Skip to main content

Basics and Advances of Quantitative PET Imaging

  • Chapter
  • First Online:
Basic Science of PET Imaging

Abstract

Positron emission tomography (PET) has been enjoying outstanding quantitative features since its inception in diagnostic clinical imaging. These capabilities have served the evolution and diagnostic performance of PET in many circumstances including research and development as well as clinical routines. However, this has been made with extensive efforts exerted on technical, physical, and instrumental levels. Quantitative PET can be very simple but also sometimes need to be very complicated and cumbersome. This depends heavily on the purpose of the imaging task. Static and dynamic PET are the two different modes of data acquisition from which the relevant type of information is extracted and physiologically interpreted. The most commonly used form of data quantitation in PET is the standardized uptake value (SUV) that may take several forms. This later quantitative index, despite being simple to calculate showing effectiveness in a number of malignancies, is prone to many technical and biological errors if not properly adjusted. All of the above have been reviewed in this chapter along with other new emerging volumetric and disease burden quantitative metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  CAS  PubMed  Google Scholar 

  2. Warburg O, Posener K, Negelein E. Über den Stoffwechsel der Carcinomzelle. Biochem Z. 1924;152:309–44.

    CAS  Google Scholar 

  3. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pauwels EK, Ribeiro MJ, Stoot JH, et al. FDG accumulation and tumor biology. Nucl Med Biol. 1998;25:317–22.

    Article  CAS  PubMed  Google Scholar 

  5. Hricak H. Oncologic imaging: a guiding hand of personalized cancer care. Radiology. 2011;259:633–40.

    Article  PubMed  Google Scholar 

  6. Vriens D, Visser EP, de Geus-Oei LF, Oyen WJ. Methodological considerations in quantification of oncological FDG PET studies. Eur J Nucl Med Mol Imaging. 2009;37:1408–25.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bentourkia M. Tracer kinetic modeling: methodology and applications. In: Khalil MM, editor. Basic sciences of nuclear medicine. Berlin/Heidelberg: Springer; 2011.

    Google Scholar 

  8. Kjell E. Tracer kinetic modeling: basics and concepts. In: Khalil MM, editor. Basic sciences of nuclear medicine. Berlin/Heidelberg: Springer; 2011.

    Google Scholar 

  9. Kostakoglu L, Gallamini A. Interim 18F-FDG PET in Hodgkin lymphoma: would PET-adapted clinical trials lead to a paradigm shift? J Nucl Med. 2013;54:1082–93.

    Article  CAS  PubMed  Google Scholar 

  10. Cistaro A, Quartuccio N, Mojtahedi A, et al. Prediction of 2 years-survival in patients with stage I and II non-small cell lung cancer utilizing (18)F-FDG PET/CT SUV quantification. Radiol Oncol. 2013;47:219–23.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tomasi G, Turkheimer F, Aboagye E. Importance of quantification for the analysis of PET data in oncology: review of current methods and trends for the future. Mol Imaging Biol. 2011;14:131–46.

    Article  Google Scholar 

  12. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50 Suppl 1:11S–20.

    Article  CAS  PubMed  Google Scholar 

  13. Hess S, Blomberg B, Rakheja R, et al. A brief overview of novel approaches to FDG PET imaging and quantification. Clini Transl Imag. 2014;2:187–98.

    Article  Google Scholar 

  14. Gholami S, Salavati A, Houshmand S, Werner TJ, Alavi A. Assessment of atherosclerosis in large vessel walls: a comprehensive review of FDG-PET/CT image acquisition protocols and methods for uptake quantification. J Nucl Cardiol. 2015;22:468–79.

    Article  PubMed  Google Scholar 

  15. von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and future directions. Radiology. 2006;238:405–22.

    Article  Google Scholar 

  16. Antoch G, Freudenberg LS, Egelhof T, et al. Focal tracer uptake: a potential artifact in contrast-enhanced dual-modality PET/CT scans. J Nucl Med. 2002;43:1339–42.

    PubMed  Google Scholar 

  17. Brechtel K, Klein M, Vogel M, et al. Optimized contrast-enhanced CT protocols for diagnostic whole-body 18F-FDG PET/CT: technical aspects of single-phase versus multiphase CT imaging. J Nucl Med. 2006;47:470–6.

    PubMed  Google Scholar 

  18. Varnas K, Varrone A, Farde L. Modeling of PET data in CNS drug discovery and development. J Pharmacokinet Pharmacodyn. 2013;40:267–79.

    Article  PubMed  CAS  Google Scholar 

  19. Klein R, Beanlands RS, deKemp RA. Quantification of myocardial blood flow and flow reserve: technical aspects. J Nucl Cardiol. 2010;17:555–70.

    Article  PubMed  Google Scholar 

  20. Dimitrakopoulou-Strauss A, Pan L, Strauss LG. Parametric imaging: a promising approach for the evaluation of dynamic PET-18F-FDG studies – the DKFZ experience. Hell J Nucl Med. 2010;13:18–22.

    PubMed  Google Scholar 

  21. Muzi M, O’Sullivan F, Mankoff DA, et al. Quantitative assessment of dynamic PET imaging data in cancer imaging. Magn Reson Imaging. 2012;30:1203–15.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jones T, Rabiner EA. The development, past achievements, and future directions of brain PET. J Cereb Blood Flow Metab. 2012;32:1426–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M. PET kinetic analysis – compartmental model. Ann Nucl Med. 2006;20:583–8.

    Article  CAS  PubMed  Google Scholar 

  24. Karakatsanis NA, Lodge MA, Tahari AK, et al. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Biol. 2013;58:7391–418.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Graham MM, Peterson LM, Hayward RM. Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol. 2000;27:647–55.

    Article  CAS  PubMed  Google Scholar 

  26. Kotasidis F, Tsoumpas C, Rahmim A. Advanced kinetic modelling strategies: towards adoption in clinical PET imaging. Clini Trans Imag. 2014;2:219–37.

    Article  Google Scholar 

  27. Lammertsma A, Boellaard R. The need for quantitative PET in multicentre studies. Clini Transl Imag. 2014;2:277–80.

    Article  Google Scholar 

  28. Hamberg LM, Hunter GJ, Alpert NM, et al. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med. 1994;35:1308–12.

    CAS  PubMed  Google Scholar 

  29. Boellaard R, Delgado-Bolton R, Oyen WJ, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.

    Article  CAS  PubMed  Google Scholar 

  30. Boellaard R, O’Doherty MJ, Weber WA, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37:181–200.

    Article  PubMed  Google Scholar 

  31. Fukukita H, Suzuki K, Matsumoto K, et al. Japanese guideline for the oncology FDG-PET/CT data acquisition protocol: synopsis of Version 2.0. Ann Nucl Med. 2014;28:693–705.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gupta N, Gill H, Graeber G, et al. Dynamic positron emission tomography with F-18 fluorodeoxyglucose imaging in differentiation of benign from malignant lung/mediastinal lesions. Chest. 1998;114:1105–11.

    Article  CAS  PubMed  Google Scholar 

  33. Karakatsanis NA, Lodge MA, Zhou Y, Wahl RL, Rahmim A. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation. Phys Med Biol. 2013;58:7419–45.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kazama T, Faria SC, Varavithya V, et al. FDG PET in the evaluation of treatment for lymphoma: clinical usefulness and pitfalls. Radiographics. 2005;25:191–207.

    Article  PubMed  Google Scholar 

  35. Hustinx R, Smith RJ, Benard F, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med. 1999;26:1345–8.

    Article  CAS  PubMed  Google Scholar 

  36. Sahlmann CO, Siefker U, Lehmann K, Meller J. Dual time point 2-[18F]fluoro-2′-deoxyglucose positron emission tomography in chronic bacterial osteomyelitis. Nucl Med Commun. 2004;25:819–23.

    Article  PubMed  Google Scholar 

  37. Tian R, Su M, Tian Y, et al. Dual-time point PET/CT with F-18 FDG for the differentiation of malignant and benign bone lesions. Skeletal Radiol. 2009;38:451–8.

    Article  PubMed  Google Scholar 

  38. Shimizu K, Okita R, Saisho S, et al. Clinical significance of dual-time-point 18F-FDG PET imaging in resectable non-small cell lung cancer. Ann Nucl Med. 2015;29:854–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Houshmand S, Salavati A, Hess S, et al. An update on novel quantitative techniques in the context of evolving whole-body PET imaging. PET Clini. 2015;10:45–58.

    Article  Google Scholar 

  40. Carlier T, Bailly C. State-of-the-art and recent advances in quantification for therapeutic follow-up in oncology using PET. Front Med (Lausanne). 2015;2:18.

    Google Scholar 

  41. Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ. A review on segmentation of positron emission tomography images. Comput Biol Med. 2014;50:76–96.

    Article  PubMed  Google Scholar 

  42. Zaidi H, El Naqa I. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging. 2010;37:2165–87.

    Article  PubMed  Google Scholar 

  43. Tylski P, Stute S, Grotus N, et al. Comparative assessment of methods for estimating tumor volume and standardized uptake value in (18)F-FDG PET. J Nucl Med. 2010;51:268–76.

    Article  PubMed  Google Scholar 

  44. Boellaard R, Oyen WJ, Hoekstra CJ, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging. 2008;35:2320–33.

    Article  PubMed  Google Scholar 

  45. Keyes Jr JW. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–9.

    PubMed  Google Scholar 

  46. Huang SC. Anatomy of SUV. Standardized uptake value. Nucl Med Biol. 2000;27:643–6.

    Article  CAS  PubMed  Google Scholar 

  47. Lodge MA, Chaudhry MA, Wahl RL. Noise considerations for PET quantification using maximum and peak standardized uptake value. J Nucl Med. 2012;53:1041–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45:1519–27.

    PubMed  Google Scholar 

  49. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vanderhoek M, Perlman SB, Jeraj R. Impact of the definition of peak standardized uptake value on quantification of treatment response. J Nucl Med. 2012;53:4–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brendle C, Kupferschlager J, Nikolaou K, et al. Is the standard uptake value (SUV) appropriate for quantification in clinical PET imaging? – variability induced by different SUV measurements and varying reconstruction methods. Eur J Radiol. 2014;84:158–62.

    Article  PubMed  Google Scholar 

  52. Weber WA. Assessing tumor response to therapy. J Nucl Med. 2009;50 Suppl 1:1S–0.

    Article  CAS  PubMed  Google Scholar 

  53. Manohar K, Mittal BR, Bhattacharya A, Malhotra P, Varma S. Prognostic value of quantitative parameters derived on initial staging 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with high-grade non-Hodgkin’s lymphoma. Nucl Med Commun. 2012;33:974–81.

    Article  CAS  PubMed  Google Scholar 

  54. Chung HH, Kwon HW, Kang KW, et al. Prognostic value of preoperative metabolic tumor volume and total lesion glycolysis in patients with epithelial ovarian cancer. Ann Surg Oncol. 2011;19:1966–72.

    Article  PubMed  Google Scholar 

  55. Liao S, Penney BC, Wroblewski K, et al. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39:27–38.

    Article  CAS  PubMed  Google Scholar 

  56. Alavi A, Newberg AB, Souder E, Berlin JA. Quantitative analysis of PET and MRI data in normal aging and Alzheimer’s disease: atrophy weighted total brain metabolism and absolute whole brain metabolism as reliable discriminators. J Nucl Med. 1993;34:1681–7.

    CAS  PubMed  Google Scholar 

  57. Bural GG, Torigian DA, Chamroonrat W, et al. Quantitative assessment of the atherosclerotic burden of the aorta by combined FDG-PET and CT image analysis: a new concept. Nucl Med Biol. 2006;33:1037–43.

    Article  CAS  PubMed  Google Scholar 

  58. Park SB, Choi JY, Moon SH, et al. Prognostic value of volumetric metabolic parameters measured by [18F] fluorodeoxyglucose-positron emission tomography/computed tomography in patients with small cell lung cancer. Cancer Imaging. 2014;14:2.

    PubMed  PubMed Central  Google Scholar 

  59. Kim JW, Oh JS, Roh JL, et al. Prognostic significance of standardized uptake value and metabolic tumour volume on (1)(8)F-FDG PET/CT in oropharyngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2015;42:1353–61.

    Article  CAS  PubMed  Google Scholar 

  60. Hanamoto A, Tatsumi M, Takenaka Y, et al. Volumetric PET/CT parameters predict local response of head and neck squamous cell carcinoma to chemoradiotherapy. Cancer Med. 2014;3:1368–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Abgral R, Valette G, Robin P, et al. Prognostic evaluation of percentage variation of metabolic tumor burden calculated by dual-phase FDG PET-CT imaging in patients with head and neck cancer. Head Neck. 2016;38 Suppl 1:E600–6.

    Article  PubMed  Google Scholar 

  62. Hatt M, Le Pogam A, Visvikis D, Pradier O, Cheze Le Rest C. Impact of partial-volume effect correction on the predictive and prognostic value of baseline 18F-FDG PET images in esophageal cancer. J Nucl Med. 2012;53:12–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Beer AJ, Wieder HA, Lordick F, et al. Adenocarcinomas of esophagogastric junction: multi-detector row CT to evaluate early response to neoadjuvant chemotherapy. Radiology. 2006;239:472–80.

    Article  PubMed  Google Scholar 

  64. Larson SM, Erdi Y, Akhurst T, et al. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The visual response score and the change in total lesion glycolysis. Clini Positron Imag. 1999;2:159–71.

    Article  Google Scholar 

  65. Cook GJ, Wegner EA, Fogelman I. Pitfalls and artifacts in 18FDG PET and PET/CT oncologic imaging. Semin Nucl Med. 2004;34:122–33.

    Article  PubMed  Google Scholar 

  66. Gorospe L, Raman S, Echeveste J, et al. Whole-body PET/CT: spectrum of physiological variants, artifacts and interpretative pitfalls in cancer patients. Nucl Med Commun. 2005;26:671–87.

    Article  PubMed  Google Scholar 

  67. Mawlawi O, Pan T, Macapinlac HA. PET/CT imaging techniques, considerations, and artifacts. J Thorac Imaging. 2006;21:99–110.

    Article  PubMed  Google Scholar 

  68. Silva-Rodriguez J, Aguiar P, Sanchez M, et al. Correction for FDG PET dose extravasations: Monte Carlo validation and quantitative evaluation of patient studies. Med Phys. 2014;41:052502.

    Article  PubMed  CAS  Google Scholar 

  69. Ahmadian A, Ay MR, Bidgoli JH, Sarkar S, Zaidi H. Correction of oral contrast artifacts in CT-based attenuation correction of PET images using an automated segmentation algorithm. Eur J Nucl Med Mol Imaging. 2008;35:1812–23.

    Article  PubMed  Google Scholar 

  70. Hao R, Yuan L, Zhang N, Li C, Yang J. Brown adipose tissue: distribution and influencing factors on FDG PET/CT scan. J Pediatr Endocrinol Metab. 2012;25:233–7.

    Article  PubMed  Google Scholar 

  71. Pace L, Nicolai E, D’Amico D, et al. Determinants of physiologic 18F-FDG uptake in brown adipose tissue in sequential PET/CT examinations. Mol Imaging Biol. 2010;13:1029–35.

    Article  Google Scholar 

  72. Nehmeh SA, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med. 2008;38:167–76.

    Article  PubMed  Google Scholar 

  73. Cheng G, Alavi A, Lim E, et al. Dynamic changes of FDG uptake and clearance in normal tissues. Mol Imaging Biol. 2013;15:345–52.

    Article  PubMed  Google Scholar 

  74. Delgado Bolton RC, Mucientes Rasilla J, Perez Castejon MJ, Carreras Delgado JL. Positron emission tomography (PET) and PET-CT in renal, bladder and prostate cancer: update. Actas Urol Esp. 2009;33:11–23.

    Article  PubMed  Google Scholar 

  75. Schoder H, Larson SM. Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med. 2004;34:274–92.

    Article  PubMed  Google Scholar 

  76. Merchant S, Witney T, Aboagye E. Imaging as a pharmacodynamic and response biomarker in cancer. Clini Trans Imag. 2014;2:13–31.

    Article  Google Scholar 

  77. Zhao S, Kuge Y, Tsukamoto E, et al. Fluorodeoxyglucose uptake and glucose transporter expression in experimental inflammatory lesions and malignant tumours: effects of insulin and glucose loading. Nucl Med Commun. 2002;23:545–50.

    Article  CAS  PubMed  Google Scholar 

  78. Delbeke D, Coleman RE, Guiberteau MJ, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47:885–95.

    PubMed  Google Scholar 

  79. Young LH, Coven DL, Russell 3rd RR. Cellular and molecular regulation of cardiac glucose transport. J Nucl Cardiol. 2000;7:267–76.

    Article  CAS  PubMed  Google Scholar 

  80. Roy FN, Beaulieu S, Boucher L, Bourdeau I, Cohade C. Impact of intravenous insulin on 18F-FDG PET in diabetic cancer patients. J Nucl Med. 2009;50:178–83.

    Article  PubMed  Google Scholar 

  81. Martin J, Saleem N. 18F-FDG PET-CT scanning and diabetic patients: what to do? Nucl Med Commun. 2014;35:1197–203.

    Article  CAS  PubMed  Google Scholar 

  82. Gontier E, Fourme E, Wartski M, et al. High and typical 18F-FDG bowel uptake in patients treated with metformin. Eur J Nucl Med Mol Imaging. 2008;35:95–9.

    Article  CAS  PubMed  Google Scholar 

  83. Ozulker T, Ozulker F, Mert M, Ozpacaci T. Clearance of the high intestinal (18)F-FDG uptake associated with metformin after stopping the drug. Eur J Nucl Med Mol Imaging. 2010;37:1011–7.

    Article  PubMed  CAS  Google Scholar 

  84. Surasi DS, Bhambhvani P, Baldwin JA, Almodovar SE, O’Malley JP. (1)(8)F-FDG PET and PET/CT patient preparation: a review of the literature. J Nucl Med Technol. 2014;42:5–13.

    Article  PubMed  Google Scholar 

  85. Paquet N, Albert A, Foidart J, Hustinx R. Within-patient variability of (18)F-FDG: standardized uptake values in normal tissues. J Nucl Med. 2004;45:784–8.

    CAS  PubMed  Google Scholar 

  86. Kim CK, Gupta NC, Chandramouli B, Alavi A. Standardized uptake values of FDG: body surface area correction is preferable to body weight correction. J Nucl Med. 1994;35:164–7.

    CAS  PubMed  Google Scholar 

  87. Kim CK, Gupta NC. Dependency of standardized uptake values of fluorine-18 fluorodeoxyglucose on body size: comparison of body surface area correction and lean body mass correction. Nucl Med Commun. 1996;17:890–4.

    Article  CAS  PubMed  Google Scholar 

  88. Allen-Auerbach M, Weber WA. Measuring response with FDG-PET: methodological aspects. Oncologist. 2009;14:369–77.

    Article  PubMed  Google Scholar 

  89. Hoilund-Carlsen PF, Gerke O, Vilstrup MH, et al. PET/CT without capacity limitations: a Danish experience from a European perspective. Eur Radiol. 2011;21:1277–85.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Van den Abbeele AD. The lessons of GIST – PET and PET/CT: a new paradigm for imaging. Oncologist. 2008;13 Suppl 2:8–13.

    Article  PubMed  Google Scholar 

  91. Bollineni VR, Kramer GM, Jansma EP, Liu Y, Oyen WJ. A systematic review on [F]FLT-PET uptake as a measure of treatment response in cancer patients. Eur J Cancer. 2016;55:81–97.

    Article  CAS  PubMed  Google Scholar 

  92. Doot RK, McDonald ES, Mankoff DA. Role of PET quantitation in the monitoring of cancer response to treatment: review of approaches and human clinical trials. Clini Transl Imag. 2014;2:295–303.

    Article  Google Scholar 

  93. World, Health, Organization. WHO handbook of reporting results of cancer treatment. Geneva: World Health Organization; 1979.

    Google Scholar 

  94. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  CAS  PubMed  Google Scholar 

  95. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    Article  CAS  PubMed  Google Scholar 

  96. Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47:207–14.

    Article  CAS  PubMed  Google Scholar 

  97. Young H, Baum R, Cremerius U, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer. 1999;35:1773–82.

    Article  CAS  PubMed  Google Scholar 

  98. Skougaard K, Nielsen D, Jensen BV, Hendel HW. Comparison of EORTC criteria and PERCIST for PET/CT response evaluation of patients with metastatic colorectal cancer treated with irinotecan and cetuximab. J Nucl Med. 2013;54:1026–31.

    Article  CAS  PubMed  Google Scholar 

  99. Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 1805;2009:105–17.

    Google Scholar 

  100. Buvat I, Orhlac F, Soussan M. Tumor texture analysis in PET: where do we stand? J Nucl Med. 2015;56(11):1642–4.

    Article  CAS  PubMed  Google Scholar 

  101. Lubner MG, Stabo N, Lubner SJ, et al. CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom Imaging. 2015;40:2331–7.

    Article  PubMed  Google Scholar 

  102. Nyflot MJ, Yang F, Byrd D, et al. Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards. J Med Imag (Bellingham). 2015;2:041002.

    Article  Google Scholar 

  103. Tixier F, Le Rest CC, Hatt M, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Pyka T, Bundschuh RA, Andratschke N, et al. Textural features in pre-treatment [F18]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early stage NSCLC patients receiving primary stereotactic radiation therapy. Radiat Oncol. 2015;10:100.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pyka T, Gempt J, Hiob D, et al. Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas. Eur J Nucl Med Mol Imaging. 2016;43:133–41.

    Article  PubMed  Google Scholar 

  106. Ha S, Choi H, Cheon GJ, et al. Autoclustering of non-small cell lung carcinoma subtypes on (18)F-FDG PET using texture analysis: a preliminary result. Nucl Med Mol Imag. 2015;48:278–86.

    Article  CAS  Google Scholar 

  107. Cheng NM, Fang YH, Chang JT, et al. Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. J Nucl Med. 2013;54:1703–9.

    Article  CAS  PubMed  Google Scholar 

  108. Hatt M, Majdoub M, Vallieres M, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56:38–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy M. Khalil PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khalil, M.M. (2017). Basics and Advances of Quantitative PET Imaging. In: Khalil, M. (eds) Basic Science of PET Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-40070-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40070-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40068-6

  • Online ISBN: 978-3-319-40070-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics