Skip to main content

Molecular Diversity Studies in Lake Pavin Reveal the Ecological Importance of Parasitic True Fungi in the Plankton

  • Chapter
  • First Online:
Lake Pavin

Abstract

Parasitism is one of the most common symbiotic interactions, occurring in almost all environments. Microbial parasites are typically characterized by their small size, a short generation time, high rates of reproduction, and a simple life cycle usually completed within a single host. Microbial parasites are phylogenetically diverse and ubiquitous in aquatic ecosystems, comprising viruses, prokaryotes and eukaryotes. Pioneering environmental 18S-rDNA surveys of microbial eukaryotes in Lake Pavin, France, revealed the presence of a high diversity of undescribed eukaryotes, primarily affiliated to the fungal phylum Chytridiomycota (chytrids), and more than likely playing major roles as infecting agents in the system. These early diverging fungi produce free-swimming dispersal propagules characterized by a small size (2–8 μm) and a single, posterior flagellum. These characteristics make chytrids part of the so-called ‘zoosporic fungi’. Chytrids are particularly adapted to a planktonic lifestyle and have been shown to infect a wide variety of hosts, including fish, eggs, zooplankton, other aquatic fungi, and primarily phytoplankton in aquatic environments. Related ecological implications are important for pelagic food webs. Released organic particles resulting from the death of infected hosts can be used as substrates for other microbial processes, and zoospores themselves can provide nutrient-rich particles for planktonic grazers. The application of the plankton ecology group (PEG) model on Lake Pavin indicated that chytrid epidemics could represent an important driving factor for phytoplanktonic seasonal successions. Besides, the observation that phytoplankton chytridiomycosis preferentially impacts larger size species (e.g., filamentous cyanobacteria) suggests that bloom of such species may not represent a trophic bottleneck for the system as previously thought. In this chapter, based on studies we conducted in Lake Pavin and other lakes in the vicinity, we summarize knowledge on diversity, community structure, quantitative importance, and functional roles of planktonic chytrids. We primarily focus on parasitic chytrids of phytoplankton, the potential ecological implications for food web dynamics, as well as the methodological challenges related to their study. We conclude that phytoplankton chytridiomycosis is an important but still overlooked ecological driving force in aquatic food web dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amblard C, Boisson JC, Bourdier G, Fontvielle D, Gayte X, Sime-Ngando T (1998) Ecologie microbienne en milieu aquatique: des virus aux protozoaires. In: Erb F, Villeneuve JP (eds) – Les sciences de l’eau: bilan et perspectives. J Water Sci 11:145–162

    Google Scholar 

  • Barr DJS (2001) Chytridiomycota. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota, vol. VII, Part A. Springer, New York, pp 93–112

    Google Scholar 

  • Beakes GW, Canter HM, Jaworski GHM (1992a) Comparative ultrastructural ontogeny of zoosporangia of Zygorhizidium affluens and Z. planktonicum, chytrid parasites of the diatom Asterionella formosa. Mycol Res 96:1047–1059

    Article  Google Scholar 

  • Beakes GW, Canter HM, Jaworski GHM (1992b) Ultrastructural study of operculation (discharge apparatus) and zoospore discharge in zoosporangia of Zygorhizidium affluens and Z. planktonicum, chytrid parasites of the diatom Asterionella formosa. Mycol Res 96:1060–1067

    Article  Google Scholar 

  • Bruning K, Lingeman R, Ringelberg J (1992) Estimating the impact of fungal parasites on phytoplankton populations. Limnol Oceanogr 37:252–260

    Article  Google Scholar 

  • Canter HM (1949) The importance of fungal parasitism in limnology. Verh Int Verein Limnol 10:107–108

    Google Scholar 

  • Canter HM (1950) Fungal parasites of the phytoplankton. I: studies on British chytrids, X. Ann Bot 14:263–289

    Article  Google Scholar 

  • Canter HM (1951) Fungal parasites of the phytoplankton. II (Studies on British Chytrids, XII). Ann Bot 15:129–156

    Google Scholar 

  • Canter HM, Jaworski GHM (1981) The effect of light and darkness upon infection of Asterionella formosa Hassall by the chytrid Rhizophydium planktonicum Canter emend. Ann Bot 47:13–30

    Article  Google Scholar 

  • Canter HM, Lund JWG (1948) Studies on plankton parasites I. Fluctuations in the numbers of Asterionella Formosa Hass in relation to fungal epidemics. New Phytol 47:238–261

    Article  Google Scholar 

  • Canter HM, Lund JWG (1951) Studies on plankton parasites: III. Examples of the interaction between parasitism and other factors determining the growth of diatoms. Ann Bot 15:359–371

    Google Scholar 

  • Carrias JF, Amblard C, Bourdier G (1996) Protistan bacterivory in an oligomesotrophic lake: importance of attaced ciliates and flagellates. Microb Ecol 31:249–268

    Article  CAS  PubMed  Google Scholar 

  • der Staay Sy M-v, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  Google Scholar 

  • Fox A (2003) Glossary of epidemiological terms. Internet J Pediatr Neonatol 3. www.ispub.com

  • Gasol JM, Vaqué D (1993) Lack of coupling between heterotrophic nanoflagellates and bacteria: a general phenomenon across aquatic systems? Limnol Oceanogr 38:657–665

    Article  Google Scholar 

  • Gerphagnon M, Latour D, Colombet J, Sime-Ngando T (2013a) A double staining method using SYTOX-green and calcofluor white for studying fungal parasites of phytoplankton. Appl Environ Microbiol 79:3943–3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerphagnon M, Latour D, Colombet J, Sime-Ngando T (2013b) Fungal parasitism: life cycle, dynamics and impact on cyanobacterial blooms. PloS One 8:e60894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleason FH, Lilje O (2009) Structure and function of fungal zoospores: ecological implications. Fungal Ecol 2:53–59

    Article  Google Scholar 

  • Gleason FH, Kagami M, Lefevre E, Sime-Ngando T (2008) The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biol Rev 22:17–25

    Article  Google Scholar 

  • Gleason FH, Kagami M, Marano AV, Sime-Ngando T (2009) Fungal zoospores are valuable food resources in aquatic ecosystems. Feature article, newsletter of the Mycological Society of America, Inoculum, Suppl Mycolog 60:1–3

    Google Scholar 

  • Gleason FH, Kupper F, Amon J, Picard K, Gachon CMM, Marano A, Sime-Ngando T, Lilje O (2011) Zoosporic true fungi in marine environments, a review. Mar Freshwat Res 62:383–393

    Article  CAS  Google Scholar 

  • Grami B, Rasconi S, Niquil N, Jobard M, Saint Beat B, Sime-Ngando T (2011) Functional effects of parasites on food web properties during the spring diatom bloom in Lake Pavin: a linear inverse modelling analysis. PloS One 6:e23273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holfeld H (1998) Fungal infections of the phytoplankton: seasonality, minimal host density, and specificity in a mesotrophic lake. New Phytol 138:507–517

    Article  Google Scholar 

  • Holfeld H (2000) Relative abundance, rate of increase, and fungal infections of freshwater phytoplankton. J Plankton Res 22:987–995

    Article  Google Scholar 

  • Hosack GR, Li HW, Rossignol PA (2009) Sensitivity of system stability to model structure. Ecol Model 220:1054–1062

    Article  Google Scholar 

  • Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol 21:381–385

    Article  PubMed  Google Scholar 

  • Huse SM, Dethlefsen L, Huber JA, Mark Welch D, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4:e1000255

    Article  PubMed  PubMed Central  Google Scholar 

  • Huxham M, Raffaelli D, Pike A (1995) Parasites and food web patterns. J Anim Ecol 64:168–176

    Article  Google Scholar 

  • Ibelings BW, De Bruin A, Kagami M, Rijkeboer M, Brehm M, Donk EV (2004) Host parasite interactions between freshwater phytoplankton and chytrid fungi (chytridiomycota). J Phycol 40:437–453

    Article  Google Scholar 

  • Ibelings BW, Gsell AS, Mooij WM, Van Donk E, Van Den Wyngaert S, De Senerpont DL (2011) Chytrid infections and diatom spring blooms: paradoxical effects of climate warming on fungal epidemics in lakes. Freshw Biol 56:754–766

    Article  Google Scholar 

  • Ingold CT (1940) Endocoenobium eudorinae gen. et sp. nov., a chytridiaceous fungus parasitizing Eudorina elegans Ehrenb. New Phytol 39:97–103

    Article  Google Scholar 

  • James TY, Letcher PM, Longcore JE, Mozley-Standridge Porter D, Powell MJ, Griffith GW, Vilgalys R (2006) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871

    Article  PubMed  Google Scholar 

  • Jobard M, Rasconi S, Sime-Ngando T (2010a) Diversity and functions of microscopic fungi: a missing component in pelagic food webs. Aquat Sci 72:255–268

    Article  CAS  Google Scholar 

  • Jobard M, Rasconi S, Sime-Ngando T (2010b) Fluorescence in situ hybridization of uncultured zoosporic fungi: testing with clone-FISH and application to freshwater samples using CARD-FISH. J Microbiol Methods 83:236–243

    Article  CAS  PubMed  Google Scholar 

  • Jobard M, Rasconi S, Solinhac L, Cauchie M-H, Sime-Ngando T (2012) Molecular and morphological diversity of fungi and the associated functions in three European nearby lakes. Environ Microbiol 14:2480–2494

    Article  CAS  PubMed  Google Scholar 

  • Kagami M, de Bruin A, Ibelings B, Van Donk E (2007a) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Article  Google Scholar 

  • Kagami M, Von Elert E, Ibelings BW, De Bruin A, Van Donk E (2007b) The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc R Soc Biol Sci Ser B 274:1561–1566

    Article  Google Scholar 

  • Kagami M, Helmsing NR, Van Donk E (2011) Parasitic chytrids could promote copepod survival by mediating material transfer from inedible diatoms. Hydrobiologia 659:49–54

    Article  CAS  Google Scholar 

  • Kudoh S, Takahashi M (1992) An experimental test of host population size control by fungal parasitism in the planktonic diatom Asterionella formosa using mesocosms in a natural lake. Arch Hydrobiol 124:293–307

    Google Scholar 

  • Lafferty KD, Dobson AP, Kuris AM (2006) Parasites dominate food web links. Proc Natl Acad Sci U S A 103:11211–11216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafferty KD, Allesina S, Arim M, Briggs CJ, Leo G et al (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11:533–546

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefèvre E, Bardot C, Noël C, Carrias JF, Viscogliosi E, Amblard C, Sime-Ngando T (2007) Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ Microbiol 9:61–71

    Article  PubMed  Google Scholar 

  • Lefèvre E, Roussel B, Amblard C, Sime-Ngando T (2008) The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PloS One 3:e2324

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefèvre E, Jobard M, Venisse JS, Bec A, Kagami M, Amblard C, Sime-Ngando T (2010) Development of a real-time PCR essay for quantitative assessment of uncultured freshwater zoosporic fungi. J Microbiol Methods 81:69–76

    Article  PubMed  Google Scholar 

  • Lefranc M, Thenot A, Lepere C, Debroas D (2005) Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl Environ Microbiol 71:5935–5942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtwardt RW, White MM, Cafaro MJ (2003) Freshwater trichomycetes and their arthropod hosts. In: Tsui CKM, Hyde KD (eds) Freshwater Mycology. Fungal Diversity Press, Hong Kong, pp 81–100

    Google Scholar 

  • López-García P, Rodriguez-Valera F, Pedros-Alio C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  PubMed  Google Scholar 

  • Lovett JS (1963) Chemical and physical characterization of “nuclear caps” isolated from Blastocladiella zoospores. J Bacteriol 85:1235–1246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lund JWG (1957) Fungal diseases of plankton algae. In: Horton-Smith C (ed) Biological aspects of the transmission of diseases. Oliver and Boyd, Edinburgh, pp 19–23

    Google Scholar 

  • Marano AV, Edwards JE, Gleason FH, Bärlocher F, Pires-Zottarelli CL, Lilje O, Schmidt SK, Rasconi S, Kagami M, Barrera MD, Sime-Ngando T, Boussiba S (2012) Quantitative methods for the analysis of zoosporic fungi. J Microbiol Methods 89:22–32

    Article  CAS  PubMed  Google Scholar 

  • May RM (1972) Will a large complex system be stable? Nature 238:413–414

    Article  CAS  PubMed  Google Scholar 

  • May RM (1973) Stability and complexity in model ecosystems. Princeton University Press, Princeton. 265 p

    Google Scholar 

  • McCann KS (2000) The diversity-stability debate. Nature 405:228–233

    Article  CAS  PubMed  Google Scholar 

  • Monchy S, Jobard M, Sanciu G, Rasconi S, Gerphagnon M, Chabe M, Cian A, Meloni D, Niquil N, Christaki U, Viscogliosi E, Sime-Ngando T (2011) Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ Microbiol 13:1433–1453

    Article  PubMed  Google Scholar 

  • Monchy S, Grattepanche JD, Breton E, Meloni D, Sanciu G, Chabe M, Delhaes L, Viscogliosi E, Sime-Ngando T, Christaki U (2012) Microplanktonic community structure in a coastal system relative to a Phaeocystis bloom inferred from morphological and tag pyrosequencing methods. PloS One 7:e39924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira D, Lopez-Garcia P (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10:31–38

    Article  CAS  PubMed  Google Scholar 

  • Neutel AM, Heesterbeek JAP, de Ruiter P (2002) Stability in real food webs: weak links in long loops. Science 296:1120–1123

    Article  CAS  PubMed  Google Scholar 

  • Niquil N, Bartoli G, Urabe J, Jackson GA, Legendre L, Dupuy C, Kumagai M (2006) Carbon steady state model of the planktonic food web of Lake Biwa, Japan. Freshw Biol 8:1570–1585

    Article  Google Scholar 

  • O’Gorman EJ, Emmerson MC (2009) Perturbations to trophic interactions and the stability of complex food webs. Proc Natl Acad Sci USA 106:13393–13398

    Article  PubMed  PubMed Central  Google Scholar 

  • Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol 9:1–55

    Article  CAS  Google Scholar 

  • Pascual M, Dunne J (eds) (2005) Ecological networks: linking structure to dynamics in food webs. Oxford University Press, Oxford/New York, p 416

    Google Scholar 

  • Patterson DJ (1993) The current status of the free-living heterotrophic flagellates. J Eukaryot Micribiol 40:606–609

    Article  Google Scholar 

  • Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326

    Article  Google Scholar 

  • Rasconi S, Jobard M, Jouve L, Sime-Ngando T (2009) Use of calcofluor white for detection, identification and quantification of phytoplanktonic fungal parasites. Appl Environ Microbiol 75:2545–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasconi S, Jobard M, Sime-Ngando T (2011) Parasitic fungi of phytoplankton: ecological roles and implications for microbial food webs. Aquat Microb Ecol 62:123–137

    Article  Google Scholar 

  • Rasconi S, Niquil N, Sime-Ngando T (2012) Phytoplankton chytridiomycosis: community structure and infectivity of fungal parasites in aquatic systems. Environ Microbiol 14:2151–2170

    Article  PubMed  Google Scholar 

  • Rasconi S, Boutheina G, Niquil N, Jobard M, Sime-Ngando T (2014) Parasitic chytrids sustain zooplankton growth during inedible algal bloom. Front Microbiol 5:229. doi:10.3389/fmicb.2014.00229

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds N (1940) Seasonal variations in Staurastrum paradoxum eyen. New Phytol 39:86–89

    Article  Google Scholar 

  • Sen B (1988a) Fungal parasitism of planktonic algae in Shearwater. V. Fungal parasites of the green algae. Arch Hydrobiol Suppl 79:185–205

    Google Scholar 

  • Sen B (1988b) Fungal parasitism of planktonic algae in Shearwater. IV. Parasitic occurrence of a new chytrid species on the blue-green alga Microcystis aeruginosa Kuetz. emend. Elenkin. Arch Hydrobiol Suppl 79:177–184

    Google Scholar 

  • Sherr EB (1988) Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature 335:348–351

    Article  CAS  Google Scholar 

  • Sime-Ngando T (2012) Phytoplankton chytridiomycosis: fungal parasites of phytoplankton and their imprints on the food web dynamics. Front Microbiol 3:361. doi:10.3389/fmicb.2012.00361

    Article  PubMed  PubMed Central  Google Scholar 

  • Sime-Ngando T (2013) Fungal zoospores in aquatic ecosystems. In: McGraw-Hill Yearbook of science & Technology 2013 and the online edition. http://www.accessscience.com. The McGraw-Hill Companies, New York, pp 174–176

  • Sime-Ngando T, Jobard M (2013) Development of a real-time quantitative PCR assay for the assessment of uncultured zoosporic fungi. In: Gupta VK, Tuohy M, Manimaran A, Turner KM, O’Donovan A (eds) Laboratory protocols in fungal biology: current methods in fungal biology. Springer, New York, pp 421–426

    Chapter  Google Scholar 

  • Sime-Ngando T, Lefèvre E, Gleason FH (2011) Hidden diversity among aquatic heterotrophic flagellates: ecological potentials of zoosporic fungi. Hydrobiologia 659:5–22

    Article  CAS  Google Scholar 

  • Sime-Ngando T, Jobard M, Rasconi S (2013a) Fluorescence in situ hybridization of uncultured zoosporic fungi. In: Gupta V, Tuohy M, Manimaran A, Turner K, O’donovan A (eds) Laboratory protocols in fungal biology: current methods in fungal biology. Springer, New York, pp 231–233

    Chapter  Google Scholar 

  • Sime-Ngando T, Rasconi S, Gerphagnon M (2013b) Diagnose of parasitic fungi in the plankton: technique for identifying and counting infective chytrids using epifluorescence microscopy. In: Gupta VK, Tuohy M, Manimaran A, Turner KM, O’donovan A (eds) Laboratory protocols in fungal biology: current methods in fungal biology. Springer, New York, pp 169–174

    Chapter  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci USA 103:12115–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer U (1987) Factors controlling the seasonal variation in phytoplankton species composition. A case study for a deep, nutrient rich lake. Prog Phycol Res 5:123–178

    CAS  Google Scholar 

  • Sommer U, Maciej Gliwicz Z, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471

    Google Scholar 

  • Southall G, Robarts R (1977) Nutrient limitation of phytoplankton growth in seven tropical man-made lakes, with special reference to Lake McIlwaine, Rhodesia. Arch Hydrobiol 64:246–252

    CAS  Google Scholar 

  • Sparrow FK (1960) Aquatic phycomycetes, 2nd edn. University of MichiganPress, Ann Arbor

    Google Scholar 

  • Strom SL (2000) Bacterivory: interactions between bacteria and their grazers. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 351–386

    Google Scholar 

  • Ulanowicz RE (1986) Growth and development: ecosystems phenomenology. Springer, New York, 203 p

    Book  Google Scholar 

  • Ulanowicz RE (2003) Some steps toward a central theory of ecosystem dynamics. Comput Biol Chem 27:523–530

    Article  CAS  PubMed  Google Scholar 

  • Ulanowicz RE, Goerner SJ, Lietaer B, Gomez R (2009) Quantifying sustainability: resilience, efficiency and the return to of information theory. Ecol Complex 6:27–36

    Article  Google Scholar 

  • Van den Meersche K, Soetaert K, Van Oevelen D (2009) An R function for sampling linear inverse problems. J Stat Softw 30:1–15

    Article  Google Scholar 

  • Van Donk E (1989) The role of fungal parasites in phytoplankton succession. In: Plankton ecology. Springer, Berlin, pp 171–194

    Chapter  Google Scholar 

  • Van Donk E, Ringelberg J (1983) The effect of fungal parasitism on the succession of diatoms in Lake Maarsseveen I(The Netherlands). Freshw Biol 13:241–251

    Article  Google Scholar 

  • Vézina AF, Platt T (1988) Food web dynamics in the ocean. I. Best-estimates of flow networks using inverse methods. Mar Ecol Prog Ser 42:269–287

    Article  Google Scholar 

  • Weete J, Fuller M, Huang M, Gandhi S (1989) Fatty acids and sterols of selected Hyphochytriomycetes and Chytridiomycetes. Exp Mycol 13:183–195

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and application. Academic, San Diego, pp 315–322

    Google Scholar 

  • Williams R, Martinez ND (2004) Simple rules yield complex food webs. Nature 404:180–183

    Article  Google Scholar 

Download references

Acknowledgements

This study includes results from PhD and postdoc researches supported by various instances: Région Auvergne, CNRS, Université Blaise Pascal, French Ministère de la Recherche et de la Technologie, and the Ministry of Culture, High School and Research of Grand-Duché de Luxembourg. Thanks are owed to my colleagues, particularly G Boutheina, FH Gleason, and M Kagami for fruitful discussions and inspiring collaborative papers. We thank Prof. Felix Bärlocher, Mt Allison University, Sackville NB, Canada, for critical and proofreading of the manuscript. This is a contribution to the French ANR Programme Blanc ROME – Rare and overlooked microbial diversity - Coordinator TSN, PIs: U Christaki, C Gachon, S Monchy, N Niquil, and E Viscogliosi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Télesphore Sime-Ngando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sime-Ngando, T. et al. (2016). Molecular Diversity Studies in Lake Pavin Reveal the Ecological Importance of Parasitic True Fungi in the Plankton. In: Sime-Ngando, T., Boivin, P., Chapron, E., Jezequel, D., Meybeck, M. (eds) Lake Pavin. Springer, Cham. https://doi.org/10.1007/978-3-319-39961-4_20

Download citation

Publish with us

Policies and ethics