Skip to main content

Electrochemical Properties of TiO\(_2\) Oxide Film on 316LVM Stainless Steel for Orthopedic Implants

  • Conference paper
  • First Online:
Information Technologies in Medicine (ITiB 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 472))

Included in the following conference series:

  • 665 Accesses

Abstract

Electrochemical properties of metallic biomaterials in tissue environment have a direct effect on the biocompatibility of implants manufactured out of them. On the other hand, improved corrosion resistance is primarily related to the chemical composition of the surface layer which is in direct contact with bone tissue. The paper proposes modification of the surface of the 316LVM steel with TiO\(_2\) oxide layer using the ALD method, because of the good tolerability of the compound in the human body. In order to determine the optimum number of cycles, and thereby a sufficient thickness of the layer, an electrochemical study (EIS) and corrosion resistance study (potentiostatic and potentiodynamic) were conducted. Studies were carried out in Ringer’s solution at the temperature of T \(=\) 37 \(^{\circ }\)C and pH \(=\) 6.8 ± 0.2. Finding out what is the optimal thickness of the TiO\(_2\) layer has a prospective importance and will contribute to the development of technological conditions with explicit parameters for depositing oxide coatings on implants made out of steel 316LVM. Based on the results it was found that the most favorable electrochemical properties in Ringer solution were shown by TiO\(_2\) layer deposited using ALD method with 500 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarik, L., Arroval, T., Rammula, R., Mändar, H., Sammelselg, V., Aarik, J.: Atomic layer deposition of TiO2 from TiCl4 and O3. Thin Solid Films 542, 100–107 (2013)

    Article  Google Scholar 

  2. Basiaga, M., Staszuk, M., Walke, W., Opilski, Z.: Mechanical properties of ALD TiO2 layers on stainless steel substrate. Materialwissenschaft Werkstofftechnik issue 5, 35–41 (2016)

    Google Scholar 

  3. Basiaga, M., Jendruś, R., Paszenda, Z., Kaczmarek, M., Popczyk, M.: Influence of surface modification on properties of stainless steel used for implants. Arch. Metall. Mater. 60(4), 2955–2959 (2015)

    Google Scholar 

  4. Basiaga, M., Paszenda, Z., Karasiński, P., Szewczenko, J.: The effects of a SiO2 coating on the corrosion parameters cpTi and Ti-6Al-7Nb alloy. Biomatter 4(1), e28535 (2014). doi:10.4161/biom.28535

    Article  Google Scholar 

  5. Basiaga, M., Paszenda, Z., Walke, W., Karasiński, P., Marciniak, J.: Electrochemical impedance spectroscopy and corrosion resistance of SiO2 coated cpTi and Ti-6Al-7Nb alloy. Inf. Technol. Biomed. Adv. Intell. Syst. Comput. 284, 411–420 (2014). Springer

    Google Scholar 

  6. Carp, O., Huismas, C.L., Reller, A.: Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32, 33–177 (2004)

    Article  Google Scholar 

  7. Díaza, B., Swiatowska, J., Mauricea, V., Seyeux, A., Normand, B., Härkönen, E., Ritala, M., Marcus, P.: Electrochemical and time-of-flight secondary ion mass spectrometry analysis of ultra-thin metal oxide (Al2O3 and Ta2O5) coatings deposited by atomic layer deposition on stainless steel. Electrochim. Acta 56, 10516–10523 (2011)

    Article  Google Scholar 

  8. Fekry, A.M., El-Sherif, R.M.: Electrochemical corrosion behavior of magnesium and titanium alloys in simulated body fluid. Electrochim. Acta 54, 7280–7285 (2009)

    Article  Google Scholar 

  9. Hannawa, T., Asami, K., Asoka, K.: Repassivation of titanium and surface oxide film regenerated in simulated bioliquid. J. Biomed. Mater. Res. 40, 530–538 (1998)

    Article  Google Scholar 

  10. Houmarda, M., Nunesb, E.H.M., Vasconcelosb, D.C.L., Berthoméc, G., Joudc, J.-C., Langletd, M., Vasconcelosba, W.L.: Correlation between sol-gel reactivity and wettability of silica films deposited on stainless steel. Appl. Surf. Sci. 289, 218–222 (2014)

    Article  Google Scholar 

  11. Kaczmarek, M.: Investigation of pitting and crevice corrosion resistance of NiTi alloy by means of electrochemical methods. Electr. Rev. 86(12), 102–105 (2010)

    Google Scholar 

  12. Kajzer, A., Kajzer, W., Dzielicki, J., Matejczyk, D.: The study of physicochemical properties of stabilizing plates removed from the body after treatment of pectus excavatum. Acta Bioeng. Biomech. 2, 35–44 (2015)

    Google Scholar 

  13. Kajzer, A., Kajzer, W., Semenowicz, J., Mroczka, A.: Corrosion resistance of hip endoprosthesis cups in the initial state and after implantation. Solid State Phenom. 227, 523–526 (2015)

    Article  Google Scholar 

  14. Karambakhsh, A., Afshar, A., Malekinejad, P.: Corrosion resistance and color properties of anodized Ti-6Al-4V. J. Mater. Eng. Perform. 21, 121–127 (2012)

    Article  Google Scholar 

  15. Kelly, E.J.: Electrochemical behavior of titanium. Mod. Aspect Electrochem. 14, 319–324 (1988)

    Google Scholar 

  16. Leskela, M., Ritala, M.: Angewandte Chemie International Edition 42, 5548 (2003)

    Article  Google Scholar 

  17. Lim, B.S., Rahtu, A., Gordon, R.G.: Atomic layer deposition of transition metals. Nat. Mater. 2, 749–754 (2003)

    Article  Google Scholar 

  18. Liua, X., Chub, P., Dinga, Ch.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R 47, 49–121 (2004)

    Article  Google Scholar 

  19. Liu, X., Chu, P.K., Ding, C.: Surface modification of titanium, titanium alloys and related materials for biomedical applications. Mater. Sci. Eng. R47, 49–121 (2004)

    Article  Google Scholar 

  20. Long, M., Rack, H.J.: Titanium alloy in total joint replacement—a science perspective. Biomaterials 19, 1621–1639 (1998)

    Article  Google Scholar 

  21. Lukaszczyk, J., Śmiga-Matuszowicz, M., Jaszcz, K., Kaczmarek, M.: Characterization of new biodegradable bone cement compositions based on functional polysuccinates and methacrylic anhydride. J. Biomater. Sci. Polym. Ed. 18(7), 825–842 (2007)

    Article  Google Scholar 

  22. Marciniak, J., Szewczenko, J., Kajzer, W.: Surface modification of implants for bone surgery. Arch. Metall. Mater. 60(3B), 13–19 (2015)

    Google Scholar 

  23. Marin, E., Guzman, L., Lanzutti, A., Ensinger, W., Fedrizzi, L.: Ultilayer Al2O3/TiO2 atomic layer deposition coatings for the corrosion protection of stainless steel. Thin Solid Films 522, 283–288 (2012)

    Article  Google Scholar 

  24. Martin, E., Lanzutti, A., Paussa, L., Guzman, L., Fedrizzi, L.: Long term performance of atomic layer deposition coatings for corrosion protection of stainless steel. Mater. Corros. 66(9), 909–914 (2015)

    Google Scholar 

  25. Saleem, M.R., Silfsten, P., Honkanen, S., Turunen, J.: Thin Solid Films 520, 5442–5446 (2012)

    Article  Google Scholar 

  26. Shan, C.X., Hou, X., Choy, K.-L.: Corrosion resistance or TiO2 films grown on stainless steel by atomic layer deposition. Surf. Coat. Technol. 202, 2399–2402 (2008)

    Article  Google Scholar 

  27. Standard: ASTM G48—11 (2015) An ASTM designation number identifies a unique version of an ASTM standard. G48—11(2015) G = corrosion, deterioration, and degradation of materials; 48 = assigned sequential number 11 = year of original adoption (or, in the case of revision, the year of last revision) (2015) = year of last reapproval: Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution

    Google Scholar 

  28. Szewczenko, J., Jaglarz, J., Basiaga, M., Kurzyk, J., Skoczek, E., Paszenda, Z.: Topography and thickness of passive layers on anodically oxidized Ti6Al4V alloys. Electr. Rev. 88(12B), 228–231 (2012)

    Google Scholar 

  29. Tamilselvi, S., Raman, V., Rajendran, N.: Corrosion behaviour of Ti-6Al-7Nb and Ti-6Al-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim. Acta 52, 839–846 (2006)

    Article  Google Scholar 

  30. Textor, M., Sitting, C., Frauchiger, V., Tosatti, S.: Properties and Biological Significance of Natural Oxide Films on Titanium and its Alloys. Titanium in Medicine. Springer, Heidelberg (2001)

    Book  Google Scholar 

  31. Walke, W., Paszenda, Z., Basiaga, M., Karasiński, P., Kaczmarek, M.: EIS study of SiO2 Oxide Film on 316L stainless steel for cardiac implants. Inf. Technol. Biomed. Adv. Intell. Syst. Comput. 284, 403–410 (2014). Springer

    Google Scholar 

  32. Zhang, L., Prosser, J.H., Feng, G., Lee, D.: Mechanical properties of atomic layer deposition-reinforced nanoparticle thin films. Nanoscale 4, 6543–6552 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Hyla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hyla, A., Walke, W. (2016). Electrochemical Properties of TiO\(_2\) Oxide Film on 316LVM Stainless Steel for Orthopedic Implants. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technologies in Medicine. ITiB 2016. Advances in Intelligent Systems and Computing, vol 472. Springer, Cham. https://doi.org/10.1007/978-3-319-39904-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39904-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39903-4

  • Online ISBN: 978-3-319-39904-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics