Skip to main content

Might Tobin be Right?

The Role of Market Frictions in Policy-Induced Portfolio Shifts for Growth

  • Chapter
  • First Online:
Dynamic Modeling, Empirical Macroeconomics, and Finance
  • 873 Accesses

Abstract

When search frictions are present on financial markets, money demand arises endogenously as not all savings will be seamlessly invested in productive capacity. In such a situation, monetary and fiscal policies affect households’ portfolio decisions through their impact on the value of real balances. With exogenous growth, money continues to be neutral. In case of endogenous growth, however, money-induced portfolio shifts allow for the existence of an optimal inflation rate. Similarly, portfolio shifts induced by governments’ fiscal interventions allow to enhance growth as public debt helps to overcome search externalities by providing additional assets on the financial market. Finally, when monetary and fiscal policy interact, growth is maximum in comparison to each of the two policies taken individually. The results of the paper suggest that balance-sheet recessions can be overcome by targeted monetary and fiscal interventions that provide additional assets and induce portfolio shifts whereby these additional assets are invested in productive capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    m L has positive and decreasing marginal returns on each input.

  2. 2.

    In this deterministic case, the portfolio decisions between firm equity and government bonds are exogenously given. They could be endogenized by moving to a stochastic set-up.

  3. 3.

    For notational convenience, the time subscript is being dropped here and in the following.

  4. 4.

    In the spirit of the original (Tobin 1965) model, the analysis here concentrates on changes in the long-run, steady state behaviour, in which any short-term effects of money market interest rates have already played out.

  5. 5.

    The following notational conventions are being used: \(\dot{X} \equiv \frac{\partial X} {\partial t}\), \(\hat{X} \equiv \frac{\dot{X}} {X}\).

  6. 6.

    In most applications of search-based models to short-term macroeconomics, an additive-separable utility function is assumed to guarantee the characteristics of employment lotteries (see the discussion in Andolfatto 1996; Trigari 2009). Such a utility function is not compatible with long-run steady state (endogenous) growth. Here, we make the assumption that labour supply is exogenously given and that households maximise their intertemporal utility against the expected path of employment opportunities given by the expected employment rate.

  7. 7.

    This follows the spirit of Merz (1995) determination of the competitive search equilibrium (see Merz 1995, pp. 287–293). It is, indeed, easy to show that this formulation is equivalent to the one where the intertemporal preference rate for firms is replaced by the—commonly used—interest rate for capital. In both cases, it is assumed that capital is ultimately owned by households.

  8. 8.

    In a more elaborate version, one could introduce a fully intertemporal negotiation model where wages and interest rates would also be affected by future developments in their respective markets, as discussed in Layard et al. (1991).

  9. 9.

    Note that u f declines with increases in financial market tightness.

  10. 10.

    Note that in this model, prices are fully flexible and wage increases do not lead to an expansion of aggregate demand.

  11. 11.

    This follows the spirit of Merz (1995) determination of the competitive search equilibrium (see Merz 1995, pp. 287–293). It is, indeed, easy to show that this formulation is equivalent to the one where the intertemporal preference rate for firms is replaced by the—commonly used—interest rate for capital. In both cases, it is assumed that capital is ultimately owned by households.

  12. 12.

    Note that given the labour productivity externality the cross derivate writes as:

    $$\displaystyle{\frac{\partial ^{2}F\left (K_{i},A_{i}N_{i}\right )} {\partial N\partial K} = \frac{\partial } {\partial K}\left ( \frac{\partial F} {\partial N}\right ) = \frac{\partial } {\partial K}\left (\alpha A_{i} \cdot \overline{K}^{\alpha }N_{i}^{\alpha -1}K_{ i}^{1-\alpha }\right ) =\alpha A_{ i} \cdot \overline{K}^{\alpha }N_{ i}^{\alpha -1}K_{ i}^{-\alpha }}$$

    and in equilibrium:

    $$\displaystyle{ \frac{\partial ^{2}F} {\partial N\partial K} =\alpha A \cdot N^{-1}.}$$

    Hence, the term containing the optimal wage reaction can be written as:

    $$\displaystyle{\begin{array}{ll} w_{K}^{{\ast}}\left (\theta \right ) \cdot N & = \frac{\beta } {1-\beta \theta \zeta -\left (1-\beta \right ) R}F_{NK}N = \frac{\beta } {1-\beta \theta \zeta -\left (1-\beta \right ) R}\alpha A \cdot N^{-1}N \\ & = \frac{\beta \alpha A} {1-\beta \theta \zeta -\left (1-\beta \right )R} \end{array} }$$

References

  • Ahmed, S., & Rogers, J. H. (2000). Inflation and the great ratios: Long term evidence from the U.S. Journal of Monetary Economics 45, 3–35.

    Article  Google Scholar 

  • Akerlof, G. A., Dickens, W. T., & Perry, G. L. (2000). Near-rational wage and price setting and the optimal rates of inflation and unemployment. Brookings Papers on Economic Activity, 1, 1–45.

    Article  Google Scholar 

  • Amable, B., & Ernst, E. (2005). Financial and labour market interactions. Specific investment and market liquidity, CEM Working Paper 93. Bielefeld: University of Bielefeld.

    Google Scholar 

  • Andolfatto, D. (1996). Business cycles and labor-market search. American Economic Review, 86(1), 112–132.

    Google Scholar 

  • Batini, N., Eyraud, L., Forni, L., & Weber, A. (2014). Fiscal multipliers: Size, determinants, and use in macroeconomic projections. Tech. rep. Washington, DC.: International Monetary Fund (IMF).

    Google Scholar 

  • Becsi, Z., Li, V., & Wang, P. (2000). Financial matchmakers in credit markets with heterogeneous borrowers, Working Paper 2000-14. Atlanta: Federal Reserve Bank of Atlanta.

    Google Scholar 

  • Caballero, R., & Farhi, E. (2014). The safety trap, Working Paper 19927. Cambridge, MA.: NBER.

    Google Scholar 

  • Christiano, L. J. (1994). Modeling the liquidity effect of a money shock. In R. Fiorito (Ed.), Inventory, business cycles and monetary transmission. Lecture Notes in Economics and Mathematical Systems (Vol. 413, pp. 61–124). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Christiano, L. J., Eichenbaum, M., & Evans, C. L. (1997). Sticky price and limited participation models of money: A comparison. European Economic Review, 41(6), 1201–1249.

    Article  Google Scholar 

  • Cooley, T. F., & Hansen, G. D. (1989). The inflation tax in a real business cycle model. American Economic Review, 79(4), 733–748.

    Google Scholar 

  • Den Haan, W. J., Ramey, G., & Watson, J. (2003). Liquidity flows and fragility of business enterprises. Journal of Monetary Economics, 50(6), 1215–1241.

    Article  Google Scholar 

  • Eggertsson, G. B., & Krugman, P. (2012). Debt, deleveraging, and the liquidity trap: A fisher-minsky-koo approach. Quarterly Journal of Economics, 127(3), 1469–1513.

    Article  Google Scholar 

  • Eriksson, C. (1997). Is there a trade-off between employment and growth? Oxford Economic Papers, 49, 77–88.

    Article  Google Scholar 

  • Ernst, E., & Semmler, W. (2010). Global dynamics in a model with search and matching in labor and capital markets. Journal of Economic Dynamics and Control, 34(9), 1651–1679.

    Article  Google Scholar 

  • Fuerst, T. S. (1992). Liquidity, loanable funds, and real activity. Journal of Monetary Economics, 29(1), 3–24.

    Article  Google Scholar 

  • Grinols, E. L., & Turnovsky, S. J. (1998a). Consequences of debt policy in a stochastically growing monetary economy. International Economic Review, 39(2), 495–521.

    Article  Google Scholar 

  • Grinols, E. L., & Turnovsky, S. J. (1998b). Risk, optimal government finance and monetary policies in a growing economy. Economica, 65(259), 401–427.

    Article  Google Scholar 

  • Jones, C. I. (1995). Time series tests of endogenous growth models. Quarterly Journal of Economics, 110, 495–525.

    Article  Google Scholar 

  • Koo, R. (2015). The escape from balance sheet recession and the QE trap. Singapore: Wiley.

    Google Scholar 

  • Layard, R., Nickell, S., & Jackman, R. (1991). Unemployment. Macroeconomic performance and the labour market. Oxford: Oxford University Press.

    Google Scholar 

  • Lucas, R. E. (1990). Liquidity and interest rates. Journal of Economic Theory, 4(2), 103–124.

    Article  Google Scholar 

  • Merz, M. (1995). Search in the labor market and the real business cycle. Journal of Monetary Economics, 36, 269–300.

    Article  Google Scholar 

  • Pissarides, C. (2000). Equilibrium unemployment theory. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Romer, P. M. (1986). Increasing returns and long-run growth. Journal of Political Economy, 94(5), 1002–1037.

    Article  Google Scholar 

  • Romer, P. M. (1994). The origins of endogenous growth. Journal of Economic Perspectives, 8(1), 3–22.

    Article  Google Scholar 

  • Stockman, A. C. (1981). Anticipated inflation and the capital stock in a cash-in-advance economy. Journal of Monetary Economics, 8, 387–393.

    Article  Google Scholar 

  • Tobin, J. (1965). Money and economic growth. Econometrica, 33, 671–684.

    Article  Google Scholar 

  • Trigari, A. (2009). Equilibrium unemployment, job flows and inflation dynamics. Journal of Money, Credit and Banking, 41(1), 1–33.

    Article  Google Scholar 

  • Walsh, C. E. (2001). Monetary theory and policy. Cambridge, MA: MIT Press.

    Google Scholar 

  • Wang, P., & Xie, D. (2012). Real effects of money growth and optimal rate of inflation in a cash-in-advance economy with labor-market frictions, MPRA Paper 42291. Munich: RePEc.

    Google Scholar 

  • Wasmer, E., & Weil, P. (2004). The macroeconomics of labor and credit market imperfections. American Economic Review, 94(4), 944–963.

    Article  Google Scholar 

  • Woodford, M. (2003). Interest and prices: Foundations of a theory of monetary policy. New York: Princeton University Press.

    Google Scholar 

  • Woodford, M. (2011). Simple analytics of the government expenditure multiplier. American Economic Journal: Macroeconomics 3(1), 1–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekkehard Ernst .

Editor information

Editors and Affiliations

Appendices

Appendix 1: The Household Program

To solve the problem, the Hamiltonian is set up as follows:

$$\displaystyle\begin{array}{rcl} \mathcal{H}& =& \frac{\left (c \cdot N^{-\gamma }\right )^{1-\eta }} {1-\eta } +\nu \left [r_{W}W - c + \left (1 -\tau _{w}\right )wN\right ]. {}\\ \end{array}$$

The household’s first-order condition can then be determined as:

$$\displaystyle\begin{array}{rcl} \frac{\partial \mathcal{H}} {\partial c} & =& 0 \Leftrightarrow c^{-\eta }N^{-\gamma \left (1-\eta \right )} =\nu {}\end{array}$$
(16)

The co-state variable W evolves according to:

$$\displaystyle\begin{array}{rcl} \dot{\nu }_{1}& =& \rho \nu _{1} - \frac{\partial \mathcal{H}} {\partial W} =\rho \nu -\nu r_{W}{}\end{array}$$
(17)

Deriving (16) with respect to time, noting that \(\dot{N} = 0\) in steady state and substituting \(\dot{\nu }_{1}\) and ν 1 in (17), the household’s optimal consumption path can be determined as:

$$\displaystyle\begin{array}{rcl} -\eta \dot{c}c^{-\eta -1}& =& c^{-\eta }\left (\rho -r_{ W}\right ) \\ \Leftrightarrow \hat{ c} \equiv \frac{\dot{c}} {c}& =& \frac{1} {\eta } \left (r_{W}-\rho \right ){}\end{array}$$
(18)

Appendix 2: Equilibrium Investment and Hiring

The firm maximises profits selecting vacancies, \(\mathcal{V}\geq 0\), and issues of bonds, \(\mathcal{B}\geq 0\), subject to costs of job vacancy creation, \(\zeta \cdot w \cdot \mathcal{V}\), and finding a financial investor, \(\kappa \cdot r_{K} \cdot \mathcal{B}\). Accordingly, its optimal program writes as:

$$\displaystyle{\max _{N,K,\mathcal{V},\mathcal{B}}\int _{0}^{\infty }\nu _{ 1}\left (t\right )\left (F\left (K,AN\right ) - wN - r_{K}K -\zeta \cdot w\mathcal{V}-\kappa \cdot r_{K}\mathcal{B}\right )e^{-\rho t}dt}$$

where ρ stands for the intertemporal preference rate and \(\nu _{1}\left (t\right )\) for the household’s shadow variable related to its accumulation constraint,Footnote 11 which firms maximise against the constraints of employment and capital accumulation, Eqs. (5) and (6).

Capital is predetermined with respect to the wage bargaining process and firms will take the impact of their capital decision on wages into account. The Hamiltonian therefore writes as:

$$\displaystyle{\begin{array}{ll} \mathcal{H} =&\nu _{1}\left (t\right )\left [F\left (K,N\right ) - w\left (K\right )N - r_{K}K -\zeta \cdot w\mathcal{V}-\kappa \cdot r_{K}\mathcal{B}\right ] +\lambda \left [q\left (\theta \right )\mathcal{V}-\sigma N\right ] \\ & +\mu \left [p\left (\phi \right )\mathcal{B}-\delta K\right ] \end{array} }$$

leading to the first-order conditions:

$$\displaystyle\begin{array}{rcl} \frac{\partial \mathcal{H}} {\partial \mathcal{V}}& =& 0 \Leftrightarrow \nu _{1}\left (t\right )\zeta \cdot w =\lambda q\left (\theta \right ) \Leftrightarrow \lambda =\nu _{1}\left (t\right ) \frac{\zeta \cdot w} {q\left (\theta \right )} {}\\ \frac{\partial \mathcal{H}} {\partial \mathcal{B}}& =& 0 \Leftrightarrow \nu _{1}\left (t\right )\kappa \cdot r =\mu p\left (\phi \right ) \Leftrightarrow \mu =\nu _{1}\left (t\right )\frac{\kappa \cdot r_{K}} {p\left (\phi \right )} {}\\ \end{array}$$

and the evolution of the co-state variables:

$$\displaystyle\begin{array}{rcl} \dot{\lambda }& =& \rho \lambda -\frac{\partial \mathcal{H}} {\partial N} =\lambda \left (\rho +\sigma \right ) -\nu _{1}\left (t\right )\left (F_{N} - w\right ) {}\\ \dot{\mu }& =& \rho \mu -\frac{\partial \mathcal{H}} {\partial K} =\mu \left (\rho +\delta \right ) -\nu _{1}\left (t\right )\left (F_{K} - N \frac{\partial w^{{\ast}}} {\partial K} - r_{K}\right ) {}\\ \end{array}$$

Deriving the first-order conditions with respect to time, one obtains:

$$\displaystyle\begin{array}{rcl} \dot{\lambda }& =& \frac{\zeta \cdot \dot{w}} {q\left (\theta \right )} +\dot{\nu } _{1}\left (t\right ) \frac{\zeta \cdot w} {q\left (\theta \right )} {}\\ \dot{\mu }& =& \frac{\kappa \cdot \dot{r}_{K}} {p\left (\phi \right )} +\dot{\nu } _{1}\left (t\right )\frac{\kappa \cdot r_{K}} {p\left (\phi \right )} {}\\ \end{array}$$

and hence:

$$\displaystyle\begin{array}{rcl} \frac{\zeta \cdot \dot{w}} {q\left (\theta \right )}\nu _{1}\left (t\right ) +\dot{\nu } _{1}\left (t\right ) \frac{\zeta \cdot w} {q\left (\theta \right )}& =& \nu _{1}\left (t\right ) \frac{\zeta \cdot w} {q\left (\theta \right )}\left (\rho +\sigma \right ) -\nu _{1}\left (t\right )\left (F_{N} - w\right ) {}\\ \frac{\kappa \cdot \dot{r}_{K}} {p\left (\phi \right )} \nu _{1}\left (t\right ) +\dot{\nu } _{1}\left (t\right )\frac{\kappa \cdot r_{K}} {p\left (\phi \right )} & =& \nu _{1}\left (t\right )\frac{\kappa \cdot r_{K}} {p\left (\phi \right )} \left (\rho +\delta \right ) -\nu _{1}\left (t\right )\left (F_{K} - N \frac{\partial w^{{\ast}}} {\partial K} - r_{K}\right ) {}\\ \end{array}$$

which can be rewritten as:

$$\displaystyle\begin{array}{rcl} F_{N} - w + \frac{\zeta \cdot w} {q\left (\theta \right )}\left [\hat{w} + \frac{\dot{\nu }_{1}\left (t\right )} {\nu _{1}\left (t\right )} -\rho -\sigma \right ]& =& 0 {}\\ F_{K} - N \frac{\partial w^{{\ast}}} {\partial K} - r_{K} + \frac{\kappa \cdot r_{K}} {p\left (\phi \right )} \left [\hat{r_{K}} + \frac{\dot{\nu }_{1}\left (t\right )} {\nu _{1}\left (t\right )} -\rho -\delta \right ]& =& 0 {}\\ \end{array}$$

where \(\hat{w} \equiv \frac{\dot{w}} {w}\) and \(\hat{r_{K}} \equiv \frac{\dot{r_{K}}} {r_{K}}\).

Using the wage- and interest-rate curves, Eqs. (7) and (8), and noting that in the steady-state equilibrium \(\hat{r}_{K} = 0\) and \(\nu _{1}\left (t\right ) = c^{-\eta }\Rightarrow \frac{\dot{\nu }_{1}\left (t\right )} {\nu _{1}\left (t\right )} = -\eta \frac{\dot{c}} {c}\) will give the steady state conditions for labour and financial market liquidity (9) and (10) as given in the proposition.

Appendix 3: Changes in Growth Following Supply and Demand Shocks

Instead of assuming simultaneous negotiations of wages and interest rates, a more realistic assumption would be to consider wages to be set after the capital stock has been built. In this case, interest payment will take into account the effect of the capital stock development on wages, in addition to the marginal productivity of capital and the gain of matching issued debt:

$$\displaystyle{r_{K} =\gamma \left (F_{K} - N \frac{\partial w^{{\ast}}} {\partial K} +\phi \kappa _{0}\right ).}$$

Hence the equilibrium interest rate writes as:

$$\displaystyle\begin{array}{rcl} r_{K}& =& \gamma \left (F_{K} - w_{K}^{{\ast}}\left (\theta \right ) \cdot N +\phi \kappa \cdot r_{ K}\right ) \Leftrightarrow r_{K} = \frac{\gamma } {1-\gamma \phi \kappa }\left (F_{K} - w_{K}^{{\ast}}\left (\theta \right ) \cdot N\right ) {}\\ r_{K}& =& \frac{\gamma } {1-\gamma \phi \kappa }\left (\,\,f^{{\prime}}\left (k\right ) - w_{ K}^{{\ast}}\left (\theta \right ) \cdot N\right ) {}\\ \end{array}$$

When endogenous growth is introduced, the rate of return on capital writes asFootnote 12:

$$\displaystyle\begin{array}{rcl} & & r_{K} =\gamma \left (F_{K} - w_{K}^{{\ast}}\left (\theta \right ) \cdot N +\phi \kappa _{ 0}\right ) {}\\ & \Leftrightarrow & r_{K} = \frac{\gamma } {1-\gamma \phi \kappa }\left (A\left (1-\alpha \right ) - w_{K}^{{\ast}}\left (\theta \right ) \cdot N\right ) {}\\ & \Leftrightarrow & r_{K} = \frac{A\gamma } {1-\gamma \phi \kappa }\left (1 -\alpha - \frac{\beta \alpha } {1 -\beta \theta \zeta -\left (1-\beta \right )R}\right ) {}\\ \end{array}$$

and we have:

$$\displaystyle{\frac{\partial r_{K}} {\partial \theta } < 0, \frac{\partial r_{K}} {\partial \phi } > 0}$$

The simultaneous equilibrium on labour and financial markets therefore writes as:

$$\displaystyle\begin{array}{rcl} \left (1-\beta \right )\left (1 - R\right ) -\beta \theta \zeta - \frac{\zeta \beta } {q\left (\theta \right )}\left (\sigma +\rho + \left (\eta -1\right )g\right )& =& 0 {}\\ 1 -\gamma \left (1+\phi \kappa \right ) - \frac{\kappa \gamma } {p\left (\phi \right )} \cdot \left (\delta +\rho +\eta g\right )& =& 0 {}\\ \end{array}$$

Using (3), the equilibrium condition for returns to investment, r W  = r B  = r K and inputting the equilibrium value for r K , we obtain:

$$\displaystyle\begin{array}{rcl} & & \left (1-\beta \right )\left (1 - R\right ) {}\\ & & \quad -\beta \theta \zeta - \frac{\zeta \beta } {q\left (\theta \right )}\left (\sigma +\frac{\rho } {\eta }+\left (\frac{\eta -1} {\eta } \right )\left [ \frac{A\gamma } {1-\gamma \phi \kappa }\left (1 -\alpha - \frac{\beta \alpha } {1 -\beta \theta \zeta -\left (1-\beta \right )R}\right )\right.\right. {}\\ & & \left.\left.\qquad \left (1 -\tau _{K}\right )\left (1 - u^{\,f}\right ) -\pi u^{\,f}\right ]\right ) = 0 {}\\ & & \quad 1 -\gamma \left (1+\phi \kappa \right ) - \frac{\kappa \gamma } {p\left (\phi \right )} \cdot \left (\delta + \frac{A\gamma } {1-\gamma \phi \kappa }\left (1 -\alpha - \frac{\beta \alpha } {1 -\beta \theta \zeta -\left (1-\beta \right )R}\right )\right. {}\\ & & \qquad \left.\left (1 -\tau _{K}\right )\left (1 - u^{\,f}\right ) -\pi u^{\,f}\right ) = 0 {}\\ \end{array}$$

and, hence, after rearranging terms:

$$\displaystyle\begin{array}{rcl} & & \left (\begin{array}{c} LL = 0\\ FF = 0 \end{array} \right ) {}\\ & & \Leftrightarrow \!\!\left (\begin{array}{c} \Theta \left (\theta,\beta,\zeta,R\right ) - \frac{A\gamma } {1-\gamma \phi \kappa }\left (1 -\alpha - \frac{\beta \alpha } {1-\beta \theta \zeta -\left (1-\beta \right )R}\right )\left (1 -\tau _{K}\right )\left (1 - u^{\,f}\right ) = \frac{\eta \sigma +\rho } {\eta -1} -\pi u^{\,f} \\ \Phi \left (\phi,\gamma,\kappa \right ) - \frac{A\gamma } {1-\gamma \phi \kappa }\left (1 -\alpha - \frac{\beta \alpha } {1-\beta \theta \zeta -\left (1-\beta \right )R}\right )\left (1 -\tau _{K}\right )\left (1 - u^{\,f}\right ) =\delta -\pi u^{\,f} \end{array} \right ){}\\ \end{array}$$

These equilibrium conditions are no longer characterised by a triangular structure. In order to determine the effect of inflation and multi-factor productivity on the labour and financial market liquidity, we will make use of Cramer’s rule. Writing \(x \in \left \{A,\pi \right \}\) and fully differentiating LL and FF we obtain:

$$\displaystyle{\left (\begin{array}{ll} \frac{\partial LL} {\partial \theta } &\frac{\partial LL} {\partial \phi } \\ \frac{\partial FF} {\partial \theta } &\frac{\partial FF} {\partial \phi } \end{array} \right )\left (\begin{array}{l} d\theta \\ d\phi \end{array} \right ) = -\left (\begin{array}{l} \frac{\partial LL} {\partial x} \\ \frac{\partial FF} {\partial x} \end{array} \right )dx}$$

Applying Cramer’s rule allows to write:

$$\displaystyle{ \frac{d\theta } {dx} = -\frac{\left \vert \begin{array}{ll} \frac{\partial LL} {\partial x} &\frac{\partial LL} {\partial \phi } \\ \frac{\partial FF} {\partial x} &\frac{\partial FF} {\partial \phi } \end{array} \right \vert } {\left \vert \begin{array}{ll} \frac{\partial LL} {\partial \theta } &\frac{\partial LL} {\partial \phi } \\ \frac{\partial FF} {\partial \theta } &\frac{\partial FF} {\partial \phi } \end{array} \right \vert }, \frac{d\phi } {dx} = -\frac{\left \vert \begin{array}{ll} \frac{\partial LL} {\partial \theta } &\frac{\partial LL} {\partial x} \\ \frac{\partial FF} {\partial \theta } &\frac{\partial FF} {\partial x} \end{array} \right \vert } {\left \vert \begin{array}{ll} \frac{\partial LL} {\partial \theta } &\frac{\partial LL} {\partial \phi } \\ \frac{\partial FF} {\partial \theta } &\frac{\partial FF} {\partial \phi } \end{array} \right \vert }}$$

Independently of the value of η we have:

$$\displaystyle{\frac{\partial FF} {\partial \phi } < 0, \frac{\partial FF} {\partial \theta } > 0, \frac{\partial LL} {\partial \phi } < 0, \frac{\partial LL} {\partial A} = \frac{\partial FF} {\partial A} < 0, \frac{\partial LL} {\partial \pi } = \frac{\partial FF} {\partial \pi } > 0}$$

and

$$\displaystyle{\left \vert \frac{\partial LL} {\partial \theta } \right \vert > \left \vert \frac{\partial FF} {\partial \theta } \right \vert,\left \vert \frac{\partial LL} {\partial \phi } \right \vert < \left \vert \frac{\partial FF} {\partial \phi } \right \vert }$$

Furthermore:

$$\displaystyle{\frac{\partial LL} {\partial \phi } = \left \{\begin{array}{l} > 0\mbox{ for }\eta < 1\\ < 0\mbox{ for } \eta > 1 \end{array} \right.}$$

and

$$\displaystyle{\frac{\partial LL} {\partial \theta } = \left \{\begin{array}{l} < 0\mbox{ for }\eta < 1\\ < 0 \mbox{ for } \eta > 1\mbox{ at the stable root} \end{array} \right.}$$

Hence, the determinant is positive at the stable root for θ for η > 1:

$$\displaystyle{\left \vert \begin{array}{ll} \frac{\partial LL} {\partial \theta } &\frac{\partial LL} {\partial \phi } \\ \frac{\partial FF} {\partial \theta } &\frac{\partial FF} {\partial \phi } \end{array} \right \vert > 0}$$

Moreover, we have:

  • For x = A: 

    $$\displaystyle\begin{array}{rcl} \left \vert \begin{array}{ll} \frac{\partial LL} {\partial A} &\frac{\partial LL} {\partial \phi } \\ \frac{\partial FF} {\partial A} &\frac{\partial FF} {\partial \phi }\end{array} \right \vert & =& \stackrel{(-)}{\frac{\partial LL} {\partial A} }\stackrel{(-)}{\frac{\partial FF} {\partial \phi } } -\stackrel{(-)}{\frac{\partial FF} {\partial A} }\stackrel{(-)}{\frac{\partial LL} {\partial \phi } } = \stackrel{(-)}{\frac{\partial LL} {\partial A} }\left [\stackrel{(-)}{\frac{\partial FF} {\partial \phi } } -\stackrel{(-)}{\frac{\partial LL} {\partial \phi } }\right ] > 0 {}\\ \left \vert \begin{array}{ll} \frac{\partial LL} {\partial \theta } &\frac{\partial LL} {\partial A} \\ \frac{\partial FF} {\partial \theta } &\frac{\partial FF} {\partial A}\end{array} \right \vert & =& \stackrel{(+)}{\frac{\partial LL} {\partial \theta } }\stackrel{(-)}{\frac{\partial FF} {\partial A} } -\stackrel{(+)}{\frac{\partial FF} {\partial \theta } }\stackrel{(-)}{\frac{\partial LL} {\partial A} } < 0 {}\\ \end{array}$$
  • For x = π: 

    $$\displaystyle\begin{array}{rcl} \left \vert \begin{array}{ll} \frac{\partial LL} {\partial \pi } &\frac{\partial LL} {\partial \phi } \\ \frac{\partial FF} {\partial \pi } &\frac{\partial FF} {\partial \phi }\end{array} \right \vert & =& \stackrel{(+)}{\frac{\partial LL} {\partial \pi } }\stackrel{(-)}{\frac{\partial FF} {\partial \phi } } -\stackrel{(+)}{\frac{\partial FF} {\partial \pi } }\stackrel{(-)}{\frac{\partial LL} {\partial \phi } } < 0 {}\\ \left \vert \begin{array}{ll} \frac{\partial LL} {\partial \theta } &\frac{\partial LL} {\partial \pi } \\ \frac{\partial FF} {\partial \theta } &\frac{\partial FF} {\partial \pi }\end{array} \right \vert & =& \stackrel{(-)}{\frac{\partial LL} {\partial \theta } }\stackrel{(+)}{\frac{\partial FF} {\partial \pi } } -\stackrel{(+)}{\frac{\partial FF} {\partial \theta } }\stackrel{(+)}{\frac{\partial LL} {\partial \pi } } < 0{}\\ \end{array}$$

The above conclusions regarding the effect of monetary and fiscal policies therefore carry over to the Stackelberg case.

Appendix 4: Monetary Policy and the Optimal Inflation Rate

Proof

As seen from (13), inflation has a first-order negative impact on the growth rate: \(\frac{\partial g} {\partial \pi } = -\frac{u^{\,f}} {\eta }\) which is independent from the inflation rate. However, inflation also affects financial market liquidity, as an increase in inflation leads to a portfolio shift by households away from savings towards consumption; totally differencing the financial market equilibrium condition (14) yields (note that in the following equations \(u^{\,f} \equiv u^{\,f}\left (\phi ^{{\ast}}\right )\) and \(r_{K} \equiv r_{K}\left (\phi ^{{\ast}}\right )\)):

$$\displaystyle{\frac{d\phi ^{{\ast}}} {d\pi } \,=\, \frac{p\left (\phi ^{{\ast}}\right )u^{\,f}} {p\left (\phi ^{{\ast}}\right )\left (p\left (\phi ^{{\ast}}\right ) + \left (1 - u^{\,f}\right )r_{K}^{{\prime}}-\left (r_{K}+\pi \right )u^{\,f}{}^{{\prime}}\right ) - p^{{\prime}}\left (\phi ^{{\ast}}\right )\left (\delta +r_{K}\left (1 - u^{\,f}\right ) -\pi u^{\,f}\right )}\,>\,0}$$

As shown before in Proposition 3.2, both the equilibrium interest rate and the growth rate increase with financial market tightness as less funds are left unused in the household’s deposits (u f decreases with ϕ). Hence, inflation has a positive second-order impact on the growth rate via its impact on the financial market liquidity.

Combining the impact of inflation on financial market liquidity and financial market liquidity on growth, the second-order positive effect writes as:

$$\displaystyle\begin{array}{rcl} \!\!& & \frac{\partial g} {\partial \phi } \cdot \frac{\partial \phi } {\partial \pi } {}\\ \!\!& & = \frac{p\left (\phi ^{{\ast}}\right )u^{\,f}\left (\left (1 - u^{\,f}\right )r_{K}^{{\prime}}- r_{K}u^{\,f}{}^{{\prime}}\right )} {\eta \left (p\left (\phi ^{{\ast}}\right )\left (p\left (\phi ^{{\ast}}\right ) + \left (1 - u^{\,f}\right )r_{K}^{{\prime}}-\left (r_{K}+\pi \right )u^{\,f}{}^{{\prime}}\right ) - p^{{\prime}}\left (\phi ^{{\ast}}\right )\left (\delta +r_{K}\left (1 - u^{\,f}\right ) -\pi u^{\,f}\right )\right )} {}\\ \!\!& & = \frac{u^{\,f}\left (\phi \right )} {\eta } \frac{p\left (\phi ^{{\ast}}\right )u^{\,f}\left (\left (1 - u^{\,f}\right )r_{K}^{{\prime}}- r_{K}u^{\,f}{}^{{\prime}}\right )} {p\left (\phi ^{{\ast}}\right )\left (p\left (\phi ^{{\ast}}\right ) + \left (1 - u^{\,f}\right )r_{K}^{{\prime}}-\left (r_{K}+\pi \right )u^{\,f}{}^{{\prime}}\right )\! - p^{{\prime}}\left (\phi ^{{\ast}}\right )\left (\delta +r_{K}\left (1 - u^{\,f}\right ) -\pi u^{\,f}\right )} {}\\ \end{array}$$

The growth-maximising inflation rate, therefore, can be determined as:

$$\displaystyle\begin{array}{rcl} & & \qquad \qquad \qquad \qquad \qquad \overline{\pi } \in \left \{\pi \left \vert \frac{\partial g} {\partial \phi } \cdot \frac{\partial \phi } {\partial \pi }\right. = \left \vert \frac{\partial g} {\partial \pi } \right \vert \right \} {}\\ & \Leftrightarrow & \frac{u^{\,f}} {\eta } \frac{p\left (\phi ^{{\ast}}\right )\left (\left (1 - u^{\,f}\right )r_{K}^{{\prime}}- r_{K}u^{\,f}{}^{{\prime}}\right )} {p\left (\phi ^{{\ast}}\right )\left (p\left (\phi ^{{\ast}}\right ) + \left (1 - u^{\,f}\right )r_{K}^{{\prime}}-\left (r_{K}+\pi \right )u^{\,f}{}^{{\prime}}\right ) - p^{{\prime}}\left (\phi ^{{\ast}}\right )\left (\delta +r_{K}\left (1 - u^{\,f}\right ) -\pi u^{\,f}\right )}\,=\,\frac{u^{\,f}} {\eta } {}\\ & \Leftrightarrow & \frac{p\left (\phi ^{{\ast}}\right )\left (\left (1 - u^{\,f}\right )r_{K}^{{\prime}}- r_{K}u^{\,f}{}^{{\prime}}\right )} {p\left (\phi ^{{\ast}}\right )\left (p\left (\phi ^{{\ast}}\right ) + \left (1 - u^{\,f}\right )r_{K}^{{\prime}}-\left (r_{K}+\pi \right )u^{\,f}{}^{{\prime}}\right ) - p^{{\prime}}\left (\phi ^{{\ast}}\right )\left (\delta +r_{K}\left (1 - u^{\,f}\right ) -\pi u^{\,f}\right )}\,=\,1 {}\\ & \Leftrightarrow & p\left (\phi ^{{\ast}}\right )^{2} = p^{{\prime}}\left (\phi ^{{\ast}}\right )\left (\delta +r_{ K}\left (1 - u^{\,f}\right ) -\pi u^{\,f}\right ) {}\\ & \Leftrightarrow & \overline{\pi } = \frac{p\left (\phi ^{{\ast}}\right ){}^{2} - p^{{\prime}}\left (\phi ^{{\ast}}\right )\left (\delta +r_{K}\left (1 - u^{\,f}\right )\right )} {-p^{{\prime}}\left (\phi ^{{\ast}}\right )u^{\,f}} \,>\,0. {}\\ \end{array}$$

The impact on employment can be determined in a straightforward way by totally differentiating (15).

Appendix 5: Optimal Debt and Growth

In the following we adopt the convention that \(\phi \left (\tau _{K}\right ) =\phi +\tau\) for convenience only. The financial market equilibrium is unaffected by capital taxes (only indirectly through impact on savings and consumption decision). The negative direct impact of taxes on growth increases with the equilibrium value of ϕ:

$$\displaystyle{ \frac{\partial g} {\partial \tau _{K}} = -\frac{1} {\eta } r_{K}\left (1 - u^{\,f}\right ) \leq 0,\text{ } \frac{\partial ^{2}g} {\partial \tau _{K}\partial \phi } = -\frac{1} {\eta } \left [\frac{\partial r_{K}} {\partial \phi } \left (1 - u^{\,f}\right ) - r_{ K}\frac{\partial u^{\,f}} {\partial \phi } \right ] < 0}$$

This has to be weighted against the positive effect of government bonds on the financial market equilibrium, which increases the growth rate:

$$\displaystyle\begin{array}{rcl} g& =& \frac{\gamma \left (1 -\tau _{K}\right )\left (1 - u^{\,f}\right )} {\eta } r_{K}\left (\phi \right ) -\frac{\rho +\pi u^{\,f}} {\eta } {}\\ \frac{\partial g} {\partial \phi } & =& \frac{1 -\tau _{K}} {\eta } \left [\left (1 - u^{\,f}\right )\frac{\partial r_{K}} {\partial \phi } - r_{K}\frac{\partial u^{\,f}} {\partial \phi } \right ] -\frac{\pi } {\eta }\frac{\partial u^{\,f}} {\partial \phi } {}\\ \frac{\partial ^{2}g} {\partial \phi ^{2}} & =& \frac{1 -\tau _{K}} {\eta } \left [-2\frac{\partial u^{\,f}} {\partial \phi } \frac{\partial r_{K}} {\partial \phi } - r_{K}\frac{\partial ^{2}u^{\,f}} {\partial \phi ^{2}} \right ] -\frac{\pi } {\eta }\frac{\partial ^{2}u^{\,f}} {\partial \phi ^{2}} {}\\ \end{array}$$

given that \(\frac{\partial ^{2}r_{ K}} {\partial \phi ^{2}} = 0\). Under our functional assumption regarding the constant-elasticity-to-scale property of the matching process, \(\frac{\partial ^{2}g} {\partial \phi ^{2}}\) will be negative except for very small values of ϕ < ϕ with ϕ > 0. Moreover, we have that at ϕ = 0:

$$\displaystyle{ \frac{\partial g} {\partial \tau _{K}} = 0\text{, }\frac{\partial g} {\partial \phi } \rightarrow \infty }$$

Hence, a zero-tax policy cannot be optimal at ϕ = 0. Given that \(\left \vert \frac{\partial g} {\partial \tau _{K}}\right \vert \) is monotonically increasing with ϕ and \(\frac{\partial g} {\partial \phi }\) is monotonically decreasing with ϕ, at least from ϕ > ϕ onwards. Hence there will be a \(\overline{\phi } >\underline{\phi }> 0\) such that \(\frac{\partial g} {\partial \phi } + \frac{\partial g} {\partial \tau _{K}} = 0\) for τ K  > 0.

When only ϖ % of public spending is financed through corporate taxation, then the growth rate writes as:

$$\displaystyle{g = \frac{\gamma \left (1 -\varpi \cdot \tau \right )\left (1 - u^{\,f}\right )} {\eta } r_{K}\left (\phi \right ) -\frac{\rho +\pi u^{\,f}} {\eta } }$$

and consequently, the direct negative effect of a tax-financed increase in public debt is reduced:

$$\displaystyle{\frac{\partial g} {\partial \tau } = -\varpi \frac{1} {\eta } r_{K}\left (1 - u^{\,f}\right ) \leq 0\text{, }\frac{\partial ^{2}g} {\partial \tau \partial \varpi } = -\frac{1} {\eta } r_{K}\left (1 - u^{\,f}\right ) \leq 0}$$

hence \(\frac{\partial g} {\partial \phi } + \frac{\partial g} {\partial \tau } \left (\varpi \right ) = 0\) is satisfied for a financial market equilibrium \(\overline{\overline{\phi }}\left (\varpi \right ) > \overline{\phi } > 0\).

Appendix 6: Interaction Between Monetary and Fiscal Policy

Proof of Lemma

The inflation rate does not affect the direct negative impact of corporate taxation on growth. However, it has an impact on the way financial market liquidity affects growth. Recall that the growth rate increases with financial market liquidity at rate:

$$\displaystyle{\frac{\partial g} {\partial \phi } = \frac{1 -\tau _{K}} {\eta } \left [\left (1 - u^{\,f}\right )\frac{\partial r_{K}} {\partial \phi } - r_{K}\frac{\partial u_{f}} {\partial \phi } \right ] -\frac{\pi } {\eta }\frac{\partial u^{\,f}} {\partial \phi } }$$

This derivative depends positively on the inflation rate:

$$\displaystyle\begin{array}{rcl} \frac{\partial ^{2}g} {\partial \phi \partial \pi } & =& \frac{\partial ^{2}g} {\partial \phi ^{2}} \cdot \frac{\partial \phi } {\partial \pi } -\frac{1} {\eta } \frac{\partial u^{\,f}} {\partial \phi } {}\\ & =& \frac{\left (1 -\tau _{K}\right )\left (1 - u^{\,f}\right )u^{\,f}\frac{\partial r_{K}} {\partial \phi } -\left (\left (1 -\tau _{K}\right )r_{K}-\rho \right )\frac{\partial u^{\,f}} {\partial \phi } } {\left (\rho -\left (1 -\tau _{K}\right )\left (1 - u^{\,f}\right )r_{K} +\pi \cdot u^{\,f}\right )^{2}} > 0 {}\\ \end{array}$$

which is unambiguously positive for non-negative growth rates (for which \(r_{K}\left (1 -\tau _{K}\right ) > r_{K}\left (1 -\tau _{K}\right )\left (1 - u^{\,f}\right ) >\rho\) holds).

Proof of Proposition

This first part follows directly from the lemma above. Moreover, note that

$$\displaystyle{\overline{\pi } = \frac{p\left (\phi ^{{\ast}}\right )^{2} - p^{{\prime}}\left (\phi ^{{\ast}}\right )\left (\delta +r_{K}\left (1 - u^{\,f}\right )\right )} {-p^{{\prime}}\left (\phi ^{{\ast}}\right )u^{\,f}} }$$

depends positively on ϕ when the matching function is characterised by constant returns to scale.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ernst, E. (2016). Might Tobin be Right?. In: Bernard, L., Nyambuu, U. (eds) Dynamic Modeling, Empirical Macroeconomics, and Finance. Springer, Cham. https://doi.org/10.1007/978-3-319-39887-7_11

Download citation

Publish with us

Policies and ethics