Automated Mobile Health: Designing a Social Reasoning Platform for Remote Health Management

  • Hoang D. NguyenEmail author
  • Danny Chiang Choon Poo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9742)


With the drastic expansion of mobile technologies, mobile health has become ubiquitous and versatile to revolutionize healthcare for improved health outcomes. This study takes initiatives to investigate a new paradigm of automated mobile health as the process automation of mobile-enabled health interventions. Through the realisation of the paradigm, a novel social reasoning platform with a comprehensive set of design guidelines are proposed for efficient and effective remote health management. The study considerably contributes to the cumulative theoretical development of mobile health and health decision making. It also provides a number of implications for academic bodies, healthcare practitioners, and developers of mobile health.


Automated mhealth Health management Decision Reasoning Screening Treatment Social support 


  1. 1.
    Research2guidance: Global Mobile Health Trends and Figures Market Report 2013–2017.
  2. 2.
    Dobriansky, P.J., Suzman, R.M., Hodes, R.J.: Why population aging matters - a global perspective. US Department OFSS State, pp. 1–32 (2007)Google Scholar
  3. 3.
    Martínez-Pérez, B., de la Torre-Díez, I., López-Coronado, M., Sainz-de-Abajo, B., Robles, M., García-Gómez, J.M.: Mobile clinical decision support systems and applications: a literature and commercial review. J. Med. Syst. 38, 4 (2014)CrossRefGoogle Scholar
  4. 4.
    Van Woensel, W., Roy, P.C., Abidi, S.S.: A mobile and intelligent patient diary for chronic disease self-management. In: MEDINFO 2015 eHealth-enabled Health, pp. 118–122 (2015)Google Scholar
  5. 5.
    Ambroise, N., Boussonnie, S., Eckmann, A.: A smartphone application for chronic disease self-management. In: 2013 Mobile and Information Technologies in Medicine and Health Conference (MobileMED 2013), Vol. 1785 (2013)Google Scholar
  6. 6.
    Hommersom, A., Lucas, P., Velikova, M., Dal, G.: MoSHCA–my mobile and smart health care assistant. In: 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013), pp. 188–192 (2013)Google Scholar
  7. 7.
    van Woensel, W., Al Haider, N., Roy, P.C., Ahmad, A.M., Abidi, S.S.R.: A comparison of mobile rule engines for reasoning on semantic web based health data. In: 2014 IEEE/WIC/ACM International Joint Conference on Web Intelligence Agent Technology, vol. 1, pp. 126–133 (2014)Google Scholar
  8. 8.
    O’ Connor, Y., O’ Sullivan, T., Gallagher, J., Heavin, C., O’ Donoghue, J: Developing eXtensible mHealth Solutions for Low Resource Settings. In: Prasath, R., O’Reilly, P., Kathirvalavakumar, T. (eds.) MIKE 2014. LNCS, vol. 8891, pp. 361–371. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Jung, H., Yang, J.G., Woo, J.-I., Lee, B.-M., Ouyang, J., Chung, K., Lee, Y.H.: Evolutionary rule decision using similarity based associative chronic disease patients. Cluster Comput. 18, 279–291 (2015)CrossRefGoogle Scholar
  10. 10.
    Nalepa, G., Bobek, S.: Rule-based solution for context-aware reasoning on mobile devices. Comput. Sci. Inf. Syst. 11, 171–193 (2014)CrossRefGoogle Scholar
  11. 11.
    Kumar, S., Nilsen, W., Pavel, M., Srivastava, M.: Mobile health: revolutionizing healthcare through trans- disciplinary research. Computer (Long. Beach. Calif). 28–35 (2013)Google Scholar
  12. 12.
    Varshney, U.: Mobile health: medication abuse and addiction. In: Proceedings of 4th ACM MobiHoc Work, pp. 37–42 (2014)Google Scholar
  13. 13.
    Varshney, U.: Pervasive computing and healthcare. Pervasive Healthcare Computing: EMR/EHR, Wireless and Health Monitoring, pp. 39–62. Springer, US (2009)CrossRefGoogle Scholar
  14. 14.
    World Bank: Information and Communications for Development 2012: Maximizing Mobile. World Bank Publications (2012)Google Scholar
  15. 15.
    Steven, R., Steinhubl, M.: Can mobile health technologies transform health care? JAMA 92037, 1–2 (2013)Google Scholar
  16. 16.
    Hervás, R., Fontecha, J., Ausín, D., Castanedo, F., Bravo, J., López-de-Ipiña, D.: Mobile monitoring and reasoning methods to prevent cardiovascular diseases. Sensors (Basel). 13, 6524–6541 (2013)Google Scholar
  17. 17.
    Walton, R., DeRenzi, B.: Value-sensitive design and health care in Africa. IEEE Trans. Prof. Commun. 52, 346–358 (2009)CrossRefGoogle Scholar
  18. 18.
    Prociow, P.A., Crowe, J.A.: Towards personalised ambient monitoring of mental health via mobile technologies. Technol. Health Care 18, 275–284 (2010)Google Scholar
  19. 19.
    Magill, E., Blum, J.M.: Personalised ambient monitoring: supporting mental health at home. In: Advances in Home Care Technologies: Results of the Match Project. pp. 67–85 (2012)Google Scholar
  20. 20.
    Paoli, R., Fernández-Luque, F.J., Doménech, G., Martínez, F., Zapata, J., Ruiz, R.: A system for ubiquitous fall monitoring at home via a wireless sensor network and a wearable mote. Expert Syst. Appl. 39, 5566–5575 (2012)CrossRefGoogle Scholar
  21. 21.
    Junglas, I., Abraham, C., Ives, B.: Mobile technology at the frontlines of patient care: understanding fit and human drives in utilization decisions and performance. Decis. Support Syst. 46, 634–647 (2009)CrossRefGoogle Scholar
  22. 22.
    Carroll, A.E., Marrero, D.G., Downs, S.M.: The healthpia glucopack diabetes phone: a usability study. Diabetes Technol. Ther. 9, 158–164 (2007)CrossRefGoogle Scholar
  23. 23.
    Istepanian, R.S.H., Zitouni, K., Harry, D., Moutosammy, N., Sungoor, A., Tang, B., Earle, K.: A: evaluation of a mobile phone telemonitoring system for glycaemic control in patients with diabetes. J. Telemed. Telecare. 15, 125–128 (2009)CrossRefGoogle Scholar
  24. 24.
    Varshney, U.: Mobile health: four emerging themes of research. Decis. Support Syst. 66, 20–35 (2014)CrossRefGoogle Scholar
  25. 25.
    Stacey, D., Murray, M.A., Légaré, F., Sandy, D., Menard, P., O’Connor, A.: Decision coaching to support shared decision making: a framework, evidence, and implications for nursing practice, education, and policy. Worldviews Evid. Based. Nurs. 5, 25–35 (2008)CrossRefGoogle Scholar
  26. 26.
    O’Connor, A.M., Tugwell, P., Wells, G.A., Elmslie, T., Jolly, E., Hollingworth, G., McPherson, R., Bunn, H., Graham, I., Drake, E.: A decision aid for women considering hormone therapy after menopause: decision support framework and evaluation. Patient Educ. Couns. 33, 267–279 (1998)CrossRefGoogle Scholar
  27. 27.
    Stewart, M., Brown, J.B., Boon, H., Galajda, J., Meredith, L., Sangster, M.: Evidence on patient-doctor communication. Cancer Prev. Control 3, 25–30 (1999)CrossRefGoogle Scholar
  28. 28.
    Stewart, M.A.: Effective physician-patient communication and health outcomes: a review. Can. Med. Assoc. J. 152, 1423–1433 (1995)Google Scholar
  29. 29.
    Garg, A.X., Adhikari, N.K.J., McDonald, H., Rosas-Arellano, M.P., Devereaux, P.J., Beyene, J., Sam, J., Haynes, R.B.: Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA 293, 1223–1238 (2005)CrossRefGoogle Scholar
  30. 30.
    Ammenwerth, E., Schnell-Inderst, P., Machan, C., Siebert, U.: The effect of electronic prescribing on medication errors and adverse drug events: a systematic review. J. Am. Med. Informatics Assoc. 15, 585–600 (2008)Google Scholar
  31. 31.
    Chaudhry, B.: Systematic review: impact of health information technology on quality, efficiency, and costs of medical care. Ann. Intern. Med. 144, 742 (2006)CrossRefGoogle Scholar
  32. 32.
    Knops, A.M., Legemate, D.A., Goossens, A., Bossuyt, P.M.M., Ubbink, D.T.: Decision aids for patients facing a surgical treatment decision. Ann. Surg. 257, 860–866 (2013)CrossRefGoogle Scholar
  33. 33.
    Hoffman, A.S., Volk, R.J., Saarimaki, A., Stirling, C., Li, L.C., Härter, M., Kamath, G.R., Llewellyn-Thomas, H.: Delivering patient decision aids on the Internet: definitions, theories, current evidence, and emerging research areas. BMC Med. Inform. Decis. Mak. 13(2), S13 (2013)CrossRefGoogle Scholar
  34. 34.
    Trenaman, L., Bryan, S., Bansback, N.: The cost-effectiveness of patient decision aids: a systematic review. Healthcare 2, 251–257 (2014)CrossRefGoogle Scholar
  35. 35.
    Stacey, D., Légaré, F., Col, N.F., Bennett, C.L., Barry, M.J., Eden, K.B., Holmes-Rovner, M., Llewellyn-Thomas, H., Lyddiatt, A., Thomson, R., Trevena, L., Wu, J.H.: Decision aids for people facing health treatment or screening decisions. In: Stacey, D. (ed.) Cochrane Database of Systematic Reviews. Wiley, Chichester (2014)Google Scholar
  36. 36.
    Hamann, J., Langer, B., Winkler, V., Busch, R., Cohen, R., Leucht, S., Kissling, W.: Shared decision making for in-patients with schizophrenia. Acta Psychiatr. Scand. 114, 265–273 (2006)CrossRefGoogle Scholar
  37. 37.
    Wennberg, J.E., Fisher, E.S., Skinner, J.S.: Geography and the debate over Medicare reform. Health Aff. (Millwood). Suppl Web, W96–114 (2002)Google Scholar
  38. 38.
    Veroff, D., Marr, A., Wennberg, D.E.: Enhanced support for shared decision making reduced costs of care for patients with preference-sensitive conditions. Health Aff. 32, 285–293 (2013)CrossRefGoogle Scholar
  39. 39.
    Christofferson, D.E., Hamlett-Berry, K., Augustson, E.: Suicide prevention referrals in a mobile health smoking cessation intervention. Am. J. Public Health 105, e1–e3 (2015)CrossRefGoogle Scholar
  40. 40.
    Osterberg, L., Blaschke, T.: Adherence to medication. N. Engl. J. Med. 353, 487–497 (2005)CrossRefGoogle Scholar
  41. 41.
    Singh, N., Varshney, U.: An artifact for improving effective medication adherence. In: Tremblay, M.C., VanderMeer, D., Rothenberger, M., Gupta, A., Yoon, V. (eds.) DESRIST 2014. LNCS, vol. 8463, pp. 304–311. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  42. 42.
    De Geest, S.: Adherence to long-term therapies: evidence for action. Eur. J. Cardiovasc. Nurs. 2, 323 (2003)Google Scholar
  43. 43.
    Abidoye, A.P.: Using wearable sensors for remote healthcare monitoring system. J. Sens. Technol. 01, 22–28 (2011)CrossRefGoogle Scholar
  44. 44.
    Bonato, P.: Wearable sensors and systems. IEEE Eng. Med. Biol. Mag. 29, 25–36 (2010)CrossRefGoogle Scholar
  45. 45.
    Allet, L., Knols, R.H., Shirato, K., de Bruin, E.D.: Wearable systems for monitoring mobility-related activities in chronic disease: a systematic review. Sensors (Switz.) 10, 9026–9052 (2010)CrossRefGoogle Scholar
  46. 46.
    Bonato, P.: Advances in wearable technology and its medical applications. In: 2010 Annual International Conference on IEEE Engineering in Medicine and Biology Society EMBC 2010, pp. 2021–2024 (2010)Google Scholar
  47. 47.
    Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. IEEE Commun. Mag. 48, 140–150 (2010)CrossRefGoogle Scholar
  48. 48.
    Chan, M., Estève, D., Fourniols, J.-Y., Escriba, C., Campo, E.: Smart wearable systems: current status and future challenges. Artif. Intell. Med. 56, 137–156 (2012)CrossRefGoogle Scholar
  49. 49.
    Mukherjee, A., Pal, A., Misra, P.: Data analytics in ubiquitous sensor-based health information systems. In: Proceedings of 6th International Conference on Next Generation Mobile Applications, Services and Technologies NGMAST 2012, pp. 193–198 (2012)Google Scholar
  50. 50.
    Catley, C., Smith, K., Mcgregor, C., Tracy, M.: Extending CRISP-DM to incorporate temporal data mining of multi- dimensional medical data streams: a neonatal intensive care unit case study. Comput. Med. Syst. 1, 1–5 (2009)Google Scholar
  51. 51.
    Touati, F., Tabish, R.: U-healthcare system: state-of-the-art review and challenges. J. Med. Syst. 37, 9949 (2013)CrossRefGoogle Scholar
  52. 52.
    Kumar, S., Nilsen, W.J., Abernethy, A., Atienza, A., Patrick, K., Pavel, M., Riley, W.T., Shar, A., Spring, B., Spruijt-Metz, D., Hedeker, D., Honavar, V., Kravitz, R., Craig Lefebvre, R., Mohr, D.C., Murphy, S.A., Quinn, C., Shusterman, V., Swendeman, D.: Mobile health technology evaluation. Am. J. Prev. Med. 45, 228–236 (2013)CrossRefGoogle Scholar
  53. 53.
    Lee, H., Park, K., Lee, B., Choi, J., Elmasri, R.: Issues in data fusion for healthcare monitoring. In: Proceedings of 1st ACM International Conference on PErvasive Technologies Related to Assistive Environments - PETRA 2008, p. 1 (2008)Google Scholar
  54. 54.
    Raij, A., Ghosh, A., Kumar, S., Srivastava, M.: Privacy risks emerging from the adoption of innocuous wearable sensors in the mobile environment. In: Proceedings of 2011 Annual Conference on Human Factors in Computing Systems – CHI 2011, pp. 11–20 (2011)Google Scholar
  55. 55.
    Guha, S., Plarre, K., Lissner, D., Mitra, S.: Autowitness: locating and tracking stolen property while tolerating GPS and radio outages. In: ACM Transactions, pp. 29–42 (2012)Google Scholar
  56. 56.
    d’Aquin, M., Nikolov, A., Motta, E.: How much semantic data on small devices? In: Cimiano, P., Pinto, H. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 565–575. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  57. 57.
    Nguyen, H.D., Poo, D.C.C.: Analysis and design of mobile health interventions towards informed shared decision making: an activity theory-driven perspective. In: IFIP WG8.3 International Conference on Decision Support Systems (DSS 2016) (2016)Google Scholar
  58. 58.
    Payam, S., Pavel, A., Morad, B., Kathryn, M., Craig E., K.: Activity theory driven system analysis of complex healthcare processes. In: Twenty Second European Conference on Information Systems, pp. 1–14 (2014)Google Scholar
  59. 59.
    Elwyn, G., Frosch, D., Thomson, R., Joseph-Williams, N., Lloyd, A., Kinnersley, P., Cording, E., Tomson, D., Dodd, C., Rollnick, S., Edwards, A., Barry, M.: Shared decision making: a model for clinical practice. J. Gen. Intern. Med. 27, 1361–1367 (2012)CrossRefGoogle Scholar
  60. 60.
    Saurer, J.: Pervasive and Mobile Sensing and Computing for Healthcare. Springer, Berlin Heidelberg (2013)Google Scholar
  61. 61.
    Nguyen, H.D., Jiang, X., Poo, D.C.C.: Designing a social mobile platform for diabetes self-management: a theory-driven perspective. In: Meiselwitz, G. (ed.) SCSM 2015. LNCS, vol. 9182, pp. 67–77. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  62. 62.
    Kollmann, A., Riedl, M., Kastner, P., Schreier, G., Ludvik, B.: Feasibility of a mobile phone-based data service for functional insulin treatment of type 1 diabetes mellitus patients. J. Med. Internet Res. 9, e36 (2007)CrossRefGoogle Scholar
  63. 63.
    Quinn, C.C., Shardell, M.D., Terrin, M.L., Barr, E.A., Ballew, S.H., Gruber-Baldini, A.L.: Cluster-randomized trial of a mobile phone personalized behavioral intervention for blood glucose control. Diabetes Care 34, 1934–1942 (2011)CrossRefGoogle Scholar
  64. 64.
    Kiran, M.P.R.S., Rajalakshmi, P., Bharadwaj, K., Acharyya, A.: Adaptive rule engine based IoT enabled remote health care data acquisition and smart transmission system. In: IEEE World Forum Internet Things, WF-IoT 2014, pp. 253–258 (2014)Google Scholar
  65. 65.
    OSGi Alliance: The OSGi Architecture.
  66. 66.
    Bodenheimer, T.: Patient self-management of chronic disease in primary care. JAMA 288, 2469 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Information SystemsNational University of SingaporeSingaporeSingapore

Personalised recommendations