Skip to main content

The Influence of the Geomagnetic Field in Climate Changes

  • Chapter
  • First Online:
Marine Isotope Stage 3 in Southern South America, 60 KA B.P.-30 KA B.P.

Abstract

The present authors propose in this paper that a connection exists between the variations of the Earth’s magnetic field during polarity reversal and climate change. The mechanism by which the variations of the internal magnetic field could trigger climate changes would be produced by the influence of the internal magnetic field on Galactic Cosmic Rays (GCR) , since the geomagnetic field (GF) provides shielding to such radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashton N, Lewis SG, Parfitt SA, Penkman KEH, Coope GR (2008) New evidence for complex climate change in MIS 11 from Hoxne, Suffolk, UK. Quat Sci Rev 27:652–668

    Article  Google Scholar 

  • Aubert J, Labrosse S, Poitou C (2009) Modelling the palaeo-evolution of the geodynamo. Geophys J Int 179:1414–1428

    Article  Google Scholar 

  • Bard E, Frank M (2006) Climate change and solar variability: what’s new under the sun? Earth and Planet Sci Lett 248:1–14

    Article  Google Scholar 

  • Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 5(2):985–992

    Article  Google Scholar 

  • Beer JS, Tobias S, Weiss N (1998) An active sun trough the maunder minimum. Solar Phys 181:237–249

    Article  Google Scholar 

  • Berhanu M, Moncaux R, Fauve S, Mordant N, Pétrélis F, Chiffaudel A, Daviaud F et al (2007) Magnetic field reversals in an experimental turbulent dynamo. Europhy Lett 77(590):01

    Google Scholar 

  • Biggin J, Steinberger B, Aubert J, Suttie N, Holme R, Torsvik TH, van der Meer DG, van Hinsbergen DJJ (2012) Possible links between long-term geomagnetic variations and whole-mantle convection processes. Nat Geosci. doi:10.1038/NGEO1521

    Google Scholar 

  • Bourne M, Niocaill CM, Thomas AL, Knudsen MF, Henderson GM (2012) Rapid directional changes associated with a 6.5 kyr-long Blake geomagnetic excursion at the Blake-Bahama Outer Ridge. Earth and Planet Sci Lett 333–334:21–34. doi:10.1016/j.epsl.2012.04.017

    Article  Google Scholar 

  • Brown MC, Holme R, Bargery A (2007) Exploring the influence of the non-dipole field on magnetic records for field reversals and excursions. Geophys J Int 168:541–550

    Article  Google Scholar 

  • Bucha V, Bucha V Jr (1998) Geomagnetic forcing of changes in climate and in the atmospheric circulation. J Atmos Solar-Terrestrial Phys 60(1):145–169

    Article  Google Scholar 

  • Callis LB, Boughner RE, Natarajan M, Lambeth JB, Baker DN, Blake JB (1991) Ozone depletion in the high latitude lower stratosphere: 1979–1990. J Geophys Res 96:2921–2937

    Article  Google Scholar 

  • Candy I, Schreve DC, Sherriff J, Tye GJ (2014) Marine isotope stage 11: palaeoclimates, palaeoenvironments and its role as an analogue for the current interglacial. Earth-Sci Rev 128:18–51

    Article  Google Scholar 

  • Carlut J, Courtillot V (1998) How complex is the time-averaged field over the past 5 Myr? Geophys J Int 134:527–544

    Article  Google Scholar 

  • Channell JET (2006) Late Brunhes polarity excursions (Mono Lake, Laschamp, Iceland Basin and Pringle Falls) recorded at ODP Site 919 (Irminger Basin). Earth Planet Sci Lett 244:378–393

    Article  Google Scholar 

  • Channell JET, Lehman B (1997) The last two geomagnetic polarity reversals recorded in high deposition-rate sediments drifts. Nature 389:712–715

    Article  Google Scholar 

  • Channell JET, Curtis JH, Flower BP (2004) The Matuyama-Brunhes boundary interval (500–900 ka) in North Atlantic drift sediments. Geophys J Int 158(4):89–505

    Google Scholar 

  • Chanell JET, Hodell DA, Curtis JH (2012) ODP site 1063 (Bermuda Rise) revisited: oxygen isotopes, excursions and paleointensity in the Brunhes Chron. Geochem Geophys Geosyst 13(2):27

    Article  Google Scholar 

  • Channell JET, Wright JD, Mazaud A, Stoner JS (2014) Age through tandem correlation of quaternary relative paleointensity (RPI) and oxygen isotope data at IODP Site U1306 (Eirik Drift, SW Greenland). Quat Sci Rev 88:135–146

    Article  Google Scholar 

  • Christensen UR, Aubert J (2006) Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys J Int 166(1):97–114

    Google Scholar 

  • Coe RS, Prévot M (1989) Evidence suggesting extremely rapid field variation during a geomagnetic reversal. Earth Planet Sci Lett 92:292–298

    Article  Google Scholar 

  • Coe RS, Prévot M, Camps P (1995) New evidence for extraordinarily rapid change of the geomagnetic field during a reversal. Nature 374:687–692

    Article  Google Scholar 

  • Courtillot V, Gallet Y, Le Mouel JL, Fluteau F, Genevey A (2007) Are there connections between the earth’s magnetic field and climate? Earth Planet Sci Lett 253:328–339

    Article  Google Scholar 

  • Cox A, Doell DR, Dalrymple GB (1963) Geomagnetic polarity epochs and pleistocene geochronometry. Nature 198:1049–1952

    Article  Google Scholar 

  • Dagley P, Lawley E (1974) Paleomagnetic evidence for the transitional behavior of the geomagnetic field. Geophys J R Astron Soc 36:577–598

    Article  Google Scholar 

  • De Jager C, Duhau S (2009) The variable solar dynamo and the forecast of solar activity. Influence in terrestrial surface temperature, In: Cossia J (ed) Global warming of the 21th century, NOVA Science Publishers, available November 2011 in http://www.cdejager.com/wp-content/uploads/2008/09/2010-Variable-solar-dynamo3.pdf

  • Desorgher L, Flückiger EO, Gurtner M, Moser MR, Bütikofer R (2005) Atmocosmics: a Geant4 code for computing the interaction of cosmic rays with the earth’s atmosphere. Int J Mod Phys A 20:6802–6804

    Article  Google Scholar 

  • Dorman LI (2004) Cosmic rays in the earth’s atmosphere and underground, Chap. 12. Springer, New York, 855 p

    Google Scholar 

  • Dormy E, Valet JP, Courtillot V (2000) Numerical models of the geodynamo and observational constraints. Geochem Geophys Geosyst 1, 2000GC00062

    Google Scholar 

  • Driscoll P, Olson P (2009) Effects of buoyancy and rotation on the polarity reversal frequency of gravitationally driven numerical dynamos. Geophys J Int 178:1337–1350

    Article  Google Scholar 

  • Duhau S (2002) Two coupled 88 and 22 year oscillators in the modulation of sunspot cycles. Anales AFA 13:37 (Buenos Aires)

    Google Scholar 

  • Duhau S (2003a) Solar variability as an input to the earth’s environment, proceedings of ISCS 2003, Tatranska Lomnica. Slovak Republic. In: A Wilson (ed) ESA SP-535, p. 91

    Google Scholar 

  • Duhau S (2003b) An early prediction of maximum sunspot cycle 24. Solar Phys 213:203–212

    Article  Google Scholar 

  • Duhau S (2005) Long term variations in solar magnetic field, geomagnetic field and climate. In: Procceding of 9th Asian-pacific regional IAU meeting

    Google Scholar 

  • Duhau S (2013) Un Nuevo mecanismo de amplificación de la irradiancia solar en la modulación de las grandes fluctuaciones climáticas. Abstract “Simposio Multidisciplinario: El Estadio Isotópico 3 en la Argentina y el sur de América del Sur: 60.000 a 25.000 años atrás”, 27 and 28 June 2013, La Plata, Argentina, p 9

    Google Scholar 

  • Duhau S, Chen A (2002) The sudden increases of solar and geomagnetic activity after 1923 as a manifestation of a non-linear solar dynamo. Geophys Res Lett 13:1–6

    Google Scholar 

  • Duhau S, Martinez EA (1995) On the origin of the fluctuations in the length of day and in the geomagnetic field on a decadal time scale. Geophys Res Lett 22(23):3283–3286

    Article  Google Scholar 

  • Duhau S, Martínez EA (2012) Solar dynamo transitions as drivers of sudden climate changes. Global warming-impacts and future perspectives, INTECH Open Science/Open Minds, pp 185–204

    Google Scholar 

  • Dumberry M, Bloxham J (2006) Azimuthal flows in the Earth’s core and changes in length of day at millennial timescales. Geophys J Int 165(1):32–46

    Article  Google Scholar 

  • Fröhlich C, Lean J (2004) Solar radiative output and its variability: evidence and mechanisms. Astron Astrophys Rev 12:273–320

    Article  Google Scholar 

  • Gallet Y, Genevey A, Fluteau F (2005) Does earth’s magnetic secular variation control centennial climate change? Earth Planet Sci Lett 236:339–347

    Article  Google Scholar 

  • Gee JS, Kent DV (2007) Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. In: Kono M (ed) Treatise Geophysics, vol 5 Geomagnetism, pp 455–507

    Google Scholar 

  • Goguitchaichvili A, Camps P, Urrutia-Fucugauchi J (2001) On the features of the geodynamo following reversals or excursions: by absolute geomagnetic paleointensity data. Phys Earth Planet Int 124:81–93

    Article  Google Scholar 

  • Gonzalez WD, Tsurutani BT, de Gonzalez ALC (1999) Interplanetary origin of geomagnetic storms. Space Sci Rev 88:529–562

    Article  Google Scholar 

  • Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, van Geel B, White W (2010) Solar influences on climate. Rev Geophys 48:RG4001. doi:10.1029/2009RG000282

  • Greff-Lefftz M (2011) Length of day variations due to mantle dynamics at geological timescale. Geophys J Int 187(2):595–612

    Article  Google Scholar 

  • Golovkov VP (1983) Dynamics of the geomagnetic field and the internal structure of the earth. In: Bucha V (ed) Magnetic field and processes in the earth’s interior. Czeck Acad Sci, Pragúe, pp 395–501

    Google Scholar 

  • Guyodo Y, Valet JP (1999) Global changes in intensity of the earth’s magnetic field during the past 800 kyr. Nature 399:249–252

    Article  Google Scholar 

  • Haigh JD (1994) The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature 370:544–546

    Article  Google Scholar 

  • Haigh JD (2003) The effects of solar variability on the earth’s climate. Philos Trans R Soc Lond A 361:95–111

    Article  Google Scholar 

  • He H, Pan Y, Tauxe L, Qin H, Zhu R (2008) Toward age determination of the M0r (Barremian–Aptian boundary) of the early Cretaceous. Phys Earth Planet Inter 169:41–48

    Article  Google Scholar 

  • Hoffman KA (1991) Long-lived transitional states of the geomagnetic field and the two dynamo families. Nature 354:273–277

    Article  Google Scholar 

  • Hoffman KA (1992) Dipolar reversal states of the geomagnetic field and core–mantle dynamics. Nature 359:789–794

    Article  Google Scholar 

  • Hoffman KA (2000) Temporal aspects o f the last reversal of earth’s magnetic field. Phil Trans R Soc Lond A 358:1181–1190

    Article  Google Scholar 

  • Hoffman KA, Singer BS (2004) Regionally recurrent paleomagnetic transitional fields and mantle processes. AGU Geophys Monogr 145:233–243

    Google Scholar 

  • Holme R, de Viron O (2013) Characterization and implications of intradecadal variations in length of day. Nature 499(7457):202–204

    Article  Google Scholar 

  • Houmark-Nielsen M (2010) Extent, age and dynamics of marine isotope stage 3 glaciations in the southwestern Baltic Basin. Boreas. doi:10.1111/j.1502-3885.2009.00136.x

    Google Scholar 

  • Jackman CH, McPeters H (2004) The effect of solar proton events on ozone and other constituents, In: Pap JM, Fox P (eds), Solar variability and its effect on climate, AGU Geophys Monogr 141, pp. 305–319

    Google Scholar 

  • Jackson A, Jonkers A, Walker M (2000) Four centuries of geomagnetic secular variation from historical records. Phil Trans R Soc Lond 358:957–990. doi:10.10.98/rsta.0569

    Article  Google Scholar 

  • Jadin EA (1999) Interannual variation of total ozone and stratospheric angular momentum. Int J Geomag Aeronomy 1(2):169–180

    Google Scholar 

  • Kelly P, Gubbins D (1997) The geomagnetic field over the past 5 million years. Geophys J Int 128 (2):315–330

    Google Scholar 

  • Kirkby J, Curtius J, Almeida J, Dunne E, Duplissy J, Ehrhart S, Franchin A, Gagne S, Ickes L, Kurten A, Kupc A, Metzger A, Riccobono F, Rondo L, Schobesberger S, Tsagkogeorgas G, Wimmer D, Amorim A, Bianchi F, Breitenlechner M, David A, Dommen J, Downard A, Ehn M, Flagan RC, Haider S, Hansel A, Hauser D, Jud W, Junninen H, Kreissl F, Kvashin A, Laaksonen A, Lehtipalo K, Lima J, Lovejoy ER, Makhmutov V, Mathot S, Mikkila J, Minginette P, Mogo S, Nieminen T, Onnela A, Pereira P, Petaja T, Schnitzhofer R, Seinfeld JH, Sipila M, Stozhkov Y, Stratmann F, Tome A, Vanhanen J, Viisanen Y, Vrtala A, Wagner PE, Walther H, Weingartner E, Wex H, Winkler PM, Carslaw KS, Worsnop DR, Baltensperger U, Kulmala M (2011) Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476(7361):429–433

    Google Scholar 

  • Kitaba I, Hyodo M, Katoh S, Dettman DL, Sato H (2013) Midlatitude cooling caused by geomagnetic field minimum during polarity reversal. Proc Natl Acad Sci 110(4):1215–1220

    Article  Google Scholar 

  • Kerminen VM, Paramonov M, Anttila T, Riipinen I, Fountoukis C, Korhonen H, Asmi E, Laakso L, Lihavainen H, Swietlicki E, Svenningsson B, Asmi A, Pandis SN, Kulmala M, Petäjä T (2012) Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmos Chem Phys 12(24):12037–12059

    Article  Google Scholar 

  • Korte M, Constable CG (2005) Continuous geomagnetic models for the past 7 millennia II: CALS7K. Geochem Geophys Geosyst 6(1). doi:10.1029/2004GC000801

  • Koutsodendris A, Pross J, Müller UC, Brauer A, Fletcher WJ, Kühl N, Kirilova EP, Verhagen FTM, Lücke A, Lotter AF (2012) A short-term climate oscillation during the Holsteinian interglacial (MIS 11c): An analogy to the 8.2 ka climatic event? Global Planet Change 92–93:224–235. doi:10.1016/j.gloplacha.2012.05.011

    Article  Google Scholar 

  • Kutzner C, Christensen UR (2004) Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths. Geophys J Int 157:1105–1118

    Article  Google Scholar 

  • Laj C, Channell JET (2007) Geomagnetic excursions. In: Kono M (ed) Treatise on geophysics 5, geomagnetism. Elsevier, Amsterdam, pp 373–416

    Chapter  Google Scholar 

  • Laj C, Mazaud A, Weeks R, Fuller M, Herrero-Bervera E (1991) Geomagnetic reversal paths. Nature 351:447–448

    Article  Google Scholar 

  • Laj C, Kissel C, Roberts AP (2006) Geomagnetic field behaviour during the Iceland Basin and Laschamp geomagnetic excursions: a simple transitional field geometry? Geochem Geophys Geosyst 7(3). doi:10.1029/2005GC001122

    Google Scholar 

  • Lal L, Peters B (1967) Cosmic ray produced radioactivity on the earth, Handbuch der Physik, XLVI/2. Springer, Berlin, pp 551–612

    Google Scholar 

  • Lanci L, Kissel C, Leonhardt R, Laj C (2008) Morphology of the Iceland Basin excursion from a spherical harmonics analysis and an iterative Bayesian inversion procedure of sedimentary records. Phys Earth Planet Interiors 169:131–139

    Article  Google Scholar 

  • Langereis CG, Dekkers MJ, De Lange GJ, Paterne M, Van Santvoort PJM (1997) Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern mediterranean piston core and dating of short events in the Brunhes. Geophys J Int 129(1):75–94

    Google Scholar 

  • Langereis CG, Krijgsman W, Muttoni G, Menning M (2010) Magnetostratigraphy—concepts, definitions, and applications. Newslett Stratigr 43:207–233

    Article  Google Scholar 

  • Lario D, Simmet G (2004) Solar Energetic particle variations. In: Pap JM, Fox P (eds) Solar variability and its effects on climate. AGU Geophys Monogr 141, pp 195–220

    Google Scholar 

  • Lean J (2005) Living with a variable sun. Phys Today 6:32–38

    Article  Google Scholar 

  • Lean J, Rind D (1999) Evaluating sun-climate relationships since the little ice age. J Atmosph Solar-Terr Phys 61:25–36

    Article  Google Scholar 

  • Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22:3195–3198

    Article  Google Scholar 

  • Le Mouël JL, Blanter E, Shnirmanm M, Cortillot V (2010) Solar forcing of the semi-annual variation of length-of-day. Geophys Res Lett 37:L15307 (5 p). doi:10.1029/2010GL043185

    Google Scholar 

  • Leonhardt R, Fabian K (2007) Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification. Earth Planet Sci Lett 253:172–195

    Article  Google Scholar 

  • Lisiecki LE, Raymo ME (2012) Atlantic and Pacific 800 KYr benthic d18O stacks. IGBP PAGES/world data center for paleoclimatology data contribution series# 2012-115. NOAA/NCDC Paleoclimatology Program, Boulder CO, USA

    Google Scholar 

  • Love JJ (1998) Paleomagnetic volcanic data and geometric regularity of reversals and excursions. J Geophys Res 103(B6):12,435–12,452

    Google Scholar 

  • Loper DE (1992) On the correlation between mantle plume flux and the frequency of reversals of the geomagnetic field. Geophys Res Lett 19(1):25–28

    Article  Google Scholar 

  • Loper DE, McCartney K (1986) Mantle plumes and the periodicity of magnetic field reversals. Geophys Res Lett 13:1525–1528

    Article  Google Scholar 

  • Lourens LJ (2004) Revised tuning of ocean drilling program site 964 and KC01B (Mediterranean) and implications for the δ18O, tephra, calcareous nannofossil, and geomagnetic reversal chronologies of the past 1.1 Myr. Paleoceanography 19(3)

    Google Scholar 

  • Macrì P, Sagnotti L, Dinarès-Turell J, Caburlotto A (2005) A composite record of late pleistocene relative geomagnetic paleointensity from the Wilkes Land Basin (Antarctica). Phys Earth Planet Int 151(3):223–242

    Article  Google Scholar 

  • Macrì P, Sagnotti L, Dinarès-Turell J, Caburlotto A (2010) Relative geomagnetic paleointensity of the Brunhes Chron and the Matuyama-Brunhes precursor as recorded in sediment core from Wilkes Land Basin (Antarctica). Phys Earth Planet Int 179:72–86

    Article  Google Scholar 

  • Mankinen EA, Prévot M, Grommé CS, Coe RS (1985) The steens mountain (Oregon) geomagnetic polarity transition. 1. Directional history, duration of episodes, and rock magnetism. J Geophys Res 90(10393–10):416

    Google Scholar 

  • Marsh ND, Svensmark H (2000) Low cloud properties influenced by cosmic rays. Phys Rev Lett 85:5004–5007

    Article  Google Scholar 

  • Mazaud A, Channell JET (1999) The top Olduvai polarity transition at ODP Site 983 (Iceland Basin). Earth Planet Sci Lett 16(6):1–13

    Article  Google Scholar 

  • Mazaud A, Channell JET, Xuan C, Stoner JS (2009) Upper and lower Jaramillo polarity transitions recorded in IODP Expedition 303 North Atlantic sediments: Implications for transitional field geometry. Phys Earth Planet Sci 172:131–140

    Article  Google Scholar 

  • Milankovitch M (1920) Théorie Mathématique de phénomènes thermiques produits par la radiation solaire. Gauthiers-Volars, Paris

    Google Scholar 

  • Mörner N-A (2010) Solar minima, earth’s rotation and little ice ages in the past and in the future. The North Atlantic—European case. Glob Planet Change 72:282293

    Article  Google Scholar 

  • Mörner N (2013) Solar wind, earth’s rotation and changes in terrestrial climate. Phys Rev Res Int 3(2):117–136

    Google Scholar 

  • Negrini RM, McCuan DT, Horton RA, Lopez JD, Cassata WS, Channell JE, Verosub KL, Knott JR, Coe RS, Liddicoat JC, Lund SP, Benson LV, Sarna-Wojcicki AM (2014) Nongeocentric axial dipole field behavior during the Mono Lake excursion. J Geophys Res Solid Earth 119(4):2567–2581

    Article  Google Scholar 

  • Ney EP (1959) Cosmic radiation and the weather. Nature 183:451–452

    Article  Google Scholar 

  • Nowaczyk NR, Antonow M (1997) High resolution magnetostratigraphy of four sediment cores from the Greenland Sea. I. Identification of the Mono Lake excursion, Laschamp and Biwa I/Jamaica geomagnetic polarity events. Geophys J Int 131:310–324

    Article  Google Scholar 

  • Nowaczyk N, Frederichs T (1999) Geomagnetic events and relative paleointensity variations during the last 300 ka as recorded in Kolbeinsey Ridge sediments, Iceland Sea, indication for a strongly variable geomagnetic field. Int J Earth Sci 88:116–131

    Article  Google Scholar 

  • O’Brien K (2005) The theory of cosmic-ray and high-energy solar-particle transport in the atmosphere. In: McLaughlin JP, Simopoulos SE, Steinhusler F (eds) Proceedings of the 7th international symposium on the natural radiation environment. Elsevier, New York, pp 29–44

    Google Scholar 

  • O’Regan M, King J, Backman J, Jakobsson M, Palike H, Moran K, Heil C, Sakamoto T, Cronin TM, Jordan RW (2008) Constraints on the pleistocene chronology of sediments from the lomonosov ridge. Paleoceanography 23, PA1S19. doi:10.1029/2007PA001551

    Google Scholar 

  • Ogurtsov MG, Nagovitsyn YA, Kocharov GE, Jungner H (2002) Long-period cycles of the sun’s activity recorded in direct solar data and proxies. Solar Phys 11:371–394

    Article  Google Scholar 

  • Ogg JG (2004) In: Gradstein FM, Ogg JG, Smith AG (eds) A geological time scale. Cambridge University Press, Cambridge, pp 307–339

    Google Scholar 

  • Olson P (2007) Gravitational dynamos and the low-frequency geomagnetic secular variation. Proc Natl Acad Sci USA 105:20159–20166

    Article  Google Scholar 

  • Palmer MA, Gray LJ, Allen MR, Norton WA (2004) Solar forcing of climate: model results. Adv Space Res 34:343–348

    Article  Google Scholar 

  • Pavlov V, Gallet Y (2005) A third superchron during the early paleozoic. Episode 28:78–84

    Google Scholar 

  • Prévot M, Mankinen EA, Grommé CS, Coe R (1985) How the geomagnetic field vector reverses polarity. Nature 316:230–234

    Article  Google Scholar 

  • Prevot M, Derder ME, McWilliams M (1990) Intensity of the earth’s magnetic field: evidence for a Mesozoic dipole low. Earth Planet Sci Lett 97:129–139

    Article  Google Scholar 

  • Prévot M, Mankinen EA, Gromme CS, Coe RS (1993) Absence of longitudinal confinement of poles in volcanic records of geomagnetic reversals. Nature 366:53–57

    Article  Google Scholar 

  • Rial JA, Pielke RA Sr, Beniston M, Claussen M, Canadell J, Cox P, Held H, de Noblet-Ducoudre N, Prinn R, Reynolds J, Salas JD (2004) Nonlinearities, feedbacks and critical thresholds within the Earth’s climate system. Clim Change 65(1–2):11–38

    Article  Google Scholar 

  • Ruddiman WF (2006) Orbital changes and climate. Quat Sci Rev 25(23):3092–3112

    Article  Google Scholar 

  • Schove DJ (1955) The sunspot cycle, 649 BC to AD 2000. J Geophys Res 60(2):127–146

    Article  Google Scholar 

  • Shi RP, Zhu RX (2002) Possible links between abnormal geological events and geodynamics during Cretaceous. Progress Geophys 17(2):295–300

    Google Scholar 

  • Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) A Solar forcing of regional climate change during the Maunder minimum. Science 294:2149–2152

    Google Scholar 

  • Singer BS, Jicha BR, Kirby BT, Geissman JW, Herrero-Bervera E (2008) 40Ar/39Ar dating links albuquerque volcanoes to the Pringle falls excursion and the geomagnetic instability time scale. Earth Planet Sci Lett 267(3):584–595

    Article  Google Scholar 

  • Snowball I, Sangren P (2004) Geomagnetic field intensity changes in Sweden between 9000 and 450 cal BP: extending the record of “archaeomagnetic jerks” by means of lake sediments and the pseudo-Thellier technique. Earth Planet Sci Lett 227:361–376

    Article  Google Scholar 

  • Solanki SK, Usoskin IG, Kromer B, Schüssler M, Beer J (2004) Unusual activity of the sun during recent decades compared to the previous 11,000 years. Nature 431:1–12

    Article  Google Scholar 

  • Solanki SK, Krivova NA, Haigh JD (2013) Solar irradiance variability and climate. Ann Rev Astron Astrophys 51:311–351

    Article  Google Scholar 

  • Solomon S (ed) (2007) Climate change 2007-the physical science basis: working group I contribution to the fourth assessment report of the IPCC (vol 4). Cambridge University Press, Cambridge

    Google Scholar 

  • Sonnett CP, Finney SA (1990) The spectrum of radiocarbon. Philos Trans R Soc Lond 30A:413–426

    Article  Google Scholar 

  • Soon W (2005) Variable solar irradiance as a plausible agent for multidecadal variations in the arctic-wide surface air temperature record of the past 130 years. Geophys Res Lett 32:L16712. doi:10.1029/2005GL023429

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V., Midgley PM (eds) (2013) IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, 1535 p

    Google Scholar 

  • Svensmark H (1998) Influence of cosmic rays on earth’s climate. Phys Rev Lett 81:5027–5030

    Article  Google Scholar 

  • Svensmark H, Friis-Christensen E (1997) Variation of cosmic ray flux and global cloud coverage—a missing link in solar—climate relationships. J Atmos Sol Terr Phys 59:1225–1232

    Google Scholar 

  • Teed RJ, Jones CA, Tobias SM (2014) The transition to earth-like torsional oscillations in magnetoconvection simulations, (preprint available: http://www1.maths.leeds.ac.uk/~rjteed/2013GJIpp.pdf)

  • Tinsley BA, Yu F (2004) Atmosferic ionization and clouds as links between solar activity and climate. In: Pap JM, Fox P (eds) Solar variability and its effect on climate, geophysical monograph series, vol 141, pp 321–339

    Google Scholar 

  • Tominaga M, Sager WW, Tivey MA, Lee SM (2008) Deep-tow magnetic anomaly study of the Pacific Jurassic Quiet Zone and implications for the geomagnetic polarity reversal timescale and geomagnetic field behavior. J Geophys Res Sol Ea 113:B07110

    Article  Google Scholar 

  • Usoskin IG, Gladysheva OG, Kovaltsov GA (2004) Cosmic ray induced ionization in the atmosphere: spatial and temporal changes. J Atmos Sol Terr Phys 66(18):1791–1796

    Article  Google Scholar 

  • Usoskin IG, Schüssler M, Solanki SK, Mursula K (2005) Solar activity, cosmic rays, and earth’s temperature: a millennium scale comparison. J Geophys Res 110:A 10102. doi:10.1029/2004JA010946

    Article  Google Scholar 

  • Valet JP, Herrero-Bervera E (2003) Characteristics of geomagnetic reversals inferred from detailed volcanic records. C R Acad Sci Paris 335:79–90

    Google Scholar 

  • Valet JP, Tucholka P, Courtillot V, Meynadier L (1992) Paleomagnetic constraints on the geometry of the geomagnetic field during reversals. Nature 356:400–407

    Article  Google Scholar 

  • Valet JP, Plenier G (2008) Simulations of a time-varying non-dipole field during geomagnetic reversals and excursions. Phys Earth Planet Sc 169:178–193

    Article  Google Scholar 

  • Valet JP, Fournier A, Courtillot V, Herrero-Bervera E (2012) Dynamical similarity of geomagnetic field reversals. Nature 490:89–93

    Article  Google Scholar 

  • Vaquero JM, Gallego MC, Garcıa JA (2002a) A 250-year cycle in naked-eye observations of sunspot. Geophys Res Lett 29(20):1997

    Google Scholar 

  • Vaquero JM, Sanchez-Bajo F, Gallego MC (2002b) On the reliability of the de la rue sunspot area measurements. Solar Phys 209:311–319

    Article  Google Scholar 

  • Vieira LEA, da Silva LA (2006) Geomagnetic modulation of cloud effect in the southern hemisphere magnetic anomaly through lower atmosphere cosmic ray effects. Geophys Res Lett 33:L14802. doi:10.1029/2006GL026389

  • Vonmoos M, Beer J, Muscheler R (2006) Large variations in Holocene solar activity: constraints from 10Be in the Greenland ice core project ice core. J Geophys Res 111:A10105. doi:10.1029/2005JA011500

    Article  Google Scholar 

  • Wagner G, Beer J, Laj C, Kissel C, Masarik J, Muscheler R, Synal HA (2000) Chlorine-36 evidence for the mono lake event in the summit GRIP ice core. Earth Planet Sci Lett 181:1–6

    Article  Google Scholar 

  • Ward PL (2009) Sulfur dioxide initiates global climate change in four ways. Thin Solid Films 517(11):3188–3203

    Article  Google Scholar 

  • Yamazaki T, Oda H (2002) Orbital influence on earth’s magnetic field: 100,000-year periodicity in inclination. Science 295:2435–2438

    Article  Google Scholar 

  • Yamazaki T, Oda H (2004) Intensity-inclination correlation on long-term secular variation of the geomagnetic field and its relevance to persistent non-dipole component. AGU monograph 145 “timescales of the internal geomagnetic field”, pp 287–298

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Julia Orgeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Orgeira, M.J., Sinito, A.M., Compagnucci, R.H. (2016). The Influence of the Geomagnetic Field in Climate Changes. In: Gasparini, G., Rabassa, J., Deschamps, C., Tonni, E. (eds) Marine Isotope Stage 3 in Southern South America, 60 KA B.P.-30 KA B.P.. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-40000-6_4

Download citation

Publish with us

Policies and ethics