    Article  CAS  PubMed  Google Scholar 

  • Rojewski MT, Fekete N, Baila S, Nguyen K, Furst D, Antwiler D, Dausend J, Kreja L, Ignatius A, Sensebe L et al (2013) GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device quantum cell expansion system. Cell Transplant 22:1981–2000

    Article  PubMed  Google Scholar 

  • Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, Mysliwietz J, Tonn JC, Goldbrunner R, Lonning PE et al (2009) Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 69:5331–5339

    Article  CAS  PubMed  Google Scholar 

  • Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3039

    CAS  PubMed  Google Scholar 

  • Saeidi M, Masoud A, Shakiba Y, Hadjati J, Mohyeddin Bonab M, Nicknam MH, Latifpour M, Nikbin B (2013) Immunomodulatory effects of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells. Iran J Allergy Asthma Immunol 12:37–49

    PubMed  Google Scholar 

  • Schallmoser K, Bartmann C, Rohde E, Bork S, Guelly C, Obenauf AC, Reinisch A, Horn P, Ho AD, Strunk D et al (2010) Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica 95:867–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao J, Zhang W, Yang T (2015) Using mesenchymal stem cells as a therapy for bone regeneration and repairing. Biol Res 48:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Squillaro T, Peluso G, Galderisi U (2015) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25(5):829–48.

    Google Scholar 

  • Suchanek J, Soukup T, Ivancakova R, Karbanova J, Hubkova V, Pytlik R, Kucerova L (2007) Human dental pulp stem cells—isolation and long term cultivation. Acta Medica (Hradec Kralove) 50:195–201

    Google Scholar 

  • Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H, Tchirkov A, Rouard H, Henry C, Splingard M et al (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115:1549–1553

    Article  CAS  PubMed  Google Scholar 

  • Torsvik A, Rosland GV, Svendsen A, Molven A, Immervoll H, McCormack E, Lonning PE, Primon M, Sobala E, Tonn JC et al (2010) Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track—letter. Cancer Res 70:6393–6396

    Article  CAS  PubMed  Google Scholar 

  • Van Pham P, Bui KH, Ngo DQ, Vu NB, Truong NH, Phan NL, Le DM, Duong TD, Nguyen TD, Le VT et al (2013) Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage. Stem Cell Res Ther 4:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Huso DL, Harrington J, Kellner J, Jeong DK, Turney J, McNiece IK (2005) Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 7:509–519

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang Z, Chi Y, Zhang Q, Xu F, Yang Z, Meng L, Yang S, Yan S, Mao A et al (2013) Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis 4, e950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise JK, Alford AI, Goldstein SA, Stegemann JP (2014) Comparison of uncultured marrow mononuclear cells and culture-expanded mesenchymal stem cells in 3D collagen-chitosan microbeads for orthopedic tissue engineering. Tissue Eng Part A 20:210–224

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Van Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Van Pham, P., Vu, N.B. (2016). Production of Clinical-Grade Mesenchymal Stem Cells. In: Pham, P. (eds) Stem Cell Processing . Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-40073-0_6

Download citation

Publish with us

Policies and ethics