Skip to main content

Triboelectric Nanogenerator: Vertical Contact-Separation Mode

  • Chapter
  • First Online:
Triboelectric Nanogenerators

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this chapter, the basic working principle, theoretical analysis, and several representative prototype structures of the TENG in vertical contact-separation working mode are introduced, which is the most fundamental and frequently-used mode for TENG. This working mode has facile and scalable fabrications, simple design strategy, high instantaneous output power, and easy to scale up with multiple layer integrations. The TENGs at this working mode are usually driven by an external mechanical impact, and a critical factor affecting its output voltage is the amplitude of the separation distance between the two triboelectric layers (or contact surfaces), while the output current is dictated by the speed at which the two surfaces being contacted or separated. A lot of unique structures have been developed for various purposes, such as powering portable electronics and self-powered active sensors, which will be covered in the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Zhu, C.F. Pan, W.X. Guo, C.Y. Chen, Y.S. Zhou, R.M. Yu, Z.L. Wang, Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12(9), 4960–4965 (2012)

    Article  Google Scholar 

  2. S.H. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12(12), 6339–6346 (2012)

    Article  Google Scholar 

  3. G. Zhu, Z.H. Lin, Q.S. Jing, P. Bai, C.F. Pan, Y. Yang, Y.S. Zhou, Z.L. Wang, Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13(2), 847–853 (2013)

    Article  Google Scholar 

  4. S.H. Wang, L. Lin, Y.N. Xie, Q.S. Jing, S.M. Niu, Z.L. Wang, Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 13(5), 2226–2233 (2013)

    Article  Google Scholar 

  5. Y. Yang, Y.S. Zhou, H.L. Zhang, Y. Liu, S.M. Lee, Z.L. Wang, A single-electrode based triboelectric nanogenerator as self-powered tracking system. Adv. Mater. 25(45), 6594–6601 (2013)

    Article  Google Scholar 

  6. S.H. Wang, Y.N. Xie, S.M. Niu, L. Lin, Z.L. Wang, Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26(18), 2818–2824 (2014)

    Article  Google Scholar 

  7. P. Bai, G. Zhu, Z.H. Lin, Q.S. Jing, J. Chen, G. Zhang, J. Ma, Z.L. Wang, Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7(4), 3713–3719 (2013)

    Article  Google Scholar 

  8. J. Chun, J.W. Kim, W.S. Jung, C.Y. Kang, S.W. Kim, Z.L. Wang, J.M. Baik, Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 8(10), 3006–3012 (2015)

    Article  Google Scholar 

  9. J. Henniker, Triboelectricity in Polymers. Nature 196(4853), 474 (1962)

    Article  Google Scholar 

  10. L.S. McCarty, G.M. Whitesides, Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47(12), 2188–2207 (2008)

    Article  Google Scholar 

  11. D.J. Lacks, R.M. Sankaran, Contact electrification of insulating materials. J. Phys. D Appl. Phys. 44(45), 453001 (2011)

    Article  Google Scholar 

  12. A.F. Diaz, R.M. Felix-Navarro, A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 62(4), 277–290 (2004)

    Article  Google Scholar 

  13. Y. Tada, Experimental characteristics of electret generator, using polymer film electrets. Jpn. J. Appl. Phys. 31(3), 846–851 (1992)

    Article  MathSciNet  Google Scholar 

  14. S.M. Niu, S.H. Wang, L. Lin, Y. Liu, Y.S. Zhou, Y.F. Hu, Z.L. Wang, Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576–3583 (2013)

    Article  Google Scholar 

  15. S.M. Niu, Z.L. Wang, Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 161–192 (2015)

    Article  Google Scholar 

  16. H. Fang, W.Z. Wu, J.H. Song, Z.L. Wang, Controlled growth of aligned polymer nanowires. J. Phys. Chem. C 113(38), 16571–16574 (2009)

    Article  Google Scholar 

  17. A. Crossland, P. Wyllie, L. Ran, Mechanical to electrical energy conversion in a hybrid liquid-solid dielectric electrostatic generator. J. Appl. Phys. 106(4), 044108 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Z.L., Lin, L., Chen, J., Niu, S., Zi, Y. (2016). Triboelectric Nanogenerator: Vertical Contact-Separation Mode. In: Triboelectric Nanogenerators. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-40039-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40039-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40038-9

  • Online ISBN: 978-3-319-40039-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics