Skip to main content

Coherent Electronic Transport: Landauer-Büttiker Formalism

  • Chapter
  • First Online:
Control of Magnetotransport in Quantum Billiards

Part of the book series: Lecture Notes in Physics ((LNP,volume 927))

  • 1137 Accesses

Abstract

Having described the transverse quantization of motion into subbands in low-dimensional mesoscopic systems, we will now see how these are utilized to describe coherent transport through devices like quantum billiards within the effective independent-electron picture. This is done within the Landauer-Büttiker theory of transport in multiterminal structures, which relates the scattering matrix of the system to its electrical conductance. After presenting the general framework, we focus on the linear response regime of transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Consider, for example, an open (1) and a closed (2) channel in a lead segment (along x and around x = 0) connecting two scatterers, where the wave function can be written as

    $$\displaystyle{ \psi =\psi _{1} +\psi _{2}\;\ \ \ \ \ \psi _{1} =\chi _{1}(ae^{\text{i}kx} + be^{-\text{i}kx}),\ \ \psi _{ 1} =\chi _{2}(ce^{-\kappa x} + de^{\kappa x}),\ \ k,\kappa > 0, }$$

    χ 1 and χ 2 being the corresponding orthonormal transversal modes . The exponentially increasing part is here physical because of the finite extent of the segment, and originates from the state decaying into it from the right. In contrast to the probability density, where the counterpropagating waves interfere while the decaying modes do not, the total current density consists of an incoherent sum of the propagating mode currents and a coherent combination 2Im(cd )κ from the decaying modes,

    $$\displaystyle{ j \propto (\vert a\vert -\vert b\vert )k + (cd^{{\ast}}- d^{{\ast}}c)\text{i}\kappa, }$$

    which separate upon the y-integration over the orthonormal transversal wave functions. Thus, unless cd happens to be real, there is a contribution to transport from the closed channels between the scatterers.

References

  1. J.H. Davies, The Physics Of Low-Dimensional Semiconductors, An Introduction (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  2. A.M. Kriman, N.C. Kluksdahl, D.K. Ferry, Scattering states and distribution functions for microstructures. Phys. Rev. B 36 (11), 5953 (1987)

    Google Scholar 

  3. F. Sols, Scattering, dissipation, and transport in mesoscopic systems. Ann. Phys. 214 (2), 386 (1992)

    Google Scholar 

  4. P. Mello, N. Kumar, Quantum Transport in Mesoscopic Systems: Complexity and Statistical Fluctuations, a Maximum-Entropy Viewpoint (Oxford University Press, New York, 2004)

    Google Scholar 

  5. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970)

    Google Scholar 

  6. P. Roman, Advanced Quantum Theory (Addison-Wesley, Reading, 1965)

    Google Scholar 

  7. K. Gottfried, T. Yan, Quantum Mechanics: Fundamentals (Springer, New York, 2003)

    Google Scholar 

  8. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1962)

    Google Scholar 

  9. M. Büttiker, Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57 (14), 1761 (1986)

    Google Scholar 

  10. M. Büttiker, Symmetry of electrical conduction. IBM J. Res. Dev. 32 (3), 317 (1988)

    Google Scholar 

  11. H.B.G. Casimir, On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 17 (2–3), 343 (1945)

    Google Scholar 

  12. E.R. Racec, U. Wulf, P.N. Racec, Fano regime of transport through open quantum dots. Phys. Rev. B 82 (8), 085313 (2010)

    Google Scholar 

  13. R. Kalina, B. Szafran, S. Bednarek, F.M. Peeters, Magnetic-field asymmetry of electron wave packet transmission in bent channels capacitively coupled to a metal gate. Phys. Rev. Lett. 102 (6), 066807 (2009)

    Google Scholar 

  14. P.F. Bagwell, T.P. Orlando, Landauer’s conductance formula and its generalization to finite voltages. Phys. Rev. B 40 (3), 1456 (1989)

    Google Scholar 

  15. C. Jacoboni, Theory of Electron Transport in Semiconductors. Springer Series in Solid-State Sciences, vol. 165 (Springer, Berlin, 2010)

    Google Scholar 

  16. D. Ferry, S.M. Goodnick, Transport in Nanostructures (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  17. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  18. B.J. van Wees, L.P. Kouwenhoven, E.M.M. Willems, C.J.P.M. Harmans, J.E. Mooij, H. van Houten, C.W.J. Beenakker, J.G. Williamson, C.T. Foxon, Quantum ballistic and adiabatic electron transport studied with quantum point contacts. Phys. Rev. B 43 (15), 12431 (1991)

    Google Scholar 

  19. D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, G.A.C. Jones, One-dimensional transport and the quantisation of the ballistic resistance. J. Phys. C Solid State Phys. 21 (8), L209 (1988)

    Google Scholar 

  20. H.V. Houten, C. Beenakker, Quantum point contacts. Phys. Today 49 (7), 22 (2008)

    Google Scholar 

  21. S. Datta, Exclusion principle and the Landauer-Büttiker formalism. Phys. Rev. B 45 (3), 1347 (1992)

    Google Scholar 

  22. Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, New York, 2008)

    Google Scholar 

  23. L. Onsager, Reciprocal relations in irreversible processes. II. Phys. Rev. 38 (12), 2265 (1931)

    Google Scholar 

  24. R. Golizadeh-Mojarad, S. Datta, Nonequilibrium Green’s function based models for dephasing in quantum transport. Phys. Rev. B 75 (8), 081301 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morfonios, C.V., Schmelcher, P. (2017). Coherent Electronic Transport: Landauer-Büttiker Formalism. In: Control of Magnetotransport in Quantum Billiards. Lecture Notes in Physics, vol 927. Springer, Cham. https://doi.org/10.1007/978-3-319-39833-4_3

Download citation

Publish with us

Policies and ethics