Advertisement

The Role of Diet in Caries Prevention

  • Eşber ÇağlarEmail author
  • Özgür Ö. Kuşcu
Chapter

Abstract

Diet is one of the most important aetiological factors in dental caries. This chapter describes the relationship between sugar consumption and dental caries through history. Cariogenicity of food items and diet as well as factors that influence the cariogenicity are reviewed. The interplay of diet with other preventive measures also receives attention. Prevention through diet with natural sugar alcohol, xylitol, and beneficial bacteria (probiotics) is discussed. Finally, diet counselling for caries prevention for different age groups is summarized and dietary suggestions with health benefits are reported.

Keywords

Diet counselling Diet Probiotics Xylitol Sugars 

Notes

Acknowledgments

The authors wish to thank Dr Roland Blankenstein for his support with the English language and for sharing his experiences and Prof Dr Ece Eden for her contributions to the content of the chapter.

References

  1. 1.
    Caglar E, Kuscu OO, Sandalli N, Ari I. Prevalence of dental caries and tooth wear in a Byzantine population (13th c. A.D.) from northwest Turkey. Arch Oral Biol. 2007;52:1136–45.CrossRefPubMedGoogle Scholar
  2. 2.
    Miller WD. The microorganisms of the human mouth. S. S. White and Co, Philadelphia 1890 (Reprinted). Basel: Karger; 1973.Google Scholar
  3. 3.
    Moynihan P. The role of diet in the prevention of dental diseases. Comprehensive Preventive Dentistry: Wiley, Pondicherry, India; 2012. p. 99–114.Google Scholar
  4. 4.
    Sheiham A, James WP. Diet and dental caries: the pivotal role of free sugars reemphasized. J Dent Res. 2015;94:1341–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Gustafsson BE, Quensel CE, Lanke LE, Lundqvıst C, Grahnen H, Bonow BE, et al. The Vipeholm dental caries study; the effect of different levels of carbohydrate intake on caries activity in 436 individuals observed for five years. Acta Odontol Scand. 1954;11:232–64.CrossRefPubMedGoogle Scholar
  6. 6.
    Harris R. The biology of the children of Hopewood House, Bowral, N.S.W. VI. The pattern of dental caries experience. Aust Dent J. 1967;12:220–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Touger-Decker R, van Loveren C. Sugars and dental caries. Am J Clin Nutr. 2003;78:881S–92.PubMedGoogle Scholar
  8. 8.
    Mundorff SA, Featherstone JD, Bibby BG, Curzon ME, Eisenberg AD, Espeland MA. Cariogenic potential of foods. I. Caries in the rat model. Caries Res. 1990;24:344–55.CrossRefPubMedGoogle Scholar
  9. 9.
    Koparal E, Eronat C, Eronat N. In vivo assessment of dental plaque pH changes in children after ingestion of snack foods. ASDC J Dent Child. 1998;65:478–83.PubMedGoogle Scholar
  10. 10.
    Papas AS, Joshi A, Palmer CA, Giunta JL, Dwyer JT. Relationship of diet to root caries. Am J Clin Nutr. 1995;61:423S–9.PubMedGoogle Scholar
  11. 11.
    Papas AS, Joshi A, Belanger AJ, Kent RL, Palmer CA, DePaola PF. Dietary models for root caries. Am J Clin Nutr. 1995;61:417S–22.PubMedGoogle Scholar
  12. 12.
    van Loveren C, Duggal MS. The role of diet in caries prevention. Int Dent J. 2001;51:399–406.CrossRefPubMedGoogle Scholar
  13. 13.
    Kargul B, Caglar E, Tanboga I. History of water fluoridation. J Clin Pediatr Dent. 2003;27:213–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Ly KA, Milgrom P, Rothen M. Xylitol, sweeteners, and dental caries. Pediatr Dent. 2006;28:154–63; discussion 92–8.PubMedGoogle Scholar
  15. 15.
    Burt BA. The use of sorbitol- and xylitol-sweetened chewing gum in caries control. J Am Dent Assoc. 2006;137:190–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Milgrom P, Ly KA, Roberts MC, Rothen M, Mueller G, Yamaguchi DK. Mutans streptococci dose response to xylitol chewing gum. J Dent Res. 2006;85:177–81.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Holgerson PL, Sjöström I, Stecksén-Blicks C, Twetman S. Dental plaque formation and salivary mutans streptococci in schoolchildren after use of xylitol-containing chewing gum. Int J Paediatr Dent. 2007;17:79–85.CrossRefPubMedGoogle Scholar
  18. 18.
    American Academy of Pediatrics Policy Statement. Guideline on Xylitol Use in Caries Prevention Reference Manual. 2008; 6(36):14–5.Google Scholar
  19. 19.
    American Academy of Pediatric Dentistry Council on Clinical Affairs. Policy on the use of xylitol. 2015; Oral Health Policies Ref Manual 37(6):15/16. p. 45–7.Google Scholar
  20. 20.
    American Academy of Pediatric Dentistry Council on Clinical Affairs. Policy on the use of xylitol in caries prevention. Pediatr Dent. 2008;30(7 suppl):36–7.Google Scholar
  21. 21.
    Scheinin A, Mäkinen KK. Turku sugar studies, I-XXI: Acta odontologica Scandinavica; 1975.Google Scholar
  22. 22.
    Isokangas P, Alanen P, Tiekso J, Makinen KK. Xylitol chewing gum in caries prevention: a field study in children. J Am Dent Assoc. 1988;117:315–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Isokangas P, Tiekso J, Alanen P, Mäkinen KK. Long-term effect of xylitol chewing gum on dental caries. Community Dent Oral Epidemiol. 1989;17:200–3.CrossRefPubMedGoogle Scholar
  24. 24.
    Isokangas P, Tenovuo J, Söderling E, Männistö H, Mäkinen KK. Dental caries and mutans streptococci in the proximal areas of molars affected by the habitual use of xylitol chewing gum. Caries Res. 1991;25:444–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Isogangas P, Mäkinen KK, Tiekso J, Alanen P. Long-term effect of xylitol chewing gum in the prevention of dental caries: a follow-up 5 years after termination of a prevention program. Caries Res. 1993;27:495–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Isokangas P, Söderling E, Pienihäkkinen K, Alanen P. Occurrence of dental decay in children after maternal consumption of xylitol chewing gum, a follow-up from 0 to 5 years of age. J Dent Res. 2000;79:1885–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Mäkinen KK, Söderling E, Isokangas P, Tenovuo J, Tiekso J. Oral biochemical status and depression of Streptococcus mutans in children during 24- to 36-month use of xylitol chewing gum. Caries Res. 1989;23:261–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Söderling E, Mäkinen KK, Chen CY, Pape HR, Loesche W, Mäkinen PL. Effect of sorbitol, xylitol, and xylitol/sorbitol chewing gums on dental plaque. Caries Res. 1989;23:378–84.CrossRefPubMedGoogle Scholar
  29. 29.
    Söderling E, Isokangas P, Tenovuo J, Mustakallio S, Mäkinen KK. Long-term xylitol consumption and mutans streptococci in plaque and saliva. Caries Res. 1991;25:153–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Söderling E, Trahan L, Tammiala-Salonen T, Häkkinen L. Effects of xylitol, xylitol-sorbitol, and placebo chewing gums on the plaque of habitual xylitol consumers. Eur J Oral Sci. 1997;105:170–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Söderling E, Isokangas P, Pienihäkkinen K, Tenovuo J. Influence of maternal xylitol consumption on acquisition of mutans streptococci by infants. J Dent Res. 2000;79:882–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Trahan L, Bourgeau G, Breton R. Emergence of multiple xylitol-resistant (fructose PTS-) mutants from human isolates of mutans streptococci during growth on dietary sugars in the presence of xylitol. J Dent Res. 1996;75:1892–900.CrossRefPubMedGoogle Scholar
  33. 33.
    Trahan L. Xylitol: a review of its action on mutans streptococci and dental plaque – its clinical significance. Int Dent J. 1995;45:77–92.PubMedGoogle Scholar
  34. 34.
    Van Loveren C. Sugar alcohols: what is the evidence for caries-preventive and caries-therapeutic effects? Caries Res. 2004;38:286–93.CrossRefPubMedGoogle Scholar
  35. 35.
    Lee W, Spiekerman C, Heima M, Eggertsson H, Ferretti G, Milgrom P, et al. The effectiveness of xylitol in a school-based cluster-randomized clinical trial. Caries Res. 2015;49:41–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Riley P, Moore D, Ahmed F, Sharif MO, Worthington HV. Xylitol-containing products for preventing dental caries in children and adults. Cochrane Database Syst Rev. 2015;(3):CD010743.Google Scholar
  37. 37.
    Lenoir-Wijnkoop I, Sanders ME, Cabana MD, Caglar E, Corthier G, Rayes N, et al. Probiotic and prebiotic influence beyond the intestinal tract. Nutr Rev. 2007;65:469–89.CrossRefPubMedGoogle Scholar
  38. 38.
    Caglar E, Kargul B, Tanboga I. Bacteriotherapy and probiotics’ role on oral health. Oral Dis. 2005;11:131–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Timmerman HM. Multispecies probiotics – composition and functionality. Utrecht: H.M. Timmerman; 2006.Google Scholar
  40. 40.
    Caglar E, Sandalli N, Twetman S, Kavaloglu S, Ergeneli S, Selvi S. Effect of yogurt with Bifidobacterium DN-173 010 on salivary mutans streptococci and lactobacilli in young adults. Acta Odontol Scand. 2005;63:317–20.CrossRefPubMedGoogle Scholar
  41. 41.
    Caglar E, Cildir SK, Ergeneli S, Sandalli N, Twetman S. Salivary mutans streptococci and lactobacilli levels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC 55730 by straws or tablets. Acta Odontol Scand. 2006;64:314–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Caglar E, Kuscu OO, Selvi Kuvvetli S, Kavaloglu Cildir S, Sandalli N, Twetman S. Short-term effect of ice-cream containing Bifidobacterium lactis Bb-12 on the number of salivary mutans streptococci and lactobacilli. Acta Odontol Scand. 2008;66:154–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Hekmat S, McMahon DJ. Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in ice cream for use as a probiotic food. J Dairy Sci. 1992;75:1415–22.CrossRefPubMedGoogle Scholar
  44. 44.
    Gänzle MG, Höltzel A, Walter J, Jung G, Hammes WP. Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol. 2000;66:4325–33.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Talarico TL, Casas IA, Chung TC, Dobrogosz WJ. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother. 1988;32:1854–8.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Haukioja A, Yli-Knuuttila H, Loimaranta V, Kari K, Ouwehand AC, Meurman JH, et al. Oral adhesion and survival of probiotic and other lactobacilli and bifidobacteria in vitro. Oral Microbiol Immunol. 2006;21:326–32.CrossRefPubMedGoogle Scholar
  47. 47.
    Caglar E, Topcuoglu N, Cildir SK, Sandalli N, Kulekci G. Oral colonization by Lactobacillus reuteri ATCC 55730 after exposure to probiotics. Int J Paediatr Dent. 2009;19:377–81.CrossRefPubMedGoogle Scholar
  48. 48.
    Lindquist B, Emilson CG. Colonization of Streptococcus mutans and Streptococcus sobrinus genotypes and caries development in children to mothers harboring both species. Caries Res. 2004;38:95–103.CrossRefPubMedGoogle Scholar
  49. 49.
    Caglar E, Kuscu OO, Cildir SK, Kuvvetli SS, Sandalli N. A probiotic lozenge administered medical device and its effect on salivary mutans streptococci and lactobacilli. Int J Paediatr Dent. 2008;18:35–9.PubMedGoogle Scholar
  50. 50.
    Caglar E. Effect of Bifidobacterium bifidum containing yoghurt on dental plaque bacteria in children. J Clin Pediatr Dent. 2014;38:329–32.CrossRefPubMedGoogle Scholar
  51. 51.
    Yli-Knuuttila H, Snäll J, Kari K, Meurman JH. Colonization of Lactobacillus rhamnosus GG in the oral cavity. Oral Microbiol Immunol. 2006;21:129–31.CrossRefPubMedGoogle Scholar
  52. 52.
    Çaglar E, Topcuoglu N, Ozbey H, Sandalli N, Kulekci G. Early colonization of Lactobacillus reuteri after exposure to probiotics. J Clin Pediatr Dent. 2015;39:326–30.CrossRefPubMedGoogle Scholar
  53. 53.
    Cogulu D, Topaloglu-Ak A, Caglar E, Sandalli N, Karagozlu C, Ersin N, et al. Potential effects of a multistrain probiotic-kefir on salivary Streptococcus mutans and Lactobacillus spp. J Dental Sci. 2010;5:144–9.CrossRefGoogle Scholar
  54. 54.
    Meurman JH, Antila H, Salminen S. Recovery of Lactobacillus strain GG (ATCC 53103) from saliva of healthy volunteers after consumption of yoghurt prepared with the bacterium. Microb Ecol Health Dis. 1994;7:295–8.CrossRefGoogle Scholar
  55. 55.
    Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, et al. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res. 2001;35:412–20.CrossRefPubMedGoogle Scholar
  56. 56.
    Busscher HJ, Mulder AF, van der Mei HC. In vitro adhesion to enamel and in vivo colonization of tooth surfaces by Lactobacilli from a bio-yoghurt. Caries Res. 1999;33:403–4.CrossRefPubMedGoogle Scholar
  57. 57.
    Ahola AJ, Yli-Knuuttila H, Suomalainen T, Poussa T, Ahlström A, Meurman JH, et al. Short-term consumption of probiotic-containing cheese and its effect on dental caries risk factors. Arch Oral Biol. 2002;47:799–804.CrossRefPubMedGoogle Scholar
  58. 58.
    Nikawa H, Makihira S, Fukushima H, Nishimura H, Ozaki Y, Ishida K, et al. Lactobacillus reuteri in bovine milk fermented decreases the oral carriage of mutans streptococci. Int J Food Microbiol. 2004;95:219–23.CrossRefPubMedGoogle Scholar
  59. 59.
    Caglar E, Kavaloglu SC, Kuscu OO, Sandalli N, Holgerson PL, Twetman S. Effect of chewing gums containing xylitol or probiotic bacteria on salivary mutans streptococci and lactobacilli. Clin Oral Investig. 2007;11:425–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Montalto M, Vastola M, Marigo L, Covino M, Graziosetto R, Curigliano V, et al. Probiotic treatment increases salivary counts of lactobacilli: a double-blind, randomized, controlled study. Digestion. 2004;69:53–6.CrossRefPubMedGoogle Scholar
  61. 61.
    Lin X, Chen X, Chen Y, Jiang W, Chen H. The effect of five probiotic lactobacilli strains on the growth and biofilm formation of Streptococcus mutans. Oral Dis. 2015;21:e128–34.CrossRefPubMedGoogle Scholar
  62. 62.
    Stecksén-Blicks C, Sjöström I, Twetman S. Effect of long-term consumption of milk supplemented with probiotic lactobacilli and fluoride on dental caries and general health in preschool children: a cluster-randomized study. Caries Res. 2009;43:374–81.CrossRefPubMedGoogle Scholar
  63. 63.
    Toiviainen A, Jalasvuori H, Lahti E, Gursoy U, Salminen S, Fontana M, et al. Impact of orally administered lozenges with Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB-12 on the number of salivary mutans streptococci, amount of plaque, gingival inflammation and the oral microbiome in healthy adults. Clin Oral Investig. 2015;19:77–83.CrossRefPubMedGoogle Scholar
  64. 64.
    Taipale T, Pienihäkkinen K, Salminen S, Jokela J, Söderling E. Bifidobacterium animalis subsp. lactis BB-12 administration in early childhood: a randomized clinical trial of effects on oral colonization by mutans streptococci and the probiotic. Caries Res. 2012;46:69–77.CrossRefPubMedGoogle Scholar
  65. 65.
    Stensson M, Koch G, Coric S, Abrahamsson TR, Jenmalm MC, Birkhed D, et al. Oral administration of Lactobacillus reuteri during the first year of life reduces caries prevalence in the primary dentition at 9 years of age. Caries Res. 2014;48:111–7.CrossRefPubMedGoogle Scholar
  66. 66.
    Laleman I, Detailleur V, Slot DE, Slomka V, Quirynen M, Teughels W. Probiotics reduce mutans streptococci counts in humans: a systematic review and meta-analysis. Clin Oral Investig. 2014;18:1539–52.CrossRefPubMedGoogle Scholar
  67. 67.
    Menzel P, D’Aluisio F. What the world eats. Berkeley: Tricycle Press; 2008.Google Scholar
  68. 68.
    Koch G, Poulsen S. Pediatric dentistry: a clinical approach. Chichester/Ames: Wiley-Blackwell; 2009.Google Scholar
  69. 69.
    World Health Organization. Obesity and overweight. Fact Sheet No 311, updated 7.03.2016, available from http://www.who.int/mediacentre/factsheets/fs311/en/January 2015.
  70. 70.
    World Health Organization. Infant and young child feeding : model chapter for textbooks for medical students and allied health professionals. 2009; ISSN 9789241597494 9241597496.Google Scholar
  71. 71.
    Caplan LS, Erwin K, Lense E, Hicks J. The potential role of breast-feeding and other factors in helping to reduce early childhood caries. J Public Health Dent. 2008;68:238–41.CrossRefPubMedGoogle Scholar
  72. 72.
    Mohebbi SZ, Virtanen JI, Vahid-Golpayegani M, Vehkalahti MM. Feeding habits as determinants of early childhood caries in a population where prolonged breastfeeding is the norm. Community Dent Oral Epidemiol. 2008;36:363–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Mohan A, Morse DE, O’Sullivan DM, Tinanoff N. The relationship between bottle usage/content, age, and number of teeth with mutans streptococci colonization in 6-24-month-old children. Community Dent Oral Epidemiol. 1998;26:12–20.CrossRefPubMedGoogle Scholar
  74. 74.
    Iida H, Auinger P, Billings RJ, Weitzman M. Association between infant breastfeeding and early childhood caries in the United States. Pediatrics. 2007;120:e944–52.CrossRefPubMedGoogle Scholar
  75. 75.
    EAPD. Guideline on Prevention of Early Childhood Caries. European Academy of Paediatric Dentistry Policy Document. 2008. p. 1–4.Google Scholar
  76. 76.
    Hallett KB, O’Rourke PK. Pattern and severity of early childhood caries. Community Dent Oral Epidemiol. 2006;34:25–35.CrossRefPubMedGoogle Scholar
  77. 77.
    Section of Breastfeeding. Policy Statement-Breastfeeding and the use of human milk. Pediatrics. 2012;129:e827–41.Google Scholar
  78. 78.
    Çaglar E, Kuscu OO, Aytan ES, Sandalli N. Reflections of learning on perspective behaviour management strategies during dental treatments of pediatric patients. Paeditria Croatica. 2012;56:293–6.Google Scholar
  79. 79.
    World Health Organization. Healthy Diet 2015 [updated 07.12.2015]. Available from: http://www.who.int/mediacentre/factsheets/fs394/en/.
  80. 80.
    Stecksén-Blicks C, Gustafsson L. Impact of oral hygiene and use of fluorides on caries increment in children during one year. Community Dent Oral Epidemiol. 1986;14:185–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Newbrun E. Frequent sugar intake – then and now: interpretation of the main results. Scand J Dent Res. 1989;97:103–9.PubMedGoogle Scholar
  82. 82.
    Serra Majem L, García Closas R, Ramón JM, Manau C, Cuenca E, Krasse B. Dietary habits and dental caries in a population of Spanish schoolchildren with low levels of caries experience. Caries Res. 1993;27:488–94.CrossRefPubMedGoogle Scholar
  83. 83.
    Mazengo MC, Tenovuo J, Hausen H. Dental caries in relation to diet, saliva and cariogenic microorganisms in Tanzanians of selected age groups. Community Dent Oral Epidemiol. 1996;24:169–74.CrossRefPubMedGoogle Scholar
  84. 84.
    Administration FaD. About the GRAS notification program 2009 [updated 07.12.2015]. Available from: http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/ucm2006851.htm.
  85. 85.
    Maguire A, Rugg-Gunn AJ, Butler TJ. Dental health of children taking antimicrobial and non-antimicrobial liquid oral medication long-term. Caries Res. 1996;30(1):16–21.CrossRefPubMedGoogle Scholar
  86. 86.
    Scottish Office National Pharmaceutical Advisory Committee. Sugar-free medicines. Edinburg: Scottish Office, Department of Health; 1998.Google Scholar
  87. 87.
    Sahyoun NR, Lin CL, Krall E. Nutritional status of the older adult is associated with dentition status. J Am Diet Assoc. 2003;103:61–6.CrossRefPubMedGoogle Scholar
  88. 88.
    Walls AW, Steele JG. The relationship between oral health and nutrition in older people. Mech Ageing Dev. 2004;125:853–7.CrossRefPubMedGoogle Scholar
  89. 89.
    Walls AW, Meurman JH. Approaches to caries prevention and therapy in the elderly. Adv Dent Res. 2012;24:36–40.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.İstanbulTurkey

Personalised recommendations