Skip to main content

Quantitative Validation of Gait and Swing Angles Determination from Inertial Signals

  • Conference paper
  • First Online:
Information Technologies in Medicine (ITiB 2016)

Abstract

The still increasing life length expectancy creates new challenges in the field of senior care. It encourages researchers to provide the nursing homes and senior care assistants with tools that will both, rise an alarm in case of a sudden fall and collect data for long-term diagnosis of the declining motor abilities like the number of steps taken per day or changes in some gait parameters. This paper presents a quantitative validation of a remote system for activity monitoring of the elderly based on inertial sensors. It focuses on features connected to walk quality such as number of steps and the swing angle outlined by an ankle in the sagittal plane during walk. A measurement protocol is proposed, a validation method is described and the obtained results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Augustyniak, P., Smolen, M., Mikrut, Z., Kantoch, E.: Seamless tracing of human behavior using complementary wearable and house-embedded sensors. Sensors 14(5), 7831–7856 (2014). http://www.mdpi.com/1424-8220/14/5/7831

    Google Scholar 

  2. Badura, P.: Accelerometric signals in automatic balance assessment. Comput. Med. Imaging Graph. 46, 169–177 (2015). http://www.sciencedirect.com/science/article/pii/S0895611115000932

    Google Scholar 

  3. Badura, P., Pietka, E., Franiel, S.: Acceleration trajectory analysis in remote gait monitoring. In: Engineering in Medicine and Biology Society (EMBC) 2014 36th Annual International Conference of the IEEE. pp. 4615–4618 (2014)

    Google Scholar 

  4. Bussmann, J., Martens, W., Tulen, J., Schasfoort, F., van den Berg-Emons, H., Stam, H.: Measuring daily behavior using ambulatory accelerometry: the activity monitor. Behav. Res. Methods Instrum. Comput. 33(3), 349–356 (2001)

    Article  Google Scholar 

  5. Charlon, Y., Fourty, N., Bourennane, W., Campo, E.: Design and evaluation of a device worn for fall detection and localization: application for the continuous monitoring of risks incurred by dependents in an alzheimer’s care unit. Expert Syst. Appl. 40(18), 7316–7330 (2013)

    Article  Google Scholar 

  6. Costa, Â., Castillo, J.C., Novais, P., Fernández-Caballero, A., Simoes, R.: Sensor-driven agenda for intelligent home care of the elderly. Expert Syst. Appl. 39(15), 12192–12204 (2012)

    Article  Google Scholar 

  7. Godfrey, A., Conway, R., Meagher, D., OLaighin, G.: Direct measurement of human movement by accelerometry. Med. Eng. Phys. 30(10), 1364–1386 (2008)

    Google Scholar 

  8. Lee, S.W., Song, S.H.: A monitoring system for assessing life pattern of the elderly living alone. Adv. Inf. Sci. Serv. Sci. 3(7), 311–323 (2011)

    MathSciNet  Google Scholar 

  9. Lubina, P., Rudzki, M.: Artificial neural networks in accelerometer-based human activity recognition. In: Mixed Design of Integrated Circuits Systems (MIXDES), 2015 22nd International Conference. pp. 63–68 (2015)

    Google Scholar 

  10. Marco, A., Casas, R., Falco, J., Gracia, H., Artigas, J.I., Roy, A.: Location-based services for elderly and disabled people. Comput. Commun. 31(6), 1055–1066 (2008). http://dx.doi.org/10.1016/j.comcom.2007.12.031

    Google Scholar 

  11. Mitas, A.W., Rudzki, M., Skotnicka, M., Lubina, P.: Activity monitoring of the elderly for telecare systems—review. In: Information Technologies in Biomedicine, Volume 4, Advances in Intelligent Systems and Computing, vol. 284, pp. 125–138. Springer (2014)

    Google Scholar 

  12. Mitas, A.W., Rudzki, M., Wieclawek, W., Zarychta, P., Piwowarski, S.: Wearable system for activity monitoring of the elderly. In: Information Technologies in Biomedicine, Volume 4, Advances in Intelligent Systems and Computing, vol. 284, pp. 147–160. Springer (2014)

    Google Scholar 

  13. Oshima, Y., Kawaguchi, K., Tanaka, S., Ohkawara, K., Hikihara, Y., Ishikawa-Takata, K., Tabata, I.: Classifying household and locomotive activities using a triaxial accelerometer. Gait Posture 31(3), 370–374 (2010)

    Article  Google Scholar 

  14. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: In Proceedings of the Seventeenth Conference on Innovative Applications of Artificial Intelligence (IAAI), pp. 1541–1546. AAAI Press (2005)

    Google Scholar 

  15. Tasoulis, S., Doukas, C., Plagianakos, V., Maglogiannis, I.: Statistical data mining of streaming motion data for activity and fall recognition in assistive environments. Neurocomputing 107, 87–96 (2013). Timely Neural Networks Applications in Engineering Selected Papers from the 12th EANN International Conference (2011)

    Google Scholar 

  16. Tseng, S., Li, W.L., Sheng, C.Y., Hsu, J.W., Chen, C.S.: Motion and attitude estimation using inertial measurements with complementary filter. In: 2011 8th Asian Control Conference (ASCC), pp. 863–868 (2011)

    Google Scholar 

  17. Virone, G., Alwan, M., Dalal, S., Kell, S.W., Turner, B., Stankovic, J.A., Felder, R.A.: Behavioral patterns of older adults in assisted living. IEEE Trans. Inf. Technol. Biomed. 12(3), 387–398 (2008)

    Article  Google Scholar 

  18. Yang, C.C., Hsu, Y.L.: Remote monitoring and assessment of daily activities in the home environment. J. Clin. Gerontol. Geriatr. 3(3), 97–104 (2012). http://www.sciencedirect.com/science/article/pii/S2210833512000494

    Google Scholar 

  19. Yu, M., Rhuma, A., Naqvi, S., Wang, L., Chambers, J.: A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment. IEEE Trans. Inf. Technol. Biomed. 16(6), 1274–1286 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Project co-financed by the European Regional Development Fund under the Operational Programme Innovative Economy, project no. POIG.01.03.01-24-061/12. The authors wish to thank the medical staff of the Nursing Home Święta Elżbieta in Ruda Śląska for the possibility of conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Stepien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Stepien, P. et al. (2016). Quantitative Validation of Gait and Swing Angles Determination from Inertial Signals. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technologies in Medicine. ITiB 2016. Advances in Intelligent Systems and Computing, vol 472. Springer, Cham. https://doi.org/10.1007/978-3-319-39904-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39904-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39903-4

  • Online ISBN: 978-3-319-39904-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics