Skip to main content

PET Calibration, Acceptance Testing, and Quality Control

  • Chapter
  • First Online:
Basic Science of PET Imaging
  • 3210 Accesses

Abstract

PET/CT is a routinely performed diagnostic imaging procedure. To ensure that the system is performing properly and produces images of best possible quality and quantitative accuracy, a comprehensive quality control (QC) program should be implemented. This should include a rigorous initial acceptance test of the system, performed at the time of installation. This will ensure the system performs to the manufacturer’s specifications and also serves as a reference point to which subsequent tests can be compared to as the system ages. Once in clinical use, the system should be tested on a routine basis to ensure that the system is fully operational and provides consistent image quality. To implement a successful and effective QC program, it is important to a have an understanding of the basic imaging components of the system. This chapter will describe the basic system components of a PET system and the dataflow that will aid a user in identifying potential problems. Acceptance tests and QC procedures will also be described and explained, all designed to ensure that a consistent image quality and quantitative accuracy are maintained. As will be discussed, an effective QC program can be implemented with a few relatively simple routinely performed tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dent HM, Jones WF, Casey ME. A real time digital coincidence processor for positron emission tomography. IEEE Trans Nucl Sci. 1986;33:556–9.

    Article  Google Scholar 

  2. Moses WW, Buckley S, Vu C, Peng Q, Pavlov N, Choong WS, Wu J, Jackson C. OpenPET: a flexible electronics system for radiotracer imaging. IEEE T NUCL SCI. 2010;57:2532–7.

    Article  Google Scholar 

  3. Moses WW. Recent advances and future advances in time-of-flight PET. Aip Conf Proc. 2009;1204:119–25.

    Google Scholar 

  4. Casey ME, Nutt R. A multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci. 1986;NS-33:460–3.

    Article  CAS  Google Scholar 

  5. Dahlbom M, Hoffman EJ. An evaluation of a two-dimensional array detector for high-resolution PET. IEEE Trans Med Imag. 1988;7:264–72.

    Article  CAS  Google Scholar 

  6. Hoffman EJ, Guerrero TM, Germano G, Digby WM, Dahlbom M. PET system calibration and corrections for quantitative and spatially accurate images. IEEE Trans Nucl Sci. 1989;NS-36:1108–12.

    Article  Google Scholar 

  7. Casey ME, Hoffman EJ. Quantitation in positron emission computed tomography: 7. A technique to reduce noise in accidental coincidence measurements and coincidence efficiency calibration. J Comput Assist Tomogr. 1986;10:845–50.

    Article  CAS  PubMed  Google Scholar 

  8. Casey ME, Gadagkar H, Newport D. A component based method for normalisation in volume PET. In Proc. 3rd Int. Meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine. France: Aix-les-Bains; 1995. p. 67–71.

    Google Scholar 

  9. Badawi RD, Marsden PK. Developments in component-based normalization for 3D PET. Phys Med Biol. 1999;44:571–94.

    Article  CAS  PubMed  Google Scholar 

  10. Lockhart CM, MacDonald LR, Alessio AM, McDougald WA, Doot RK, Kinahan PE. Quantifying and reducing the effect of calibration error on variability of PET/CT standardized uptake value measurements. J Nucl Med. 2011;52:218–24.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50 Suppl 1:11S–20.

    Article  CAS  PubMed  Google Scholar 

  12. Zimmerman BE, Cessna JT. Development of a traceable calibration methodology for solid (68)Ge/(68)Ga sources used as a calibration surrogate for (18)F in radionuclide activity calibrators. J Nucl Med. 2010;51:448–53.

    Article  CAS  PubMed  Google Scholar 

  13. NEMA. 2013. NEMA NU 2–2012 performance measurements of positron emission tomographs. National Electrical Manufacturers Association, Rosslyn, VA

    Google Scholar 

  14. NEMA. 2007. NEMA NU 2–2007 performance measurements of positron emission tomographs. National Electrical Manufacturers Association, Rosslyn, VA.

    Google Scholar 

  15. Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity: relating count rates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci. 1990;NS-37:783–8.

    Article  Google Scholar 

  16. Dahlbom M, Schiepers C, Czernin J. Comparison of noise equivalent count rates and image noise. IEEE T Nucl Sci. 2005;52:1386–90.

    Article  Google Scholar 

  17. Watson CC, Casey ME, Bendriem B, Carney JP, Townsend DW, Eberl S, Meikle S, Difilippo FP. Optimizing injected dose in clinical PET by accurately modeling the counting-rate response functions specific to individual patient scans. J Nucl Med. 2005;46:1825–34.

    PubMed  Google Scholar 

  18. Bailey DL, Jones T, Spinks TJ. A method for measuring the absolute sensitivity of positron emission tomographic scanners. Eur J Nucl Med. 1991;18:374–9.

    Article  CAS  PubMed  Google Scholar 

  19. Daube-Witherspoon M, Muehllehner G. Treatment of axial data in three-dimensional PET. J Nucl Med. 1987;28:1717–24.

    CAS  PubMed  Google Scholar 

  20. Melcher C, Schweitzer J. Cerium-doped lutetium oxyorthosilicate: a fast new scintillator. IEEE Trans Nucl Sci. 1992;NS-39:502–5.

    Article  Google Scholar 

  21. Watson CC, Casey ME, Eriksson L, Mulnix T, Adams D, Bendriem B. NEMA NU 2 performance tests for scanners with intrinsic radioactivity. J Nucl Med. 2004;45:822–6.

    CAS  PubMed  Google Scholar 

  22. Eriksson L, Watson CC, Wienhard K, Eriksson M, Casey ME, Knoess C, Lenox M, Burbar Z, Conti M, Bendriem B, Heiss WD, Nutt R. The ECAT HRRT: an example of NEMA scatter estimation issues for LSO-based PET systems. IEEE T NUCL SCI. 2005;52:90–4.

    Article  CAS  Google Scholar 

  23. Erdi YE, Nehmeh SA, Mulnix T, Humm JL, Watson CC. PET performance measurements for an LSO-based combined PET/CT scanner using the National Electrical Manufacturers Association NU 2–2001 standard. J Nucl Med. 2004;45:813–21.

    CAS  PubMed  Google Scholar 

  24. Karp JS, Daube-Witherspoon ME, Hoffman EJ, Lewellen TK, Links JM, Wong WH, Hichwa RD, Casey ME, Colsher JG, Hitchens RE, et al. Performance standards in positron emission tomography. J Nucl Med. 1991;32:2342–50.

    CAS  PubMed  Google Scholar 

  25. Huang SC. Anatomy of SUV. Standardized uptake value. Nuclear Med Biol. 2000;27:643–6.

    Article  CAS  Google Scholar 

  26. Dahlbom M, Reed J, Young J. Implementation of true continuous bed motion in 2-D and 3-D whole-body PET scanning. IEEE Trans Nucl Sci. 2001;NS-48:1465–9.

    Article  Google Scholar 

  27. Schlemmer HP, Pichler BJ, Krieg R, Heiss WD. An integrated MR/PET system: prospective applications. Abdom Imaging. 2009;34:668–74.

    Article  PubMed  Google Scholar 

  28. Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, Ratib O, Izquierdo-Garcia D, Fayad ZA, Shao L. Design and performance evaluation of a whole-body ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Geus-Oei LF, van der Heijden HF, Corstens FH, Oyen WJ. Predictive and prognostic value of FDG-PET in nonsmall-cell lung cancer: a systematic review. Cancer. 2007;110:1654–64.

    Article  PubMed  Google Scholar 

  30. Borst GR, Belderbos JS, Boellaard R, Comans EF, De Jaeger K, Lammertsma AA, Lebesque JV. Standardised FDG uptake: a prognostic factor for inoperable non-small cell lung cancer. Eur J Cancer. 2005;41:1533–41.

    Article  PubMed  Google Scholar 

  31. Avril NE, Weber WA. Monitoring response to treatment in patients utilizing PET. Radiol Clin North Am. 2005;43:189–204.

    Article  PubMed  Google Scholar 

  32. Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med. 2005;46:983–95.

    CAS  PubMed  Google Scholar 

  33. Larson SM, Schwartz LH. 18F-FDG PET as a candidate for “qualified biomarker”: functional assessment of treatment response in oncology. J Nucl Med. 2006;47:901–3.

    CAS  PubMed  Google Scholar 

  34. Boellaard R, O'Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, Oyen WJ, Kotzerke J, Hoekstra OS, Pruim J, Marsden PK, Tatsch K, Hoekstra CJ, Visser EP, Arends B, Verzijlbergen FJ, Zijlstra JM, Comans EF, Lammertsma AA, Paans AM, Willemsen AT, Beyer T, Bockisch A, Schaefer-Prokop C, Delbeke D, Baum RP, Chiti A, Krause BJ. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nuclear Med Mole Imaging. 2010;37:181–200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Dahlbom PhD, DABR .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dahlbom, M. (2017). PET Calibration, Acceptance Testing, and Quality Control. In: Khalil, M. (eds) Basic Science of PET Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-40070-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40070-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40068-6

  • Online ISBN: 978-3-319-40070-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics