A Virtual Testbed for Studying Trust in Ambient Intelligence Environments

  • Azin Semsar
  • Morteza Malek Makan
  • Ali Asghar Nazari ShirehjiniEmail author
  • Zahra Malek Mohammadi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9755)


Ambient Intelligence is a new paradigm in information technology that creates environments able to detect and respond to users’ needs, actions, behaviors and feelings. User trust plays an important role in accepting Ambient Intelligence environments. In this paper we describe the design and implementation of a virtual reality based testbed for studying trust in Ambient Intelligence Environments.


Trust Ambient intelligence Interactive realistic virtual reality 


  1. 1.
    Aarts, E.: Ambient intelligence: a multimedia perspective. MultiMedia IEEE 11(1), 12–19 (2004)CrossRefGoogle Scholar
  2. 2.
    Antifakos, S., Kern, N., Schiele, B., Schwaninger, A.: Towards improving trust in context-aware systems by displaying system confidence. In: Proceedings of the 7th International Conference on Human Computer Interaction with Mobile Devices & Services, pp. 9–14. ACM (2005)Google Scholar
  3. 3.
    Gordon, D., Hanne, J.H., Berchtold, M., Shirehjini, A.A.N., Beigl, M.: Towards collaborative group activity recognition using mobile devices. Mob. Netw. Appl. 18(3), 326–340 (2013)CrossRefGoogle Scholar
  4. 4.
    Hossain, M.A., Shirehjini, A.A.N., Alghamdi, A.S., El Saddik, A.: Adaptive interaction support in ambient-aware environments based on quality of context information. Multimedia Tools Appl. 67(2), 409–432 (2013)CrossRefGoogle Scholar
  5. 5.
    Jian, J.Y., Bisantz, A.M., Drury, C.G.: Foundations for an empirically determined scale of trust in automated systems. Int. J. Cogn. Ergon. 4(1), 53–71 (2000)CrossRefGoogle Scholar
  6. 6.
    Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing user studies with mechanical turk. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 453–456. ACM (2008)Google Scholar
  7. 7.
    Lazar, J., Feng, J.H., Hochheiser, H.: Research methods in human-computer interaction. Wiley, Chichester (2010)Google Scholar
  8. 8.
    Lee, J.W., Cho, S., Liu, S., Cho, K., Helal, S.: Persim 3d: context-driven simulation and modeling of human activities in smart spaces. IEEE Trans. Autom. Sci. Eng. 12, 1243–1256 (2015)CrossRefGoogle Scholar
  9. 9.
    Leung, C., Salga, A.: Enabling webgl. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1369–1370. ACM (2010)Google Scholar
  10. 10.
    Madsen, M., Gregor, S.: Measuring human-computer trust. In: Proceedings of Eleventh Australian Conference on Information Systems, pp. 6–8. Citeseer (2000)Google Scholar
  11. 11.
    Merritt, S.M., Ilgen, D.R.: Not all trust is created equal: dispositional and history-based trust in human-automation interactions. Hum. Factors J. Hum. Factors Ergon. Soc. 50(2), 194–210 (2008)CrossRefGoogle Scholar
  12. 12.
    Nazari Shirehjini, A.A., Klar, F.: 3DSim: rapid prototyping ambient intelligence. In: Proceedings of the 2005 Joint Conference on Smart Objects and Ambient Intelligence: Innovative Context-Aware Services: Usages and Technologies, pp. 303–307. ACM (2005)Google Scholar
  13. 13.
    Semsar, A., Nazari Shirehjini, A.A.: Multimedia supported virtual experiment for online user-system trust studies (2016). Submitted to Multimedia SystemsGoogle Scholar
  14. 14.
    Shin, C., Dey, A.K., Woo, W.: Mixed-initiative conflict resolution for context-aware applications. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 262–271. ACM (2008)Google Scholar
  15. 15.
    Shirehjini, A.A.N., Hellenschmidt, M., Kirste, T.: An integrated user interface providing unified access to intelligent environments and personal media. In: Proceedings of the 2nd European Union Symposium on Ambient intelligence, pp. 65–68. ACM (2004)Google Scholar
  16. 16.
    Soltaninejad, F., Shirehjini, A.A.N., Saniee, G., Semsar, A.: Mental model development support using collaborative 3d virtual environments (2015). doi: 10.13140/RG.2.1.4616.1360.
  17. 17.
    de Vries, P., Midden, C., Bouwhuis, D.: The effects of errors on system trust, self-confidence, and the allocation of control in route planning. Int. J. Hum. Comput. Stud. 58(6), 719–735 (2003)CrossRefGoogle Scholar
  18. 18.
    Yassine, A., Shirehjini, A.A.N., Shirmohammadi, S., Tran, T.T.: An intelligent agent-based model for future personal information markets. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 2, pp. 457–460. IEEE (2010)Google Scholar
  19. 19.
    Yassine, A., Shirmohammadi, S.: Privacy and the market for private data: a negotiation model to capitalize on private data. In: IEEE/ACS International Conference on Computer Systems and Applications, 2008, AICCSA 2008, pp. 669–678. IEEE (2008)Google Scholar
  20. 20.
    Yassine, A., Shirmohammadi, S.: Measuring users’ privacy payoff using intelligent agents. In: IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2009, CIMSA 2009, pp. 169–174. IEEE (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Azin Semsar
    • 1
  • Morteza Malek Makan
    • 1
  • Ali Asghar Nazari Shirehjini
    • 1
    Email author
  • Zahra Malek Mohammadi
    • 1
  1. 1.Department of Computer EngineeringSharif University of TechnologyTehranIran

Personalised recommendations