Skip to main content

Human Fibroblast Growth Factor 2 Hot Spot Analysis by Means of Time-Frequency Transforms

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 472))

Abstract

Energy in protein complexes is not uniformly distributed. Some of amino acid residues—called hot spots—contribute most to the total energy of interaction. Hot spots can be determined experimentally or by computational methods. Here we present the application of time-frequency tools such as short-time Fourier transform and S transform to analyze human fibroblast growth factor 2 protein. The time-frequency tools take advantage the Resonant Recognition Model (RRM), which is based on the correlation between spectra of numerical representations of amino acids and their function. Thus, RRM allows for applying digital signal processing tools to amino acid analysis. Methods using time-frequency transforms do not require knowledge of protein structure, thus they help to predict hot spot residues with good accuracy and lower computational requirements comparing to other algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brown, R.A., Frayne, R.: A fast discrete S-transform for biomedical signal processing. In: Conference Proceedings IEEE Engineering Medicine Biology Society, vol. 2008, pp. 2586–2589 (2008)

    Google Scholar 

  2. Clackson, T., Wells, J.A.: A hot spot of binding energy in a hormone-receptor interface. Science 267(5196), 383–386 (1995)

    Google Scholar 

  3. Cosic, I.: Macromolecular bioactivity: is it resonant interaction between macromolecules?–theory and applications. IEEE Trans. Biomed. Eng. 41(12), 1101–1114 (1994)

    Google Scholar 

  4. Grosdidier, S., Fernandez-Recio, J.: Identification of hot-spot residues in protein-protein interactions by computational docking. BMC Bioinform. 9, 447 (2008)

    Google Scholar 

  5. Kasparek, J., Maderankova, D., Tkacz, E.: Protein hotspot prediction using S-transform. Adv. Intell. Syst. Comput. 283, 327–336 (2014)

    Google Scholar 

  6. Keskin, O., Ma, B., Nussinov, R.: Hot regions in protein–protein interactions: the organization and contribution of structurally conserved hot spot residues. J. Mol. Biol. 345(5), 1281–1294. Epub 2004 Dec 2 (2005)

    Google Scholar 

  7. Kortemme, T., Baker, D.: A simple physical model for binding energy hot spots in protein-protein complexes. Proc. Natl. Acad. Sci. U.S.A. 99(22), 14116–14121 (2002)

    Google Scholar 

  8. Kortemme, T., Kim, D.E., Baker, D.: Computational alanine scanning of protein-protein interfaces. Sci. STKE 2004(219), pl2 (2004)

    Google Scholar 

  9. Ofran, Y., Rost, B.: Protein-protein interaction hotspots carved into sequences. PLoS Comput. Biol. 3(7), e119 (2007)

    Google Scholar 

  10. Pięciak, T., Rzeszutko, J.: Wprowadzenie do analizy i przetwarzania sygnałów biomedycznych. in: R. Tadeusiewicz, P. Augustyniak, Podstawy inżynierii biomedycznej, tom I, Wydawnictwo AGH, Kraków (2009) (in Polish)

    Google Scholar 

  11. Ramachandran, P., Antoniou, A.: Identification of hot-spot locations in proteins using digital filters. IEEE J. Sel. Top. Signal Process. 2(3), 378–389 (2008)

    Article  Google Scholar 

  12. Ramachandran, P., Antoniou, A., Vaidyanathan, P.P.: Identification and location of hot spots in proteins using the short-time discrete Fourier transform. In: Proceedings 38th Asilomar Conference Signals, Systems, Computers, Pacific Grove, CA, Nov 2004, pp. 1656–1660 (2004)

    Google Scholar 

  13. Sahu, S.S., Panda, G.: Efficient localization of hot spots in proteins using a novel S-transform based filtering approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1235–1246 (2011)

    Google Scholar 

  14. Shulman-Peleg, A., Shatsky, M., Nussinov, R., Wolfson, H.J.: Spatial chemical conservation of hot spot interactions in protein-protein complexes. BMC Biol. 5, 43 (2007)

    Google Scholar 

  15. Stockwell, R.G., Mansinha, L., Lowe, R.P.: Localization of the complex spectrum: the S transform. IEEE Trans. Signal Process. 44(4), 998–1001 (1996)

    Article  Google Scholar 

  16. The UniProt Consortium: UniProt: a hub for protein information. Nucleic Acids Res. 43(Database issue), D204–D212 (2015)

    Google Scholar 

  17. The Universal Protein Resource (UniProt), European Bioinformatics Institute (EMBL-EBI), Swiss Institute of Bioinformatics (SIB) and the Protein Information Resource (PIR), http://www.uniprot.org (2015)

  18. The Universal Protein Resource (UniProt), European Bioinformatics Institute (EMBL-EBI), Swiss Institute of Bioinformatics (SIB) and the Protein Information Resource (PIR), http://www.uniprot.org/uniprot/P09038 (2015)

  19. Thorn, K.S., Bogan, A.A.: ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions. Bioinformatics 17(3), 284–285 (2001)

    Google Scholar 

  20. Tuncbag, N., Keskin, O., Gursoy, A.: HotPoint: hot spot prediction server for protein interfaces. Nucleic Acids Res. 38(Web Server issue), W402–W406 (2010)

    Google Scholar 

  21. Tuncbag, N., Gursoy, A., Keskin, O.: Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 25(12), 1513–1520 (2009)

    Google Scholar 

  22. Veljković, V., Cosić, I., Dimitrijević, B., Lalović, D.: Is it possible to analyze DNA and protein sequences by the methods of digital signal processing? IEEE Trans. Biomed. Eng. 32(5), 337–341 (1985)

    Google Scholar 

  23. Wang, Y.-H.: The Tutorial: S-Transform. http://djj.ee.ntu.edu.tw/Stransform.pdf (2010)

  24. Zieliński, T.P.: Cyfrowe przetwarzanie sygnałów. Od teorii do zastosowań, Wydawnictwa Komunikacji i Łączności, Warszawa (2005) (in Polish)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Higher Education funding for statutory activities of young researchers (decision no. 8686/E-367/M/2015 of 12 March 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Tamulewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Tamulewicz, A., Tkacz, E. (2016). Human Fibroblast Growth Factor 2 Hot Spot Analysis by Means of Time-Frequency Transforms. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technologies in Medicine. ITiB 2016. Advances in Intelligent Systems and Computing, vol 472. Springer, Cham. https://doi.org/10.1007/978-3-319-39904-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39904-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39903-4

  • Online ISBN: 978-3-319-39904-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics