Detection and Diagnosis of Carious Lesions

  • Hervé Tassery
  • David J. MantonEmail author


The early detection and diagnosis of the carious lesion are a primary consideration of the minimal intervention dentistry (MID) concept. Detection is the identification of a demineralized lesion, while diagnosis is an iterative process using further information from the patient to identify the lesion as carious in nature. Traditionally, visual, tactile, and radiographic methods are used to detect carious lesion; however, recently tactile detection, especially using a sharp explorer, is not recommended apart from the delicate detection of enamel surface integrity/roughness. Use of simple devices such as loupes for magnification of the clean surface can improve detection validity. Advances in technology have led to many different devices being released onto the market to assist in the detection and quantification of carious lesions. Fluorescence of the tooth structure using different wavelengths of light can provide information about lesion extent and area and whether dentine is involved, and several commercial systems are available such as DIAGNOdent®, QLF®, and Soprocare/Soprolife®. It is important to follow standardized procedures with all of these detection techniques, as the validity and reproducibility of the results are highly dependent on this. Electrical impedance and photothermal radiometry have been promoted as alternatives to light-based technologies; however, evidence for these devices is still somewhat limited. All of these traditional and new detection methods will be discussed in the context of minimal intervention dentistry and their potential value to the clinician and patient.


Tooth Surface Carious Lesion Enamel Surface Caries Detection Caries Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJL, Marcenes W. Global burden of untreated caries: a systematic review and metaregression. J Dent Res. 2015;94(5):650–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Gimenez T, Piovesan C, Braga MM, Raggio DP, Deery C, Ricketts DN, et al. Visual inspection for caries detection: a systematic review and meta-analysis. J Dent Res. 2015;94(7):895–904.PubMedCrossRefGoogle Scholar
  3. 3.
    de Souza AL, Bronkhorst EM, Creugers NHJ, Leal SC, Frencken JE. The Caries Assessment Spectrum and Treatment (CAST) instrument: its reproducibility in clinical studies. Int Dent J. 2014;64(4):187–94.Google Scholar
  4. 4.
    Ismail AI, Sohn W, Tellez M, Willem JM, Betz J, Lepkowski J. Risk indicators for dental caries using the International Caries Detection and Assessment System (ICDAS). Community Dent Oral Epidemiol. 2008;36(1):55–68.PubMedGoogle Scholar
  5. 5.
    Kühnisch J, Dietz W, Stosser L, Hickel R, Heinrich-Weltzien R. Effects of dental probing on occlusal surfaces – a scanning electron microscopy evaluation. Caries Res. 2007;41(1):43–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Kuhnisch J, Bucher K, Henschel V, Albrecht A, Garcia-Godoy F, Mansmann U, et al. Diagnostic performance of the universal visual scoring system (UniViSS) on occlusal surfaces. Clin Oral Investig. 2011;15(2):215–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Lussi A. Comparison of different methods for the diagnosis of fissure caries without cavitation. Caries Res. 1993;27(5):409–16.PubMedCrossRefGoogle Scholar
  8. 8.
    Lussi A, Francescut P. Performance of conventional and new methods for the detection of occlusal caries in deciduous teeth. Caries Res. 2003;37(1):2–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Gordan V, III JR, Carvalho R, Snyder J, Jr JS, Anderson M, et al. Methods used by Dental Practice-based Research Network (DPBRN) dentists to diagnose dental caries. Oper Dent. 2011;36(1):2–11.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bücher K, Galler M, Seitz M, Hickel R, Kunzelmann K-H, Kühnisch J. Occlusal caries extension in relation to visual and radiographic diagnostic criteria: results from a microcomputed tomography study. Oper Dent. 2015;40(3):255–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Diniz M, Rodrigues J, Neuhaus K, Cordeiro RL, Lussi A. Influence of examiner’s clinical experience on the reproducibility and accuracy of radiographic examination in detecting occlusal caries. Clin Oral Investig. 2010;14(5):515–23.PubMedCrossRefGoogle Scholar
  12. 12.
    Hall A, Girkin JM. A review of potential new diagnostic modalities for caries lesions. J Dent Res. 2004;83 Spec No C:C89–94.Google Scholar
  13. 13.
    Slimani A, Panayotov I, Levallois B, Cloitre T, Gergely C, Bec N, et al., editors. Porphyrin involvement in redshift fluorescence in dentin decay. International Society for Optics and Photonics; Proc. SPIE 9129, Biophotonics: Photonic Solutions for Better Health Care IV, 91291C, 2014; doi: 10.1117/12.2051741.
  14. 14.
    Buchalla W, Lennon ÁM, Attin T. Comparative fluorescence spectroscopy of root caries lesions. Eur J Oral Sci. 2004;112(6):490–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Kleter GA. Discoloration of dental carious lesions (a review). Arch Oral Biol. 1998;43(8):629–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Sell DR, Monnier VM. Isolation, purification and partial characterization of novel fluorophores from aging human insoluble collagen-rich tissue. Connect Tissue Res. 1989;19(1):77–92.PubMedCrossRefGoogle Scholar
  17. 17.
    Sell DR, Nagaraj RH, Grandhee SK, Odetti P, Lapolla A, Fogarty J, et al. Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging, and uremia. Diabetes Metab Rev. 1991;7(4):239–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Buchalla W, Lennon AM, Attin T. Fluorescence spectroscopy of dental calculus. J Periodontal Res. 2004;39(5):327–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Mitropoulos CM. The use of fibre-optic transillumination in the diagnosis of posterior approximal caries in clinical trials. Caries Res. 1985;19(4):379–84.PubMedCrossRefGoogle Scholar
  20. 20.
    Peers A, Hill EJ, Mitropoulos CM, Holloway PJ. Validity and reproducibility of clinical examination, fibre-optic transillumination, and bite-wing radiology for the diagnosis of small approximal carious lesions: an in vitro study. Caries Res. 1993;27(4):307–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Guerrieri A, Gaucher C, Bonte E, Lasfargues JJ. Minimal intervention dentistry: part 4. Detection and diagnosis of initial caries lesions. Br Dent J. 2012;213(11):551–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Marinova-Takorova M, Anastasova R, Panov VE. Comparative evaluation of the effectiveness of five methods for early diagnosis of occlusal carious lesions – in vitro study. J IMAB. 2014;20(3):533–6.Google Scholar
  23. 23.
    Kühnisch J, Heinrich-Weltzien R, Tabatabaie M, Stösser L, Huysmans MCDNJM. An in vitro comparison between two methods of electrical resistance measurement for occlusal caries detection. Caries Res. 2006;40(2):104–11.PubMedCrossRefGoogle Scholar
  24. 24.
    Bin-Shuwaish M, Yaman P, Dennison J, Neiva G. The correlation of DIFOTI to clinical and radiographic images in Class II carious lesions. J Am Dent Assoc. 2008;139(10):1374–81.PubMedCrossRefGoogle Scholar
  25. 25.
    Söchtig F, Hickel R, Kühnisch J. Caries detection and diagnostics with near-infrared light transillumination: Clinical experiences. Quintessence Int. 2014;45(6):513–38.Google Scholar
  26. 26.
    Lussi A, Imwinkelried S, Pitts NB, Longbottom C, Reich E. Performance and reproducibility of a laser fluorescence system for detection of occlusal caries in vitro. Caries Res. 1999;33(4):261–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Tassery H, Levallois B, Terrer E, Manton DJ, Otsuki M, Koubi S, et al. Use of new minimum intervention dentistry technologies in caries management. Aust Dent J. 2013;58(s1):40–59.PubMedCrossRefGoogle Scholar
  28. 28.
    Bader JD, Shugars DA. A systematic review of the performance of a laser fluorescence device for detecting caries. J Am Dent Assoc. 2004;135(10):1413–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Ricketts DNJ. The eyes have it. Evid Based Dent. 2005;6(3):64–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Bader JD, Shugars DA. The evidence supporting alternative management strategies for early occlusal caries and suspected occlusal dentinal caries. J Evid Based Dent Pract. 2006;6(1):91–100.PubMedCrossRefGoogle Scholar
  31. 31.
    Huth KC, Neuhaus KW, Gygax M, Bücher K, Crispin A, Paschos E, et al. Clinical performance of a new laser fluorescence device for detection of occlusal caries lesions in permanent molars. J Dent. 2008;36(12):1033–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Huth KC, Lussi A, Gygax M, Thum M, Crispin A, Paschos E, et al. In vivo performance of a laser fluorescence device for the approximal detection of caries in permanent molars. J Dent. 2010;38(12):1019–26.PubMedCrossRefGoogle Scholar
  33. 33.
    Gimenez T, Braga MM, Raggio DP, Deery C, Ricketts DN, Mendes FM. Fluorescence-based methods for detecting caries lesions: systematic review, meta-analysis and sources of heterogeneity. PLoS One. 2013;8(4), e60421.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Emami Z, al-Khateeb S, de Josselin de Jong E, Sundström F, Trollsås K, Angmar-Månsson B. Mineral loss in incipient caries lesions quantified with laser fluorescence and longitudinal microradiography. A methodologic study. Acta Odontol Scand. 1996;54(1):8–13.PubMedCrossRefGoogle Scholar
  35. 35.
    van der Veen MH, de Josselin de Jong E. Application of quantitative light-induced fluorescence for assessing early caries lesions. Monogr Oral Sci. 2000;17:144–62.PubMedCrossRefGoogle Scholar
  36. 36.
    Boersma JG, Van der Veen MH, Lagerweij MD, Bokhout B, Prahl-Andersen B. Caries prevalence measured with QLF after treatment with fixed orthodontic appliances: influencing factors. Caries Res. 2004;39(1):41–7.CrossRefGoogle Scholar
  37. 37.
    Abrams SH, Sivagurunathan K, Jeon RJ, Silvertown JD, Hellen A, Mandelis A, et al. Multi-center study evaluating safety and effectiveness of the Canary System. Caries Res. 2011;45:174–242.CrossRefGoogle Scholar
  38. 38.
    Jeon RJ, Hellen A, Matvienko A, Mandelis A, Abrams SH, Amaechi BT. In vitro detection and quantification of enamel and root caries using infrared photothermal radiometry and modulated luminescence. J Biomed Opt. 2008;13(3):034025.PubMedCrossRefGoogle Scholar
  39. 39.
    Jeon RJ, Matvienko A, Mandelis A, Abrams SH, Amaechi BT, Kulkarni G. Interproximal dental caries detection using Photothermal Radiometry (PTR) and Modulated Luminescence (LUM). Eur Phys J Spec Top. 2008;153(1):467–9.CrossRefGoogle Scholar
  40. 40.
    Jeon RJ, Mandelis A, Sanchez V, Abrams SH. Nonintrusive, noncontacting frequency-domain photothermal radiometry and luminescence depth profilometry of carious and artificial subsurface lesions in human teeth. J Biomed Opt. 2004;9(4):804–19.PubMedCrossRefGoogle Scholar
  41. 41.
    Hellen A, Mandelis A, Finer Y, Amaechi BT. Quantitative remineralization evolution kinetics of artificially demineralized human enamel using photothermal radiometry and modulated luminescence. J Biophotonics. 2011;4(11–12):788–804.PubMedCrossRefGoogle Scholar
  42. 42.
    Hellen A, Mandelis A, Finer Y, Amaechi BT. Quantitative evaluation of the kinetics of human enamel simulated caries using photothermal radiometry and modulated luminescence. J Biomed Opt. 2011;16(7):071406.PubMedCrossRefGoogle Scholar
  43. 43.
    Hellen A, Matvienko A, Mandelis A, Finer Y, Amaechi BT. Optothermophysical properties of demineralized human dental enamel determined using photothermally generated diffuse photon density and thermal-wave fields. Appl Opt. 2010;49(36):6938–51.PubMedCrossRefGoogle Scholar
  44. 44.
    Matvienko A, Mandelis A, Abrams S. Robust multiparameter method of evaluating the optical and thermal properties of a layered tissue structure using photothermal radiometry. Appl Opt. 2009;48(17):3192–203.PubMedCrossRefGoogle Scholar
  45. 45.
    Terrer E, Raskin A, Koubi S, Dionne A, Weisrock G, Sarraquigne C, et al. A New concept in restorative dentistry: LIFEDT—light-induced fluorescence evaluator for diagnosis and treatment: part 2 – treatment of dentinal caries. J Contemp Dent Pract. 2010;11(1):1–12.Google Scholar
  46. 46.
    Levallois B, Terrer E, Panayotov Y, Salehi H, Tassery H, Tramini P, et al. Molecular structural analysis of carious lesions using micro-Raman spectroscopy. Eur J Oral Sci. 2012;120(5):444–51.PubMedCrossRefGoogle Scholar
  47. 47.
    Panayotov I, Terrer E, Salehi H, Tassery H, Yachouh J, Cuisinier FJG, et al. In vitro investigation of fluorescence of carious dentin observed with a Soprolife® camera. Clin Oral Investig. 2012;17(3):757–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Salehi H, Terrer E, Panayotov I, Levallois B, Jacquot B, Tassery H, et al. Functional mapping of human sound and carious enamel and dentin with Raman spectroscopy. J Biophotonics. 2012.Google Scholar
  49. 49.
    Rechmann P, Rechmann BMT, Featherstone JDB. Caries detection using light-based diagnostic tools. Compend Contin Educ Dent. 2012;33(8):582–4, 6, 8–93; quiz 94, 96.PubMedGoogle Scholar
  50. 50.
    Gomez J, Tellez M, Pretty IA, Ellwood RP, Ismail AI. Non-cavitated carious lesions detection methods: a systematic review. Community Dent Oral Epidemiol. 2013;41(1):54–66.PubMedCrossRefGoogle Scholar
  51. 51.
    Gomez J, Zakian C, Salsone S, Pinto SCS, Taylor A, Pretty IA, et al. In vitro performance of different methods in detecting occlusal caries lesions. J Dent. 2013;41(2):180–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Sitbon Y, Attathom T, St-Georges AJ. Minimal intervention dentistry II: part 1. Contribution of the operating microscope to dentistry. Br Dent J. 2014;216(3):125–30.PubMedCrossRefGoogle Scholar
  53. 53.
    Erten H, Üçtasli MB, Akarslan ZZ, Uzun Ö, Semiz M. Restorative treatment decision making with unaided visual examination, intraoral camera and operating microscope. Oper Dent. 2006;31(1):55–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Perrin P, Ramseyer ST, Eichenberger M, Lussi A. Visual acuity of dentists in their respective clinical conditions. Clin Oral Investig. 2014;18(9):2055–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Rechmann P, Charland D, Rechmann BMT, Featherstone JDB. Performance of laser fluorescence devices and visual examination for the detection of occlusal caries in permanent molars. J Biomed Opt. 2012;17(3):036006.PubMedCrossRefGoogle Scholar
  56. 56.
    Zeitouny M, Feghali M, Nasr A, Abou-Samra P, Saleh N, Bourgeois D, et al. SOPROLIFE system: an accurate diagnostic enhancer. Scientific World J. 2014;2014:Article ID 924741.Google Scholar
  57. 57.
    Jablonski-Momeni A, Schipper HM, Rosen SM, Heinzel-Gutenbrunner M, Roggendorf MJ, Stoll R, et al. Performance of a fluorescence camera for detection of occlusal caries in vitro. Odontology. 2011;99(1):55–61.PubMedCrossRefGoogle Scholar
  58. 58.
    Seremidi K, Lagouvardos P, Kavvadia K. Comparative in vitro validation of VistaProof and DIAGNOdent pen for occlusal caries detection in permanent teeth. Oper Dent. 2012;37(3):234–45.PubMedCrossRefGoogle Scholar
  59. 59.
    Souza JF, Boldieri T, Diniz MB, Rodrigues JA, Lussi A, Cordeiro RCL. Traditional and novel methods for occlusal caries detection: performance on primary teeth. Lasers Med Sci. 2013;28(1):287–95.PubMedCrossRefGoogle Scholar
  60. 60.
    Rodrigues JA, Hug I, Diniz MB, Cordeiro RCL, Lussi A. The influence of zero-value subtraction on the performance of two laser fluorescence devices for detecting occlusal caries in vitro. J Am Dent Assoc. 2008;139(8):1105–12.CrossRefGoogle Scholar
  61. 61.
    Rodrigues JA, Hug I, Diniz MB, Lussi A. Performance of fluorescence methods, radiographic examination and ICDAS II on occlusal surfaces in vitro. Caries Res. 2008;42(4):297–304.PubMedCrossRefGoogle Scholar
  62. 62.
    Diniz MB, Boldieri T, Rodrigues JA, Santos-Pinto L, Lussi A, Cordeiro RCL. The performance of conventional and fluorescence-based methods for occlusal caries detection: an in vivo study with histologic validation. J Am Dent Assoc. 2012;143(4):339–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Diniz MB, Sciasci P, Rodrigues JA, Lussi A, Cordeiro RCL. Influence of different professional prophylactic methods on fluorescence measurements for detection of occlusal caries. Caries Res. 2011;45(3):264–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Fried D, Featherstone JDB, Darling CL, Jones RS, Ngaotheppitak P, Bühler CM. Early caries imaging and monitoring with near-infrared light. Dent Clin North Am. 2005;49(4):771–93. vi.PubMedCrossRefGoogle Scholar
  65. 65.
    Ngaotheppitak P, Darling CL, Fried D, Bush J, Bell S, editors. PS-OCT of occlusal and interproximal caries lesions viewed from occlusal surfaces. roc. SPIE 6137, Lasers in Dentistry XII, 61370L, 2006; doi: 10.1117/12.661795.
  66. 66.
    Fried D, Staninec M, Darling CL, Chan KH, Pelzner RB. Clinical monitoring of early caries lesions using cross polarization optical coherence tomography. Proc Soc Photo Opt Instrum Eng. 2013;8566.Google Scholar
  67. 67.
    Hosoya Y, Matsuzaka K, Inoue T, et al. Influence of tooth-polishing pastes and sealants on DIAGNOdent values. Quintessence Int. 2004;35:605–11.Google Scholar
  68. 68.
    Jones RS, Darling CL, Featherstone JDB, Fried D. Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography. Caries Res. 2006;40(2):81–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Manton DJ. Diagnosis of the early carious lesion. Aust Dent J. 2013;58:35–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Featherstone JD, Domejean-Orliaguet S, Jenson L, Wolff M, Young DA. Caries risk assessment in practice for age 6 through adult. J Calif Dent Assoc. 2007;35(10):703.PubMedGoogle Scholar
  71. 71.
    Featherstone JDB. The science and practice of caries prevention. J Am Dent Assoc. 2000;131(7):887–900.PubMedCrossRefGoogle Scholar
  72. 72.
    Fejerskov O. Changing paradigms in concepts on dental caries: consequences for oral health care. Caries Res. 2004;38(3):182–91.PubMedCrossRefGoogle Scholar
  73. 73.
    Pitts NB, Ismail AI, Martignon S, Ekstrand K, Douglas GVA, Longbottom C. ICCMS™ Guide for practitioners and educators. In: Management GCfC, editor. 2014.Google Scholar
  74. 74.
    Koubi G, Colon P, Franquin J-C, Hartmann A, Richard G, Faure M-O, et al. Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth – a prospective study. Clin Oral Investig. 2013;17(1):243–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Banerjee A, Thompson ID, Watson TF. Minimally invasive caries removal using bio-active glass air-abrasion. J Dent. 2011;39(1):2–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Preventive and Restorative DepartmentMarseille Dental School, Aix-Marseille UniversityMarseilleFrance
  2. 2.Laboratory EA 4203Montpellier UniversityMontpellierFrance
  3. 3.Elsdon Storey Chair of Child Dental Health, Growth and Development SectionMelbourne Dental School, University of MelbourneParkvilleAustralia

Personalised recommendations