Skip to main content

Biological Applications of Microfluidics System

  • Chapter
  • First Online:
Microfluidics for Biologists

Abstract

Microfluidics is modifying the way modern biology is performed. Microfluidic (MF) devices are being used for everything from accelerating molecular biology reactions to platforms for cell growth and analysis. The beauty lies in the precise control of quantities and rate of flow of samples and reagents that enables the separation and detection of analytes with high accuracy and sensitivity. This chapter will explore the practical applications of MF in different fields of biology. Further, lab on chip technologies employed for mutiple and single cell analysis, drug delivery systems, synthetic biology, stem cell research and various other areas will be discussed. The present scenario of commercialization of MF devices and new opportunities in the respective field will also be mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182

    Article  CAS  PubMed  Google Scholar 

  2. Valones MAA, Guimarães RL, Brandão LAC, de Souza PRE, de Albuquerque Tavares Carvalho A, Crovela S (2009) Principles and applications of polymerase chain reaction in medical diagnostic fields: a review. Braz J Microbiol 40(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barbulovic-Nad I, Yang H, Park PS, Wheeler AR (2008) Digital microfluidics for cell-based assays. Lab Chip 8(4):519–526

    Article  CAS  PubMed  Google Scholar 

  4. Manz A, Miyahara Y, Miura J, Watanabe Y, Miyagi H, Sato K (1990) Design of an open-tubular column liquid chromatograph using silicon chip technology. Sens Actuators B Chem 1(1):249–255

    Article  CAS  Google Scholar 

  5. Aa M, Graber N, Widmer HÃM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem 1(1):244–248

    Google Scholar 

  6. Mehling M, Tay S (2014) Microfluidic cell culture. Curr Opin Biotechnol 25:95–102

    Article  CAS  PubMed  Google Scholar 

  7. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772

    Article  CAS  PubMed  Google Scholar 

  8. Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JMS (2009) High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol 27(6):342–349

    Article  CAS  PubMed  Google Scholar 

  9. Griffith LG, Naughton G (2002) Tissue engineering—current challenges and expanding opportunities. Science 295(5557):1009–1014

    Article  CAS  PubMed  Google Scholar 

  10. Gupta K, Kim D-H, Ellison D, Smith C, Kundu A, Tuan J, Suh K-Y, Levchenko A (2010) Lab-on-a-chip devices as an emerging platform for stem cell biology. Lab Chip 10(16):2019–2031

    Article  CAS  PubMed  Google Scholar 

  11. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jung H, Chun M-S, Chang M-S (2015) Sorting of human mesenchymal stem cells by applying optimally designed microfluidic chip filtration. Analyst 140(4):1265–1274

    Article  CAS  PubMed  Google Scholar 

  13. Kang W, Giraldo-Vela JP, Nathamgari SSP, McGuire T, McNaughton RL, Kessler JA, Espinosa HD (2014) Microfluidic device for stem cell differentiation and localized electroporation of postmitotic neurons. Lab Chip 14(23):4486–4495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reitinger S, Jr W, Kapferer W, Heer R, Gn L (2012) Electric impedance sensing in cell-substrates for rapid and selective multipotential differentiation capacity monitoring of human mesenchymal stem cells. Biosens Bioelectron 34(1):63–69

    Article  CAS  PubMed  Google Scholar 

  15. Gross PG, Kartalov EP, Scherer A, Weiner LP (2007) Applications of microfluidics for neuronal studies. J Neurol Sci 252(2):135–143

    Article  PubMed  Google Scholar 

  16. Farinas J, Chow AW, Wada HG (2001) A microfluidic device for measuring cellular membrane potential. Anal Biochem 295(2):138–142

    Article  CAS  PubMed  Google Scholar 

  17. Grant SC, Aiken NR, Plant HD, Gibbs S, Mareci TH, Webb AG, Blackband SJ (2000) NMR spectroscopy of single neurons. Magn Reson Med 44(1):19–22

    Article  CAS  PubMed  Google Scholar 

  18. Massin C, Vincent F, Homsy A, Ehrmann K, Boero G, Besse PA, Daridon A, Verpoorte E, De Rooij NF, Popovic RS (2003) Planar microcoil-based microfluidic NMR probes. J Magn Reson 164(2):242–255

    Article  CAS  PubMed  Google Scholar 

  19. Huang Y, Williams JC, Johnson SM (2012) Brain slice on a chip: opportunities and challenges of applying microfluidic technology to intact tissues. Lab Chip 12(12):2103–2117

    Article  CAS  PubMed  Google Scholar 

  20. Scott A, Weir K, Easton C, Huynh W, Moody WJ, Folch A (2013) A microfluidic microelectrode array for simultaneous electrophysiology, chemical stimulation, and imaging of brain slices. Lab Chip 13(4):527–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mauleon G, Fall CP, Eddington DT (2012) Precise spatial and temporal control of oxygen within in vitro brain slices via microfluidic Gas channels. PLoS One 7(8):e43309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kang L, Chung BG, Langer R, Khademhosseini A (2008) Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov Today 13(1):1–13

    Article  CAS  PubMed  Google Scholar 

  23. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442(7101):381–386

    Article  CAS  PubMed  Google Scholar 

  24. Caviglia C, Zór K, Montini L, Tilli V, Canepa S, Melander F, Muhammad HB, Carminati M, Ferrari G, Raiteri R (2015) Impedimetric toxicity assay in microfluidics using free and liposome-encapsulated anticancer drugs. Anal Chem 87(4):2204–2212

    Article  CAS  PubMed  Google Scholar 

  25. Sung JH, Kam C, Shuler ML (2010) A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10(4):446–455

    Article  CAS  PubMed  Google Scholar 

  26. Sakolish CM, Esch MB, Hickman JJ, Shuler ML, Mahler GJ (2016) Modeling barrier tissues in vitro: methods, achievements, and challenges. EBioMedicine 5:30–39

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huh D, Hamilton GA, Ingber DE (2011) From three-dimensional cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Bahinski A, Hamilton GA, Ingber DE (2013) Microfabrication of human organs-on-chips. Nat Protoc 8(11):2135–2157

    Article  CAS  PubMed  Google Scholar 

  29. Jang K-J, Suh K-Y (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10(1):36–42

    Article  CAS  PubMed  Google Scholar 

  30. Douville NJ, Zamankhan P, Tung Y-C, Li R, Vaughan BL, Tai C-F, White J, Christensen PJ, Grotberg JB, Takayama S (2011) Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab Chip 11(4):609–619

    Article  CAS  PubMed  Google Scholar 

  31. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668

    Article  CAS  PubMed  Google Scholar 

  32. Booth R, Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 12(10):1784–1792

    Article  CAS  PubMed  Google Scholar 

  33. Nakao Y, Kimura H, Sakai Y, Fujii T (2011) Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics 5(2):022212

    Article  PubMed Central  Google Scholar 

  34. Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12(12):2165–2174

    Article  CAS  PubMed  Google Scholar 

  35. Lee PJ, Hung PJ, Lee LP (2007) An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng 97(5):1340–1346

    Article  CAS  PubMed  Google Scholar 

  36. Jiang B, Zheng W, Zhang W, Jiang X (2013) Organs on microfluidic chips: a mini review. Sci China Chem 57(3):356–364

    Article  Google Scholar 

  37. Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP, Hübner J, Lindner M, Drewell C, Bauer S, Thomas A (2015) A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15(12):2688–2699

    Article  CAS  PubMed  Google Scholar 

  38. Huh D, Y-s T, Hamilton GA, Kim HJ, Ingber DE (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12(12):2156–2164

    Article  CAS  PubMed  Google Scholar 

  39. Esch MB, King TL, Shuler ML (2011) The role of body-on-a-chip devices in drug and toxicity studies. Annu Rev Biomed Eng 13:55–72

    Article  CAS  PubMed  Google Scholar 

  40. Sung JH, Srinivasan B, Esch MB, McLamb WT, Bernabini C, Shuler ML, Hickman JJ (2014) Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure. Exp Biol Med 239(9):1225–1239

    Article  Google Scholar 

  41. Esch MB, Mahler GJ, Stokol T, Shuler ML (2014) Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 14(16):3081–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prot JM, Maciel L, Bricks T, Merlier F, Cotton J, Paullier P, Bois FY, Leclerc E (2014) First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans. Biotechnol Bioeng 111(10):2027–2040

    Article  CAS  PubMed  Google Scholar 

  43. Kim J-Y, Fluri DA, Kelm JM, Hierlemann A, Frey O (2015) 96-well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids. J Lab Autom 20(3):274–282

    Article  CAS  PubMed  Google Scholar 

  44. Kim J-Y, Fluri DA, Marchan R, Boonen K, Mohanty S, Singh P, Hammad S, Landuyt B, Hengstler JG, Kelm JM, Hierlemann A, Frey O (2015) 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis. J Biotechnol 205:24–35

    Article  CAS  PubMed  Google Scholar 

  45. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Tren Cell Biol 21(12):745–754

    Article  CAS  Google Scholar 

  46. Agarwal A, Goss JA, Cho A, McCain ML, Parker KK (2013) Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13(18):3599–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee SA, da No Y, Kang E, Ju J, Kim DS, Lee SH (2013) Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects. Lab Chip 13(18):3529–3537

    Article  CAS  PubMed  Google Scholar 

  48. Jang K-J, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh K-Y, Ingber DE (2013) Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol 5(9):1119–1129

    Article  CAS  Google Scholar 

  49. Griep LM, Wolbers F, De Wagenaar B, Ter Braak PM, Weksler BB, Romero IA, Couraud PO, Vermes I, Van Der Meer AD, Van den Berg A (2013) BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices 15(1):145–150

    Article  CAS  PubMed  Google Scholar 

  50. Shen F, Li X, Li PCH (2014) Study of flow behaviors on single-cell manipulation and shear stress reduction in microfluidic chips using computational fluid dynamics simulations. Biomicrofluidics 8(1):014109. doi:10.1063/1.4866358

    Article  PubMed  PubMed Central  Google Scholar 

  51. Raj A, van Oudenaarden A (2008) Stochastic gene expression and its consequences. Cell 135(2):216–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Singh A (2014) Transient changes in intercellular protein variability identify sources of noise in gene expression. Biophys J 107(9):2214–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yin H, Marshall D (2012) Microfluidics for single cell analysis. Curr Opin Biotechnol 23(1):110–119

    Article  CAS  PubMed  Google Scholar 

  54. Poulsen CR, Culbertson CT, Jacobson SC, Ramsey JM (2005) Static and dynamic acute cytotoxicity assays on microfluidic devices. Anal Chem 77(2):667–672

    Article  CAS  PubMed  Google Scholar 

  55. Balagaddé FK, You L, Hansen CL, Arnold FH, Quake SR (2005) Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309(5731):137–140

    Article  PubMed  Google Scholar 

  56. He M, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77(6):1539–1544

    Article  CAS  PubMed  Google Scholar 

  57. Chiou PY, Ohta AT, Wu MC (2005) Massively parallel manipulation of single cells and microparticles using optical images. Nature 436(7049):370–372

    Article  CAS  PubMed  Google Scholar 

  58. Taff BM, Voldman J (2005) A scalable addressable positive-dielectrophoretic cell-sorting array. Anal Chem 77(24):7976–7983

    Article  CAS  PubMed  Google Scholar 

  59. Di Carlo D, Aghdam N, Lee LP (2006) Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal Chem 78(14):4925–4930

    Article  PubMed  Google Scholar 

  60. Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, Farrell K, Manger ID, Daridon A (2003) Microfluidic device for single-cell analysis. Anal Chem 75(14):3581–3586

    Article  CAS  PubMed  Google Scholar 

  61. Peng XY (2011) A micro surface tension pump (MISPU) in a glass microchip. Lab Chip 11(1):132–138

    Article  CAS  PubMed  Google Scholar 

  62. Roman GT, Chen Y, Viberg P, Culbertson AH, Culbertson CT (2006) Single-cell manipulation and analysis using microfluidic devices. Anal Bioanal Chem 387(1):9–12

    Article  Google Scholar 

  63. Riordon J, Nash M, Jing W, Godin M (2014) Quantifying the volume of single cells continuously using a microfluidic pressure-driven trap with media exchange. Biomicrofluidics 8(1):011101

    Article  PubMed  PubMed Central  Google Scholar 

  64. McClain MA, Culbertson CT, Jacobson SC, Allbritton NL, Sims CE, Ramsey JM (2003) Microfluidic devices for the high-throughput chemical analysis of cells. Anal Chem 75(21):5646–5655

    Article  CAS  PubMed  Google Scholar 

  65. Clausell-Tormos J, Lieber D, Baret J-C, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Köster S, Duan H, Holtze C, Weitz DA, Griffiths AD, Merten CA (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15(5):427–437

    Article  CAS  PubMed  Google Scholar 

  66. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382

    Article  CAS  PubMed  Google Scholar 

  67. Wu J, Kodzius R, Cao W, Wen W (2014) Extraction, amplification and detection of DNA in microfluidic chip-based assays. Microchim Acta 181(13–14):1611–1631

    Article  CAS  Google Scholar 

  68. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418

    Article  CAS  PubMed  Google Scholar 

  69. Hu S, Loo JA, Wong DT (2006) Human body fluid proteome analysis. Proteomics 6(23):6326–6353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2009) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10

    Article  Google Scholar 

  71. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low volume, portable bioassays. Angew Chem Int Ed 46(8):1318–1320

    Article  CAS  Google Scholar 

  72. Rosenfeld T, Bercovici M (2014) 1000-fold sample focusing on paper-based microfluidic devices. Lab Chip 14(23):4465–4474

    Article  CAS  PubMed  Google Scholar 

  73. Foudeh AM, Fatanat Didar T, Veres T, Tabrizian M (2012) Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip 12(18):3249–3266

    Article  CAS  PubMed  Google Scholar 

  74. Ghrera AS, Pandey CM, Ali MA, Malhotra BD (2015) Quantum dot-based microfluidic biosensor for cancer detection. Appl Phys Lett 106(19):193703

    Article  Google Scholar 

  75. Dimov IK, Garcia-Cordero JL, O’Grady J, Poulsen CR, Viguier C, Kent L, Daly P, Lincoln B, Maher M, O’Kennedy R (2008) Integrated microfluidic tmRNA purification and real-time NASBA device for molecular diagnostics. Lab Chip 8(12):2071–2078

    Article  CAS  PubMed  Google Scholar 

  76. Chang W-H, Wang C-H, Lin C-L, Wu J-J, Lee MS, Lee G-B (2015) Rapid detection and typing of live bacteria from human joint fluid samples by utilizing an integrated microfluidic system. Biosens Bioelectron 66:148–154

    Article  CAS  PubMed  Google Scholar 

  77. Lee W, Kwon D, Choi W, Jung GY, Jeon S (2015) 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci Rep 5:7717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Boehm DA, Gottlieb PA, Hua SZ (2007) On-chip microfluidic biosensor for bacterial detection and identification. Sens Actuators B Chem 126(2):508–514

    Article  CAS  Google Scholar 

  79. Cho Y-K, Lee J-G, Park J-M, Lee B-S, Lee Y, Ko C (2007) One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7(5):565–573

    Article  CAS  PubMed  Google Scholar 

  80. Manini TM, Vincent KR, Leeuwenburgh CL, Lees HA, Kavazis AN, Borst SE, Clark BC (2011) Myogenic and proteolytic mRNA expression following blood flow restricted exercise. Acta Physiol (Oxf) 201(2):255–263

    Article  CAS  Google Scholar 

  81. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134

    Article  CAS  PubMed  Google Scholar 

  82. Gervais L, De Rooij N, Delamarche E (2011) Microfluidic chips for point-of-care immunodiagnostics. Adv Mater 23(24):H151–H176

    Article  CAS  PubMed  Google Scholar 

  83. Kim M, Choi J-C, Jung H-R, Katz JS, Kim M-G, Doh J (2010) Addressable micropatterning of multiple proteins and cells by microscope projection photolithography based on a protein friendly photoresist. Langmuir 26(14):12112–12118

    Article  CAS  PubMed  Google Scholar 

  84. B-H C, Huh D, Kyrtsos CR, Houssin T, Futai N, Takayama S (2007) Leakage-free bonding of porous membranes into layered microfluidic array systems. Anal Chem 79(9):3504–3508

    Article  Google Scholar 

  85. Legendre LA, Morris CJ, Bienvenue JM, Barron A, McClure R, Landers JP (2008) Toward a simplified microfluidic device for ultra-fast genetic analysis with sample-in/answer-out capability: application to T-cell lymphoma diagnosis. J Lab Autom 13(6):351–360

    Article  CAS  Google Scholar 

  86. Diercks AH, Ozinsky A, Hansen CL, Spotts JM, Rodriguez DJ, Aderem A (2009) A microfluidic device for multiplexed protein detection in nano-liter volumes. Anal Biochem 386(1):30–35

    Article  CAS  PubMed  Google Scholar 

  87. Global Point-of-Care Diagnostics Market Outlook (2018) http://www.rncos.com

  88. Blow N (2007) Microfluidics: in search of a killer application. Nat Methods 4(8):665–672

    Article  CAS  Google Scholar 

  89. Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SS and CMP thank Prof. B. D. Malhotra (DTU, Delhi) and Dr. G. Sumana (NPL, New Delhi) for interesting discussions. Shipra Solanki is thankful to UGC, India, for the award of SRF. C. M. Pandey acknowledges the Department of Science & Technology, Govt of India for awarding the DST-INSPIRE Fellowship [DST/INSPIRE/04/2015/000932].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Mouli Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Solanki, S., Pandey, C.M. (2016). Biological Applications of Microfluidics System. In: Dixit, C., Kaushik, A. (eds) Microfluidics for Biologists. Springer, Cham. https://doi.org/10.1007/978-3-319-40036-5_8

Download citation

Publish with us

Policies and ethics