Skip to main content

Self-powered Sensing for Chemical and Environmental Detection

  • Chapter
  • First Online:
  • 4628 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this chapter, we present self-powered chemical/environmental sensors, the working principle of which relies on the change of triboelectric charge density when the pretreated triboelectric surface has been assembled with certain chemical species , usually by immersing it in the aqueous solution of chemicals. Hence, variations of electric output performance (open-circuit voltage and short-circuit current) could be monitored with respect to different concentrations of chemicals. On the basis of this concept, a few original self-powered chemical and environmental sensors have been developed to detect the concentration of heavy metal ions, phenol, catechin, and UV intensity. High sensitivity and excellent selectivity has been achieved for each of these chemical/environmental sensors, indicating its potential and promising applications in building fully self-powered chemical detection and environmental monitoring systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.P. Hanna, J.F. Tyson, S. Mcintosh, Determination of total mercury in waters and urine by flow-injection atomic-absorption spectrometry procedures involving online and off-line oxidation of organomercury species. Anal. Chem. 65(5), 653–656 (1993)

    Article  Google Scholar 

  2. M. Leermakers, W. Baeyens, P. Quevauviller, M. Horvat, Mercury in environmental samples: speciation, artifacts and validation. Trac-Trend Anal. Chem. 24(5), 383–393 (2005)

    Article  Google Scholar 

  3. J.S. Lee, M.S. Han, C.A. Mirkin, Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 46(22), 4093–4096 (2007)

    Article  Google Scholar 

  4. B. Leng, L. Zou, J.B. Jiang, H. Tian, Colorimetric detection of mercuric ion (Hg(2+)) in aqueous media using chemodosimeter-functionalized gold nanoparticles. Sensor Actuat. B-Chem. 140(1), 162–169 (2009)

    Article  Google Scholar 

  5. S. Yoon, E.W. Miller, Q. He, P.H. Do, C.J. Chang, A bright and specific fluorescent sensor for mercury in water, cells, and tissue. Angew. Chem. Int. Ed. 46(35), 6658–6661 (2007)

    Article  Google Scholar 

  6. C.C. Huang, Z. Yang, K.H. Lee, H.T. Chang, Synthesis of highly fluorescent gold nanoparticles for sensing Mercury(II). Angew. Chem. Int. Ed. 46(36), 6824–6828 (2007)

    Article  Google Scholar 

  7. Z. Gu, M.X. Zhao, Y.W. Sheng, L.A. Bentolila, Y. Tang, Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay. Anal. Chem. 83(6), 2324–2329 (2011)

    Article  Google Scholar 

  8. D. Li, A. Wieckowska, I. Willner, Optical analysis of Hg(2+) ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew. Chem. Int. Ed. 47(21), 3927–3931 (2008)

    Article  Google Scholar 

  9. T. Senapati, D. Senapati, A.K. Singh, Z. Fan, R. Kanchanapally, P.C. Ray, Highly selective SERS probe for Hg(II) detection using tryptophan-protected popcorn shaped gold nanoparticles. Chem. Commun. 47(37), 10326–10328 (2011)

    Article  Google Scholar 

  10. Z.Q. Zhu, Y.Y. Su, J. Li, D. Li, J. Zhang, S.P. Song, Y. Zhao, G.X. Li, C.H. Fan, Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal. Chem. 81(18), 7660–7666 (2009)

    Article  Google Scholar 

  11. D. Wen, L. Deng, S.J. Guo, S.J. Dong, Self-powered sensor for trace Hg2+ detection. Anal. Chem. 83(10), 3968–3972 (2011)

    Article  Google Scholar 

  12. M. Lee, J. Bae, J. Lee, C.S. Lee, S. Hong, Z.L. Wang, Self-powered environmental sensor system driven by nanogenerators. Energy Environ. Sci. 4(9), 3359–3363 (2011)

    Article  Google Scholar 

  13. Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013)

    Article  Google Scholar 

  14. Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014)

    Google Scholar 

  15. Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015)

    Article  Google Scholar 

  16. F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator! Nano Energy 1(2), 328–334 (2012)

    Article  Google Scholar 

  17. Z.H. Lin, G. Zhu, Y.S. Zhou, Y. Yang, P. Bai, J. Chen, Z.L. Wang, A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem. Int. Ed. 52(19), 5065–5069 (2013)

    Article  Google Scholar 

  18. Z.H. Lin, Y.N. Xie, Y. Yang, S.H. Wang, G. Zhu, Z.L. Wang, Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. ACS Nano 7(5), 4554–4560 (2013)

    Article  Google Scholar 

  19. D. Walker, M. Razeghi, The development of nitride-based UV photodetectors. Opto-Electron. Rev. 8(1), 25–42 (2000)

    Google Scholar 

  20. E. Monroy, F. Omnes, F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Tech. 18(4), R33–R51 (2003)

    Article  Google Scholar 

  21. B.Z. Tian, C.M. Lieber, Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes. Pure Appl. Chem. 83(12), 2153–2169 (2011)

    Article  Google Scholar 

  22. X.D. Li, C.T. Gao, H.G. Duan, B.G. Lu, X.J. Pan, E.Q. Xie, Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector. Nano Energy 1(4), 640–645 (2012)

    Article  Google Scholar 

  23. S.M. Hatch, J. Briscoe, S. Dunn, A self-powered ZnO-Nanorod/CuSCN UV photodetector exhibiting rapid response. Adv. Mater. 25(6), 867–871 (2013)

    Article  Google Scholar 

  24. Z.H. Lin, G. Cheng, Y. Yang, Y.S. Zhou, S. Lee, Z.L. Wang, Triboelectric nanogenerator as an active UV photodetector. Adv. Funct. Mater. 24(19), 2810–2816 (2014)

    Article  Google Scholar 

  25. J. Wang, J.M. Lu, S.Y. Ly, M. Vuki, B.M. Tian, W.K. Adeniyi, R.A. Armendariz, Lab-on-a-Cable for electrochemical monitoring of phenolic contaminants. Anal. Chem. 72(11), 2659–2663 (2000)

    Article  Google Scholar 

  26. T. Zhao, J. He, X.X. Wang, B.Z. Ma, X.X. Wang, L. Zhang, P. Li, N. Liu, J. Lu, X.L. Zhang, Rapid detection and characterization of major phenolic compounds in Radix Actinidia chinensis Planch by ultra-performance liquid chromatography tandem mass spectrometry. J. Pharmaceut. Biomed. 98, 311–320 (2014)

    Article  Google Scholar 

  27. X.X. Han, L. Chen, U. Kuhlmann, C. Schulz, I.M. Weidinger, P. Hildebrandt, Magnetic titanium dioxide nanocomposites for surface-enhanced resonance raman spectroscopic determination and degradation of toxic anilines and phenols. Angew. Chem. Int. Ed. 53(9), 2481–2484 (2014)

    Article  Google Scholar 

  28. M.M. Ali, K.Y. Sandhya, Visible light responsive titanium dioxide-cyclodextrin-fullerene composite with reduced charge recombination and enhanced photocatalytic activity. Carbon 70, 249–257 (2014)

    Google Scholar 

  29. W.H. Ma, J. Li, X. Tao, J. He, Y.M. Xu, J.C. Yu, J.C. Zhao, Efficient degradation of organic pollutants by using dioxygen activated by resin-exchanged Iron(II) bipyridine under visible irradiation. Angew. Chem. Int. Ed. 42(9), 1029 (2003)

    Google Scholar 

  30. H.Y. Li, Y. Chen, Y.H. Zhang, W.Q. Han, X.Y. Sun, J.S. Li, L.J. Wang, Preparation of Ti/PbO2-Sn anodes for electrochemical degradation of phenol. J. Electroanal. Chem. 689, 193–200 (2013)

    Article  Google Scholar 

  31. G.H. Chen, Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38(1), 11–41 (2004)

    Article  Google Scholar 

  32. Z.L. Li, J. Chen, J. Yang, Y.J. Su, X. Fan, Y. Wu, C.W. Yu, Z.L. Wang, Beta-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 8(3), 887–896 (2015)

    Article  Google Scholar 

  33. Z.L. Li, J. Chen, H.Y. Guo, X. Fan, Z. Wen, M.-H. Yeh, C.W. Yu, X. Cao, Z.L. Wang, Triboelectrification enabled self-powered detection and removal of heavy metal ions in wastewater. Adv. Mater. (2015). doi:10.1002/adma.201504356

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Z.L., Lin, L., Chen, J., Niu, S., Zi, Y. (2016). Self-powered Sensing for Chemical and Environmental Detection. In: Triboelectric Nanogenerators. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-40039-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40039-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40038-9

  • Online ISBN: 978-3-319-40039-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics