Skip to main content

Current Control in Soft-Wall Electron Billiards: Energy-Persistent Scattering in the Deep Quantum Regime

  • Chapter
  • First Online:
Book cover Control of Magnetotransport in Quantum Billiards

Part of the book series: Lecture Notes in Physics ((LNP,volume 927))

  • 792 Accesses

Abstract

In this chapter we use ‘soft-wall’ boundary confinement, that is, a potential profile with finite slope, to induce charge current controllability in a two-terminal transport setup. In particular, the isolation of energetically persistent scattering pathways from the resonant manifold of an elongated electron billiard in the deep quantum regime is demonstrated. This in turn enables efficient conductance switching at varying temperature and Fermi velocity , using a weak magnetic field. The effect relies on the interplay between the elongated soft-wall confinement and magnetic focusing , which together rescale the scattering pathways and decouple quasi-bound states from the attached leads. The mechanism proves robust against billiard shape variations and qualifies as a nanoelectronic current control element. Excerpts and figures from Morfonios and Schmelcher (Phys. Rev. Lett. 113(8):086802, 2014) reprinted with permission. Copyright (2014) by the American Physical Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the switching here is the opposite to that of Chap. 6, where the zero-field conductance was suppressed and raised by the field: we here have the on-state of the switch in absence of the field, and the off-state for finite field strength.

  2. 2.

    For the κ- and B-ranges plotted in Fig. 7.4, only the bundles demarcating the very lowest Landau levels are clearly discernible (e.g. l = 2, 3); they become fainter with increasing κ at fixed low B because of the participation of an increasing number of crossing or anticrossing levels which obscure the structure of the spectrum (see, e.g., l = 4, 5, 6).

  3. 3.

    The level diagram here strongly resembles the original Darwin-Fock spectrum , since at such low energy the wave function poorly resolves the difference of the used confinement from a parabolic one. The resulting nearly exact multilevel crossings have been studied experimentally for two [22] and three [23] mixing levels which can coherently form a ‘dark’ state (complete cancellation of resonance amplitude).

  4. 4.

    Note that for B = 0 only odd → odd or even → even mode transitions survive due to the conserved x-parity of the stationary scattering eigenstates (as evident, e.g., from Fig. 7.5a).

  5. 5.

    This estimate gives a fairly accurate account of the transport properties relevant for switching for the billiard shape and soft-wall used so far, since the background transmission is practically constant at B = 0, B s . This holds also in the immediate vicinity of this setup in parameter space. If the shape is drastically modified, however, \(\overline{T}\) is a rough estimate and the actual background variation in T(κ) (and the corresponding conductance) for every individual case should be considered to conclude on energy-dependent switching contrast; this is done here for sample soft-wall profiles.

  6. 6.

    In [25], a magnetoresistance resonance is caused by cascading of similar backscattered states in an array of smaller billiards (relative to lead openings) with a different kind of soft-wall potential; this resonant property occurs at very low temperature and is attributed to classical dynamics through a parabolic model potential. In [26], the same peak is attenuated for a single billiard, and another peak appears for B = 0, lowering switching efficiency. This is in contrast to the mechanism proposed here which relies on decoupling of resonances from an efficiently switchable, energetically robust scattering continuum of a single billiard.

References

  1. C. Morfonios, P. Schmelcher, Current control by resonance decoupling and magnetic focusing in soft-wall billiards. Phys. Rev. Lett. 113 (8), 086802 (2014)

    Google Scholar 

  2. U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124 (6), 1866 (1961)

    Google Scholar 

  3. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Fano resonances in nanoscale structures. Rev. Mod. Phys. 82 (3), 2257 (2010)

    Google Scholar 

  4. E.R. Racec, U. Wulf, P.N. Racec, Fano regime of transport through open quantum dots. Phys. Rev. B 82 (8), 085313 (2010)

    Google Scholar 

  5. B. Weingartner, S. Rotter, J. Burgdörfer, Simulation of electron transport through a quantum dot with soft walls. Phys. Rev. B 72 (11), 115342 (2005)

    Google Scholar 

  6. V.I. Borisov, V.G. Lapin, V.E. Sizov, A.G. Temiryazev, Transistor structures with controlled potential profile in one-dimensional quantum channel. Tech. Phys. Lett. 37 (2), 136 (2011)

    Google Scholar 

  7. T. Heinzel, R. Held, S. Lüscher, K. Ensslin, W. Wegscheider, M. Bichler, Electronic properties of nanostructures defined in Ga[Al]As heterostructures by local oxidation. Phys. E 9 (1), 84 (2001)

    Google Scholar 

  8. A. Fuhrer, S. Lüscher, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler, Transport properties of quantum dots with steep walls. Phys. Rev. B 63 (12), 125309 (2001)

    Google Scholar 

  9. C.W.J. Beenakker, H. van Houten, Quantum transport in semiconductor nanostructures. Solid State Phys. 44, 1 (1991)

    Google Scholar 

  10. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  11. H.U. Baranger, D.P. DiVincenzo, R.A. Jalabert, A.D. Stone, Classical and quantum ballistic-transport anomalies in microjunctions. Phys. Rev. B 44 (19), 10637 (1991)

    Google Scholar 

  12. I.V. Zozoulenko, F.A. Maaø, E.H. Hauge, Coherent magnetotransport in confined arrays of antidots. I. Dispersion relations and current densities. Phys. Rev. B 53 (12), 7975 (1996)

    Google Scholar 

  13. S. Rotter, B. Weingartner, N. Rohringer, J. Burgdörfer, Ballistic quantum transport at high energies and high magnetic fields. Phys. Rev. B 68 (16), 165302 (2003)

    Google Scholar 

  14. C.G. Darwin, The diamagnetism of the free electron. Proc. Camb. Philos. Soc. 27 (01), 86 (1931)

    Google Scholar 

  15. V. Fock, Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld. Z. Phys. 47 (5–6), 446 (1928)

    Google Scholar 

  16. L. Reichl, The Transition to Chaos: Conservative Classical Systems and Quantum Manifestations (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  17. H. Stöckmann, Quantum Chaos: An Introduction (Cambridge University Press, Cambridge, 1999)

    Book  MATH  Google Scholar 

  18. D. Buchholz, P.S. Drouvelis, P. Schmelcher, Single electron quantum dot in a spatially periodic magnetic field. Phys. Rev. B 73 (23), 235346 (2006)

    Google Scholar 

  19. C.S. Lent, Edge states in a circular quantum dot. Phys. Rev. B 43 (5), 4179 (1991)

    Google Scholar 

  20. U. Sivan, Y. Imry, C. Hartzstein, Aharonov-Bohm and quantum hall effects in singly connected quantum dots. Phys. Rev. B 39 (2), 1242 (1989)

    Google Scholar 

  21. D.K. Ferry, A.M. Burke, R. Akis, R. Brunner, T.E. Day, R. Meisels, F. Kuchar, J.P. Bird, B.R. Bennett, Open quantum dots—probing the quantum to classical transition. Semicond. Sci. Technol. 26 (4), 043001 (2011)

    Google Scholar 

  22. C. Payette, D. Austing, G. Yu, J. Gupta, S. Nair, B. Partoens, S. Amaha, S. Tarucha, Two-level anti-crossings high up in the single-particle energy spectrum of a quantum dot. Phys. E 40 (6), 1807 (2008)

    Google Scholar 

  23. C. Payette, G. Yu, J.A. Gupta, D.G. Austing, S.V. Nair, B. Partoens, S. Amaha, S. Tarucha, Coherent three-level mixing in an electronic quantum dot. Phys. Rev. Lett. 102 (2), 026808 (2009)

    Google Scholar 

  24. L.W. Molenkamp, A.A.M. Staring, C.W.J. Beenakker, R. Eppenga, C.E. Timmering, J.G. Williamson, C.J.P.M. Harmans, C.T. Foxon, Electron-beam collimation with a quantum point contact. Phys. Rev. B 41 (2), 1274 (1990)

    Google Scholar 

  25. R. Brunner, R. Meisels, F. Kuchar, R. Akis, D.K. Ferry, J.P. Bird, Draining of the sea of chaos: role of resonant transmission and reflection in an array of billiards. Phys. Rev. Lett. 98 (20), 204101 (2007)

    Google Scholar 

  26. N. Aoki, R. Brunner, A.M. Burke, R. Akis, R. Meisels, D.K. Ferry, Y. Ochiai, Direct imaging of electron states in open quantum dots. Phys. Rev. Lett. 108 (13), 136804 (2012)

    Google Scholar 

  27. J. Repp, G. Meyer, K. Rieder, Snell’s law for surface electrons: refraction of an electron gas imaged in real space. Phys. Rev. Lett. 92 (3), 036803 (2004)

    Google Scholar 

  28. R. Brunner, D.K. Ferry, R. Akis, R. Meisels, F. Kuchar, A.M. Burke, J.P. Bird, Open quantum dots: II. Probing the classical to quantum transition. J. Phys. Condens. Matter 24 (34), 343202 (2012)

    Google Scholar 

  29. D. Ferry, S.M. Goodnick, Transport in Nanostructures (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  30. F.J. Betancur, I.D. Mikhailov, L.E. Oliveira, Shallow donor states in GaAs-(Ga, Al)As quantum dots with different potential shapes. J. Phys. D Appl. Phys. 31 (23), 3391 (1998)

    Google Scholar 

  31. A.M. See, I. Pilgrim, B.C. Scannell, R.D. Montgomery, O. Klochan, A.M. Burke, M. Aagesen, P.E. Lindelof, I. Farrer, D.A. Ritchie, R.P. Taylor, A.R. Hamilton, A.P. Micolich, Impact of small-angle scattering on ballistic transport in quantum dots. Phys. Rev. Lett. 108 (19), 196807 (2012)

    Google Scholar 

  32. A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, H. Stöckmann, Probing decoherence through fano resonances. Phys. Rev. Lett. 105 (5), 056801 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morfonios, C.V., Schmelcher, P. (2017). Current Control in Soft-Wall Electron Billiards: Energy-Persistent Scattering in the Deep Quantum Regime. In: Control of Magnetotransport in Quantum Billiards. Lecture Notes in Physics, vol 927. Springer, Cham. https://doi.org/10.1007/978-3-319-39833-4_7

Download citation

Publish with us

Policies and ethics