Skip to main content

Abstract

In this chapter, we present the finite-time control problem of Markov jump linear systems for the case in which the controller does not have access to the state of the Markov chain. A necessary optimal condition, which is nonlinear with respect to the optimizing variables, is introduced and the corresponding solution is obtained through a variational convergent method. We illustrate the practical usefulness of the derived approach by applying it in the speed control of a real DC motor device subject to abrupt power failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O.L.V. Costa, M.D. Fragoso, R.P. Marques, Discrete-Time Markovian Jump Linear Systems (Springer, New York, 2005)

    Book  MATH  Google Scholar 

  2. J.B.R. do Val, T. Başar, Receding horizon control of jump linear systems and a macroeconomic policy problem. J. Econ. Dyn. Control 23, 1099–1131 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. J.B.R. do Val, J.C. Geromel, A.P. Gonçalves, The \(H_2\) control for jump linear systems cluster observations of the Markov state. Automatica 38, 343–349 (2002)

    Article  MATH  Google Scholar 

  4. J.C. Geromel, P.L.D. Peres, S.R. Souza, \({\cal H}_2\)-guaranteed cost control for uncertain discrete-time linear systems. Intern. J. Control 57, 853–864 (1993)

    Google Scholar 

  5. W. Leonhard, Control of Electrical Drives, 3rd edn. (Springer, New York, 2001)

    Book  Google Scholar 

  6. A. Rubaai, R. Kotaru, Online identification and control of a DC motor using learning adaptation of neural networks. IEEE Trans. Ind. Appl. 36(3), 935–942 (2000)

    Article  Google Scholar 

  7. M. Ruderman, J. Krettek, F. Hoffmann, T. Bertram, Optimal state space control of DC motor, in Proceedings of the 17th IFAC World Congress (Seoul, Korea, 2008), pp. 5796–5801

    Google Scholar 

  8. C.L. Phillips, R.D. Harbor, Feedback Control Systems, 3rd edn. (Prentice Hall, Upper Saddle River, 1996)

    Google Scholar 

  9. E. Assunção, C.Q. Andrea, M.C.M. Teixeira, \(H_2\) and \(H_\infty \)-optimal control for the tracking problem with zero variation. IET Control Theory Appl. 1(3), 682–688 (2007)

    Article  Google Scholar 

  10. A. Kojima, S. Ishijima, LQ preview synthesis: optimal control and worst case analysis. IEEE Trans. Automat. Control 44(2), 352–357 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. X. Luan, F. Liu, P. Shi, Finite-time stabilization of stochastic systems with partially known transition probabilities. J. Dyn. Syst. Meas. Control Trans. ASME. 133(1), 14504–14510 (2011)

    Google Scholar 

  12. R.C.L.F. Oliveira, A.N. Vargas, J..B.R. do Val, P.L.D. Peres, Robust stability, H\(_2\) analysis and stabilisation of discrete-time Markov jump linear systems with uncertain probability matrix. Int. J. Control, 82(3), 470 – 481 (2009)

    Google Scholar 

  13. Y. Yin, P. Shi, F. Liu, Gain scheduled PI tracking control on stochastic nonlinear systems with partially known transition probabilities. J. Frankl. Inst. 348, 685–702 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Yin, P. Shi, F. Liu, J.S. Pan, Gain-scheduled fault detection on stochastic nonlinear systems with partially known transition jump rates. Nonlinear Anal. Real World Appl. 13, 359–369 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Zhang, E. Boukas, L. Baron, H.R. Karimi, Fault detection for discrete-time Markov jump linear systems with partially known transition probabilities. Int. J. Control 83(8), 1564–1572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. A.N. Vargas, J.B.R. do Val, Average cost and stability of time-varying linear systems. IEEE Trans. Autom. Control, 55, 714–720 (2010)

    Google Scholar 

  17. H. Lütkepohl, Handbook of Matrices (Wiley, Hoboken, 1996)

    MATH  Google Scholar 

  18. D.G. Luenberger, Y. Ye. Linear and Nonlinear Programming, 3rd edn. (Springer, Heidelberg, 2010)

    Google Scholar 

  19. M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming: Theory and Algorithms, 3rd edn. (Wiley-Interscience, Hoboken, 2006)

    Book  MATH  Google Scholar 

  20. D.P. Bertsekas. Nonlinear Programming (Athena Scientific, Nashua, 1999)

    Google Scholar 

  21. Y.-H. Dai, Convergence properties of the BFGS algoritm. SIAM J. Optim. 13(3), 693–701 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. I.E. Livieris, P. Pintelas, Globally convergent modified Perry’s conjugate gradient method. Appl. Math. Comput. 218(18), 9197–9207 (2012)

    MathSciNet  MATH  Google Scholar 

  23. A. Perry, A modified conjugate gradient algorithm. Oper. Res. 26(6), 1073–1078 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Sun, Y.X. Yuan, Optimization Theory and Methods: Nonlinear Programming (Springer, Heidelberg, 2006)

    Google Scholar 

  25. Y.H. Dai, Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177–182 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Liu, C. Storey, Efficient generalized conjugate gradient algorithms, part 1: Theory. J. Optim. Theory Appl. 69, 129–137 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro N. Vargas .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Vargas, A.N., Costa, E.F., do Val, J.B.R. (2016). Finite-Time Control Problem. In: Advances in the Control of Markov Jump Linear Systems with No Mode Observation. SpringerBriefs in Electrical and Computer Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-39835-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39835-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39834-1

  • Online ISBN: 978-3-319-39835-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics