Skip to main content

Clinical Islet Isolation

  • Chapter
  • First Online:
Pancreatic Islet Isolation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 938))

Abstract

The overarching success of islet transplantation relies on the success in the laboratory to isolate the islets. This chapter focuses on the processes of human islet cell isolation and the ways to optimally provide islet cells for transplantation. The major improvements in regards to the choice of enzyme type, way the digested pancreas tissue is handled to best separate islets from the acinar and surrounding tissues, the various methods of purification of the islets, their subsequent culture and quality assurance to improve outcomes to culminate in safe and effective islet transplantation will be discussed. After decades of improvements, islet cell isolation and transplantation now clearly offer a safe, effective and feasible therapeutic treatment option for an increasing number of patients suffering from type 1 diabetes specifically for those with severe hypoglycaemic unawareness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMI:

Body mass index

BSE:

Bovine spongiform encephalopathy

CMRL:

Connaught medical research laboratories

IEQ :

Islet cell isolation

IEQ /g:

Islet equivalent islet equivalents per gram

MTC:

Mixed treatment comparison

T1D :

Type 1 diabetes

UW:

University of Wisconsin solution

References

  1. Hameed A, Yu T, Yuen L, Lam V, Ryan B, Allen R, et al. Use of the harmonic scalpel in cold phase recovery of the pancreas for transplantation: the westmead technique. Transpl Int. 2016;29:636–8.

    Article  PubMed  Google Scholar 

  2. Bockman DE. Anatomy of the pancreas. In: Go VLW, DiMagno EP, Gardner JD, Lebenthal E, Reber HA, Scheele GA, editors. The pancreas: biology, pathobiology, and disease. New York: Raven; 1993. p. 1–8.

    Google Scholar 

  3. Savari O, Zielinski MC, Wang X, Misawa R, Millis JM, Witkowski P, et al. Distinct function of the head region of human pancreas in the pathogenesis of diabetes. Islets. 2013;5(5):226–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ricordi C, Lacy PE, Finke EH, Olack BJ, Scharp DW. Automated method for isolation of human pancreatic islets. Diabetes. 1988;37(4):413–20.

    Article  CAS  PubMed  Google Scholar 

  5. Kin T, Johnson PR, Shapiro AM, Lakey JR. Factors influencing the collagenase digestion phase of human islet isolation. Transplantation. 2007;83(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  6. Linetsky E, Bottino R, Lehmann R, Alejandro R, Inverardi L, Ricordi C. Improved human islet isolation using a new enzyme blend, liberase. Diabetes. 1997;46(7):1120–3.

    Article  CAS  PubMed  Google Scholar 

  7. Barnett MJ, Zhai X, LeGatt DF, Cheng SB, Shapiro AM, Lakey JR. Quantitative assessment of collagenase blends for human islet isolation. Transplantation. 2005;80(6):723–8.

    Article  CAS  PubMed  Google Scholar 

  8. CITR Research Group. 2007 update on allogeneic islet transplantation from the Collaborative Islet Transplant Registry (CITR). Cell Transplant. 2009;18(7):753–67.

    Article  Google Scholar 

  9. O’Connell PJ, Hawthorne WJ, Holmes-Walker DJ, Nankivell BJ, Gunton JE, Patel AT, et al. Clinical islet transplantation in type 1 diabetes mellitus: results of Australia’s first trial. Med J Aust. 2006;184(5):221–5.

    PubMed  Google Scholar 

  10. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8.

    Article  CAS  PubMed  Google Scholar 

  11. ISCT. Risk of Bovine Spongiform Encephalopathy (BSE) in collagenase enzymes 2007. Available from: http://www.celltherapysociety.org/files/PDF/Resources/Risk_BSE_in_Collagenase_Enzymes.pdf.

  12. Bucher P, Mathe Z, Bosco D, Andres A, Kurfuerst M, Ramsch-Gunther N, et al. Serva collagenase NB1: a new enzyme preparation for human islet isolation. Transplant Proc. 2004;36(4):1143–4.

    Article  CAS  PubMed  Google Scholar 

  13. Sabek OM, Cowan P, Fraga DW, Gaber AO. The effect of isolation methods and the use of different enzymes on islet yield and in vivo function. Cell Transplant. 2008;17(7):785–92.

    Article  PubMed  Google Scholar 

  14. Brandhorst H, Friberg A, Nilsson B, Andersson HH, Felldin M, Foss A, et al. Large-scale comparison of liberase HI and collagenase NB1 utilized for human islet isolation. Cell Transplant. 2010;19(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  15. Barton FB, Rickels MR, Alejandro R, Hering BJ, Wease S, Naziruddin B, et al. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care. 2012;35(7):1436–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Connell PJ, Holmes-Walker DJ, Goodman D, Hawthorne WJ, Loudovaris T, Gunton JE, et al. Multicenter Australian trial of islet transplantation: improving accessibility and outcomes. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2013;13(7):1850–8.

    Article  Google Scholar 

  17. Szot GL, Lee MR, Tavakol MM, Lang J, Dekovic F, Kerlan RK, et al. Successful clinical islet isolation using a GMP-manufactured collagenase and neutral protease. Transplantation. 2009;88(6):753–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caballero-Corbalan J, Brandhorst H, Asif S, Korsgren O, Engelse M, de Koning E, et al. Mammalian tissue-free liberase: a new GMP-graded enzyme blend for human islet isolation. Transplantation. 2010;90(3):332–3.

    Article  PubMed  Google Scholar 

  19. O’Gorman D, Kin T, Imes S, Pawlick R, Senior P, Shapiro AM. Comparison of human islet isolation outcomes using a new mammalian tissue-free enzyme versus collagenase NB-1. Transplantation. 2010;90(3):255–9.

    Article  PubMed  CAS  Google Scholar 

  20. Qi M, Valiente L, McFadden B, Omori K, Bilbao S, Juan J, et al. The choice of enzyme for human pancreas digestion is a critical factor for increasing the success of Islet isolation. Transplant Direct. 2015;1(4).

    Google Scholar 

  21. Caballero-Corbalan J, Friberg AS, Brandhorst H, Nilsson B, Andersson HH, Felldin M, et al. Vitacyte collagenase HA: a novel enzyme blend for efficient human islet isolation. Transplantation. 2009;88(12):1400–2.

    Article  PubMed  Google Scholar 

  22. Balamurugan AN, Loganathan G, Bellin MD, Wilhelm JJ, Harmon J, Anazawa T, et al. A new enzyme mixture to increase the yield and transplant rate of autologous and allogeneic human islet products. Transplantation. 2012;93(7):693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O’Gorman D, Kin T, Pawlick R, Imes S, Senior PA, Shapiro AM. Clinical islet isolation outcomes with a highly purified neutral protease for pancreas dissociation. Islets. 2013;5(3):111–5.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rheinheimer J, Ziegelmann PK, Carlessi R, Reck LR, Bauer AC, Leitao CB, et al. Different digestion enzymes used for human pancreatic islet isolation: a mixed treatment comparison (MTC) meta-analysis. Islets. 2014;6(4):e977118.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shimoda M, Noguchi H, Naziruddin B, Fujita Y, Chujo D, Takita M, et al. Improved method of human islet isolation for young donors. Transplant Proc. 2010;42(6):2024–6.

    Article  CAS  PubMed  Google Scholar 

  26. Lakey JR, Warnock GL, Shapiro AM, Korbutt GS, Ao Z, Kneteman NM, et al. Intraductal collagenase delivery into the human pancreas using syringe loading or controlled perfusion. Cell Transplant. 1999;8(3):285–92.

    CAS  PubMed  Google Scholar 

  27. Qi M, Barbaro B, Wang S, Wang Y, Hansen M, Oberholzer J. Human pancreatic islet isolation: part I: digestion and collection of pancreatic tissue. J Vis Exp. 2009;27:1125.

    PubMed  Google Scholar 

  28. Hopcroft DW, Mason DR, Scott RS. Structure-function relationships in pancreatic islets: support for intraislet modulation of insulin secretion. Endocrinology. 1985;117(5):2073–80.

    Article  CAS  PubMed  Google Scholar 

  29. Jaques F, Jousset H, Tomas A, Prost AL, Wollheim CB, Irminger JC, et al. Dual effect of cell-cell contact disruption on cytosolic calcium and insulin secretion. Endocrinology. 2008;149(5):2494–505.

    Article  CAS  PubMed  Google Scholar 

  30. Striegel DA, Hara M, Periwal V. The beta cell in its cluster: stochastic graphs of beta cell connectivity in the Islets of Langerhans. PLoS Comput Biol. 2015;11(8):e1004423.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Cross SE, Hughes SJ, Clark A, Gray DW, Johnson PR. Collagenase does not persist in human islets following isolation. Cell Transplant. 2012;21(11):2531–5.

    Article  PubMed  Google Scholar 

  32. Cross SE, Hughes SJ, Partridge CJ, Clark A, Gray DW, Johnson PR. Collagenase penetrates human pancreatic islets following standard intraductal administration. Transplantation. 2008;86(7):907–11.

    Article  CAS  PubMed  Google Scholar 

  33. Matsumoto S, Noguchi H, Naziruddin B, Onaca N, Jackson A, Hatanaka N, Okitsu T, Kobayashi N, Klintmalm G, Levy M. Improvement of pancreatic islet cell isolation for transplantation. Proc (Baylor Univ Med Cent). 2007;20(4):357–62.

    Google Scholar 

  34. Qi M, Barbaro B, Wang S, Wang Y, Hansen M, Oberholzer J. Human pancreatic islet isolation: part II: purification and culture of human islets. J Vis Exp: JoVE. 2009(27).

    Google Scholar 

  35. Robertson GS, Chadwick D, Thirdborough S, Swift S, Davies J, James R, et al. Human islet isolation – a prospective randomized comparison of pancreatic vascular perfusion with hyperosmolar citrate or University of Wisconsin solution. Transplantation. 1993;56(3):550–3.

    Article  CAS  PubMed  Google Scholar 

  36. Chadwick DR, Robertson GS, Contractor HH, Rose S, Johnson PR, James RF, et al. Storage of pancreatic digest before islet purification. The influence of colloids and the sodium to potassium ratio in University of Wisconsin-based preservation solutions. Transplantation. 1994;58(1):99–104.

    Article  CAS  PubMed  Google Scholar 

  37. Hering BJ, Muench KP, Schelz J, Amelang D, Heitfeld M, Bretzel RG, et al. The evaluation of neutral density separation utilizing Ficoll-sodium diatrizoate and Nycodenz and centrifugal elutriation in the purification of bovine and canine islet preparations. Horm Metab Res Suppl. 1990;25:57–63.

    CAS  PubMed  Google Scholar 

  38. Jindal RM, McShane P, Gray DW, Morris PJ. Isolation and purification of pancreatic islets by fluorescence activated islet sorter. Transplant Proc. 1994;26(2):653.

    CAS  PubMed  Google Scholar 

  39. Lakey JRCT, Zieger MA. A prospective comparison of discontinuous EuroFicoll and EuroDextran gradients for islet purification. Cell Transplant. 1998;7(5):479–87.

    Article  CAS  PubMed  Google Scholar 

  40. Weide LG, Damon-Burke M, Warkentin PI. Semiclosed system for human and porcine islet isolation using the COBE 2991 cell processor with the triple-bag processing sets. Transplant Proc. 1994;26(2):608–9.

    CAS  PubMed  Google Scholar 

  41. Adewola A, Mage R, Hansen M, Barbaro B, Mendoza-Elias J, Harvat T, et al. Comparing cooling systems for the COBE 2991 cell separator used in the purification of human pancreatic islets of Langerhans. Cryo Lett. 2010;31(4):310–7.

    CAS  Google Scholar 

  42. Eckhard M, Brandhorst D, Winter D, Jaeger C, Jahr H, Bretzel RG, et al. The role of current product release criteria for identification of human islet preparations suitable for clinical transplantation. Transplant Proc. 2004;36(5):1528–31.

    Article  CAS  PubMed  Google Scholar 

  43. Friberg AS, Stahle M, Brandhorst H, Korsgren O, Brandhorst D. Human islet separation utilizing a closed automated purification system. Cell Transplant. 2008;17(12):1305–13.

    Article  CAS  PubMed  Google Scholar 

  44. Matsumoto S, Takita M, Chaussabel D, Noguchi H, Shimoda M, Sugimoto K, et al. Improving efficacy of clinical islet transplantation with iodixanol-based islet purification, thymoglobulin induction, and blockage of IL-1beta and TNF-alpha. Cell Transplant. 2011;20(10):1641–7.

    Article  PubMed  Google Scholar 

  45. Miki A, Ricordi C, Yamamoto T, Mita A, Barker S, Khan A, et al. Effect of human islet rescue gradient purification on islet yield and fractional Beta cell viability. Transplant Proc. 2008;40(2):360–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Noguchi H, Ikemoto T, Naziruddin B, Jackson A, Shimoda M, Fujita Y, et al. Iodixanol-controlled density gradient during islet purification improves recovery rate in human islet isolation. Transplantation. 2009;87(11):1629–35.

    Article  CAS  PubMed  Google Scholar 

  47. Shimoda M, Itoh T, Sugimoto K, Takita M, Chujo D, Iwahashi S, et al. An effective method to release human islets from surrounding acinar cells with agitation in high osmolality solution. Transplant Proc. 2011;43(9):3161–6.

    Article  CAS  PubMed  Google Scholar 

  48. Eckhard M, Brandhorst D, Brandhorst H, Brendel MD, Bretzel RG. Optimization in osmolality and range of density of a continuous ficoll-sodium-diatrizoate gradient for isopycnic purification of isolated human islets. Transplant Proc. 2004;36(9):2849–54.

    Article  CAS  PubMed  Google Scholar 

  49. Mita A, Ricordi C, Messinger S, Miki A, Misawa R, Barker S, et al. Antiproinflammatory effects of iodixanol (OptiPrep)-based density gradient purification on human islet preparations. Cell Transplant. 2010;19(12):1537–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vargas F, Vives-Pi M, Somoza N, Alcalde L, Armengol P, Martí M, Serradell L, Costa M, Fernandez-Llamazares J, Sanmartí A, Pujol-Borrell R. Advantages of using a cell separator and metrizamide gradients for human islet purification. Transplantation. 1996;61(11):1562–6.

    Google Scholar 

  51. Latif ZA, Noel J, Alejandro R. A simple method of staining fresh and cultured islets. Transplantation. 1988;45(4):827–30.

    Article  CAS  PubMed  Google Scholar 

  52. Ricordi C, Gray DW, Hering BJ, Kaufman DB, Warnock GL, Kneteman NM, et al. Islet isolation assessment in man and large animals. Acta Diabetol Lat. 1990;27(3):185–95.

    Article  CAS  PubMed  Google Scholar 

  53. Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355(13):1318–30.

    Article  CAS  PubMed  Google Scholar 

  54. Froud T, Ricordi C, Baidal DA, Hafiz MM, Ponte G, Cure P, et al. Islet transplantation in type 1 diabetes mellitus using cultured islets and steroid-free immunosuppression: Miami experience. Am J Transplant. 2005;5(8):2037–46.

    Article  PubMed  Google Scholar 

  55. Murdoch TB, McGhee-Wilson D, Shapiro AM, Lakey JR. Methods of human islet culture for transplantation. Cell Transplant. 2004;13(6):605–17.

    Article  CAS  PubMed  Google Scholar 

  56. Kin T, Senior P, O’Gorman D, Richer B, Salam A, Shapiro AM. Risk factors for islet loss during culture prior to transplantation. Transpl Int. 2008;21(11):1029–35.

    PubMed  Google Scholar 

  57. Hering BJ, Kandaswamy R, Harmon JV, Ansite JD, Clemmings SM, Sakai T, et al. Transplantation of cultured islets from two-layer preserved pancreases in type 1 diabetes with anti-CD3 antibody. Am J Transplant. 2004;4(3):390–401.

    Article  CAS  PubMed  Google Scholar 

  58. Holmes MA, Clayton HA, Chadwick DR, Bell PR, London NJ, James RF. Functional studies of rat, porcine, and human pancreatic islets cultured in ten commercially available media. Transplantation. 1995;60(8):854–60.

    Article  CAS  PubMed  Google Scholar 

  59. Clayton HA, London NJ. Survival and function of islets during culture. Cell Transplant. 1996;5(1):1–12. discussion 3-7, 9.

    Article  CAS  PubMed  Google Scholar 

  60. Brandhorst D, Brandhorst H, Hering BJ, Bretzel RG. Long-term survival, morphology and in vitro function of isolated pig islets under different culture conditions. Transplantation. 1999;67(12):1533–41.

    Article  CAS  PubMed  Google Scholar 

  61. Fraga DW, Sabek O, Hathaway DK, Gaber AO. A comparison of media supplement methods for the extended culture of human islet tissue. Transplantation. 1998;65(8):1060–6.

    Article  CAS  PubMed  Google Scholar 

  62. Ilieva A, Yuan S, Wang RN, Agapitos D, Hill DJ, Rosenberg L. Pancreatic islet cell survival following islet isolation: the role of cellular interactions in the pancreas. J Endocrinol. 1999;161(3):357–64.

    Article  CAS  PubMed  Google Scholar 

  63. Wang RN, Rosenberg L. Maintenance of beta-cell function and survival following islet isolation requires re-establishment of the islet-matrix relationship. J Endocrinol. 1999;163(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  64. Pileggi A, Ricordi C, Alessiani M, Inverardi L. Factors influencing Islet of Langerhans graft function and monitoring. Clin Chim Acta Int J Clin Chem. 2001;310(1):3–16.

    Article  CAS  Google Scholar 

  65. Nagata NA, Inoue K, Tabata Y. Co-culture of extracellular matrix suppresses the cell death of rat pancreatic islets. J Biomater Sci Polym Ed. 2002;13(5):579–90.

    Article  CAS  PubMed  Google Scholar 

  66. Noguchi H, Naziruddin B, Jackson A, Shimoda M, Ikemoto T, Fujita Y, et al. Fresh islets are more effective for islet transplantation than cultured islets. Cell Transplant. 2012;21(2–3):517–23.

    Article  PubMed  Google Scholar 

  67. King A, Lock J, Xu G, Bonner-Weir S, Weir GC. Islet transplantation outcomes in mice are better with fresh islets and exendin-4 treatment. Diabetologia. 2005;48(10):2074–9.

    Article  CAS  PubMed  Google Scholar 

  68. Olsson R, Carlsson PO. Better vascular engraftment and function in pancreatic islets transplanted without prior culture. Diabetologia. 2005;48(3):469–76.

    Article  CAS  PubMed  Google Scholar 

  69. Ichii H, Inverardi L, Pileggi A, Molano RD, Cabrera O, Caicedo A, et al. A novel method for the assessment of cellular composition and beta-cell viability in human islet preparations. Am J Transplant. 2005;5(7):1635–45.

    Article  PubMed  Google Scholar 

  70. Ricordi C. Islet transplantation: a brave new world. Diabetes. 2003;52(7):1595–603.

    Article  CAS  PubMed  Google Scholar 

  71. Kedinger M, Haffen K, Grenier J, Eloy R. In vitro culture reduces immunogenicity of pancreatic endocrine islets. Nature. 1977;270(5639):736–8.

    Article  CAS  PubMed  Google Scholar 

  72. Ricordi C, Lacy PE, Sterbenz K, Davie JM. Low-temperature culture of human islets or in vivo treatment with L3T4 antibody produces a marked prolongation of islet human-to-mouse xenograft survival. Proc Natl Acad Sci U S A. 1987;84(22):8080–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stein E, Mullen Y, Benhamou PY, Watt PC, Hober C, Watanabe Y, et al. Reduction in immunogenicity of human islets by 24 degrees C culture. Transplant Proc. 1994;26(2):755.

    CAS  PubMed  Google Scholar 

  74. Andersson A, Borg H, Groth CG, Gunnarsson R, Hellerstrom C, Lundgren G, et al. Survival of isolated human islets of Langerhans maintained in tissue culture. J Clin Invest. 1976;57(5):1295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rijkelijkhuizen JK, van der Burg MP, Tons A, Terpstra OT, Bouwman E. Pretransplant culture selects for high-quality porcine islets. Pancreas. 2006;32(4):403–7.

    Article  PubMed  Google Scholar 

  76. Jimenez-Vera E, Davies S, Phillips P, O’Connell PJ, Hawthorne WJ. Long-term cultured neonatal islet cell clusters demonstrate better outcomes for reversal of diabetes: in vivo and molecular profiles. Xenotransplantation. 2015;22(2):114–23.

    Article  PubMed  Google Scholar 

  77. Ihm SH, Matsumoto I, Zhang HJ, Ansite JD, Hering BJ. Effect of short-term culture on functional and stress-related parameters in isolated human islets. Transpl Int. 2009;22(2):207–16.

    Article  CAS  PubMed  Google Scholar 

  78. Brandhorst D, Brandhorst H, Hering BJ, Federlin K, Bretzel RG. Large variability of the intracellular ATP content of human islets isolated from different donors. J Mol Med (Berlin, Germany). 1999;77(1):93–5.

    Article  CAS  Google Scholar 

  79. Shapiro AM, Lakey JR, Rajotte RV, Warnock GL, Friedlich MS, Jewell LD, et al. Portal vein thrombosis after transplantation of partially purified pancreatic islets in a combined human liver/islet allograft. Transplantation. 1995;59(7):1060–3.

    Article  CAS  PubMed  Google Scholar 

  80. Maffi P, Angeli E, Bertuzzi F, Paties C, Socci C, Fedeli C, et al. Minimal focal steatosis of liver after islet transplantation in humans: a long-term study. Cell Transplant. 2005;14(10):727–33.

    Article  PubMed  Google Scholar 

  81. Bhargava R, Senior PA, Ackerman TE, Ryan EA, Paty BW, Lakey JR, et al. Prevalence of hepatic steatosis after islet transplantation and its relation to graft function. Diabetes. 2004;53(5):1311–7.

    Article  CAS  PubMed  Google Scholar 

  82. Maillard E, Juszczak MT, Clark A, Hughes SJ, Gray DR, Johnson PR. Perfluorodecalin-enriched fibrin matrix for human islet culture. Biomaterials. 2011;32(35):9282–9.

    Article  CAS  PubMed  Google Scholar 

  83. Moberg L, Johansson H, Lukinius A, Berne C, Foss A, Kallen R, et al. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet (Lond Eng). 2002;360(9350):2039–45.

    Article  CAS  Google Scholar 

  84. Stokes RA, Cheng K, Deters N, Lau SM, Hawthorne WJ, O’Connell PJ, et al. Hypoxia-inducible factor-1alpha (HIF-1alpha) potentiates beta-cell survival after islet transplantation of human and mouse islets. Cell Transplant. 2013;22(2):253–66.

    Article  PubMed  Google Scholar 

  85. Moore GE, Gerner RE, Franklin HA. Culture of normal human leukocytes. JAMA. 1967;199(8):519–24.

    Article  CAS  PubMed  Google Scholar 

  86. Eizirik DL, Korbutt GS, Hellerstrom C. Prolonged exposure of human pancreatic islets to high glucose concentrations in vitro impairs the beta-cell function. J Clin Invest. 1992;90(4):1263–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Al-Abdullah IH, Camillo R. Improvement of viability and function of pancreatic islets. Google Patents; 2003

    Google Scholar 

  88. Kerr-Conte J, Vandewalle B, Moerman E, Lukowiak B, Gmyr V, Arnalsteen L, et al. Upgrading pretransplant human islet culture technology requires human serum combined with media renewal. Transplantation. 2010;89(9):1154–60.

    Article  PubMed  Google Scholar 

  89. Kuhtreiber WM, Ho LT, Kamireddy A, Yacoub JA, Scharp DW. Islet isolation from human pancreas with extended cold ischemia time. Transplant Proc. 2010;42(6):2027–31.

    Article  CAS  PubMed  Google Scholar 

  90. Barnes D, Sato G. Methods for growth of cultured cells in serum-free medium. Anal Biochem. 1980;102(2):255–70.

    Article  CAS  PubMed  Google Scholar 

  91. Avgoustiniatos ES, Scott 3rd WE, Suszynski TM, Schuurman HJ, Nelson RA, Rozak PR, et al. Supplements in human islet culture: human serum albumin is inferior to fetal bovine serum. Cell Transplant. 2012;21(12):2805–14.

    Article  PubMed  Google Scholar 

  92. Lee RH, Carter J, Szot GL, Posselt A, Stock P. Human albumin preserves islet mass and function better than whole serum during pretransplantation islet culture. Transplant Proc. 2008;40(2):384–6.

    Article  CAS  PubMed  Google Scholar 

  93. Nacher M, Estil Les E, Garcia A, Nadal B, Pairo M, Garcia C, et al. Human serum versus human serum albumin supplementation in human islet pretransplantation culture. In vitro and in vivo assessment. Cell Transplant. 2015.

    Google Scholar 

  94. Brigelius-Flohe R, Banning A, Schnurr K. Selenium-dependent enzymes in endothelial cell function. Antioxid Redox Signal. 2003;5(2):205–15.

    Article  CAS  PubMed  Google Scholar 

  95. Gaber AO, Fraga DW, Callicutt CS, Gerling IC, Sabek OM, Kotb MY. Improved in vivo pancreatic islet function after prolonged in vitro islet culture. Transplantation. 2001;72(11):1730–6.

    Article  CAS  PubMed  Google Scholar 

  96. Bradley B, Prowse SJ, Bauling P, Lafferty KJ. Desferrioxamine treatment prevents chronic islet allograft damage. Diabetes. 1986;35(5):550–5.

    Article  CAS  PubMed  Google Scholar 

  97. Nomikos IN, Prowse SJ, Carotenuto P, Lafferty KJ. Combined treatment with nicotinamide and desferrioxamine prevents islet allograft destruction in NOD mice. Diabetes. 1986;35(11):1302–4.

    Article  CAS  PubMed  Google Scholar 

  98. Mendola J, Wright Jr JR, Lacy PE. Oxygen free-radical scavengers and immune destruction of murine islets in allograft rejection and multiple low-dose streptozocin-induced insulitis. Diabetes. 1989;38(3):379–85.

    Article  CAS  PubMed  Google Scholar 

  99. Eizirik DL, Sandler S, Welsh N, Bendtzen K, Hellerstrom C. Nicotinamide decreases nitric oxide production and partially protects human pancreatic islets against the suppressive effects of combinations of cytokines. Autoimmunity. 1994;19(3):193–8.

    Article  CAS  PubMed  Google Scholar 

  100. Langlois A, Bietiger W, Mandes K, Maillard E, Belcourt A, Pinget M, et al. Overexpression of vascular endothelial growth factor in vitro using deferoxamine: a new drug to increase islet vascularization during transplantation. Transplant Proc. 2008;40(2):473–6.

    Article  CAS  PubMed  Google Scholar 

  101. Burkart V, Gross-Eick A, Bellmann K, Radons J, Kolb H. Suppression of nitric oxide toxicity in islet cells by alpha-tocopherol. FEBS Lett. 1995;364(3):259–63.

    Article  CAS  PubMed  Google Scholar 

  102. Tajiri Y, Grill VE. Interactions between vitamin E and glucose on B-cell functions in the rat: an in vivo and in vitro study. Pancreas. 1999;18(3):274–81.

    Article  CAS  PubMed  Google Scholar 

  103. Wang L, Zhao Y, Gui B, Fu R, Ma F, Yu J, et al. Acute stimulation of glucagon secretion by linoleic acid results from GPR40 activation and [Ca2+]i increase in pancreatic islet {alpha}-cells. J Endocrinol. 2011;210(2):173–9.

    Article  CAS  PubMed  Google Scholar 

  104. Schnell S, Schaefer M, Schofl C. Free fatty acids increase cytosolic free calcium and stimulate insulin secretion from beta-cells through activation of GPR40. Mol Cell Endocrinol. 2007;263(1–2):173–80.

    Article  CAS  PubMed  Google Scholar 

  105. Wolf BA, Pasquale SM, Turk J. Free fatty acid accumulation in secretagogue-stimulated pancreatic islets and effects of arachidonate on depolarization-induced insulin secretion. Biochemistry. 1991;30(26):6372–9.

    Article  CAS  PubMed  Google Scholar 

  106. Turk J, Gross RW, Ramanadham S. Amplification of insulin secretion by lipid messengers. Diabetes. 1993;42(3):367–74.

    Article  CAS  PubMed  Google Scholar 

  107. Dixon G, Nolan J, McClenaghan NH, Flatt PR, Newsholme P. Arachidonic acid, palmitic acid and glucose are important for the modulation of clonal pancreatic beta-cell insulin secretion, growth and functional integrity. Clin Sci (Lond Engl 1979). 2004;106(2):191–9.

    Article  CAS  Google Scholar 

  108. Zhou YP, Grill V. Long term exposure to fatty acids and ketones inhibits B-cell functions in human pancreatic islets of Langerhans. J Clin Endocrinol Metab. 1995;80(5):1584–90.

    CAS  PubMed  Google Scholar 

  109. Lucena CF, Roma LP, Graciano MF, Veras K, Simoes D, Curi R, et al. Omega-3 supplementation improves pancreatic islet redox status: in vivo and in vitro studies. Pancreas. 2015;44(2):287–95.

    Article  CAS  PubMed  Google Scholar 

  110. Bottino R, Inverardi L, Valente U, Ricordi C. Serum-free medium and pyruvate improve survival and glucose responsiveness of islet beta cells in culture. Transplant Proc. 1997;29(4):1978.

    Article  CAS  PubMed  Google Scholar 

  111. Ishihara H, Maechler P, Gjinovci A, Herrera PL, Wollheim CB. Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells. Nat Cell Biol. 2003;5(4):330–5.

    Article  CAS  PubMed  Google Scholar 

  112. Adams MJ, Blundell TL, Dodson EJ, Dodson GG, Vijayan M, Baker EN, et al. Structure of Rhombohedral 2 Zinc Insulin Crystals. Nature. 1969;224(5218):491–5.

    Article  CAS  Google Scholar 

  113. Dodson G, Steiner D. The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol. 1998;8(2):189–94.

    Article  CAS  PubMed  Google Scholar 

  114. Duprez J, Roma LP, Close AF, Jonas JC. Protective antioxidant and antiapoptotic effects of ZnCl2 in rat pancreatic islets cultured in low and high glucose concentrations. PLoS One. 2012;7(10):e46831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hoftiezer V, Berggren PO, Hellman B. Effects of zinc during culture of an insulin-producing rat cell line (RINm5F). Cancer Lett. 1985;29(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  116. Amores-Sanchez MI, Medina MA. Glutamine, as a precursor of glutathione, and oxidative stress. Mol Genet Metab. 1999;67(2):100–5.

    Article  CAS  PubMed  Google Scholar 

  117. Wischmeyer PE, Musch MW, Madonna MB, Thisted R, Chang EB. Glutamine protects intestinal epithelial cells: role of inducible HSP70. Am J Physiol. 1997;272(4 Pt 1):G879–84.

    CAS  PubMed  Google Scholar 

  118. Brandhorst H, Duan Y, Iken M, Bretzel RG, Brandhorst D. Effect of stable glutamine compounds on porcine islet culture. Transplant Proc. 2005;37(8):3519–20.

    Article  CAS  PubMed  Google Scholar 

  119. Avila JG, Tsujimura T, Oberholzer J, Churchill T, Salehi P, Shapiro AM, et al. Improvement of pancreatic islet isolation outcomes using glutamine perfusion during isolation procedure. Cell Transplant. 2003;12(8):877–81.

    Article  CAS  PubMed  Google Scholar 

  120. Avila J, Barbaro B, Gangemi A, Romagnoli T, Kuechle J, Hansen M, et al. Intra-ductal glutamine administration reduces oxidative injury during human pancreatic islet isolation. Am J Transplant. 2005;5(12):2830–7.

    Article  CAS  PubMed  Google Scholar 

  121. Jang HJ, Kwak JH, Cho EY, We YM, Lee YH, Kim SC, et al. Glutamine induces heat-shock protein-70 and glutathione expression and attenuates ischemic damage in rat islets. Transplant Proc. 2008;40(8):2581–4.

    Article  CAS  PubMed  Google Scholar 

  122. Modi H, Cornu M, Thorens B. Glutamine stimulates biosynthesis and secretion of insulin-like growth factor 2 (IGF2), an autocrine regulator of beta cell mass and function. J Biol Chem. 2014;289(46):31972–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Balamurugan AN, Naziruddin B, Lockridge A, Tiwari M, Loganathan G, Takita M, et al. Islet product characteristics and factors related to successful human islet transplantation from the Collaborative Islet Transplant Registry (CITR) 1999–2010. Am J Transplant. 2014;14(11):2595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Falqui L, Finke EH, Carel JC, Scharp DW, Lacy PE. Marked prolongation of human islet xenograft survival (human-to-mouse) by low-temperature culture and temporary immunosuppression with human and mouse anti-lymphocyte sera. Transplantation. 1991;51(6):1322–4.

    Article  CAS  PubMed  Google Scholar 

  125. Scharp DW, Lacy PE, Finke E, Olack B. Low-temperature culture of human islets isolated by the distention method and purified with ficoll or percoll gradients. Surgery. 1987;102(5):869–79.

    CAS  PubMed  Google Scholar 

  126. Ono J, Lacy PE, Michael HE, Greider MH. Studies of the functional and morphologic status of islets maintained at 24 C for four weeks in vitro. Am J Pathol. 1979;97(3):489–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. de Graaff MP, Wolters GH, van Schilfgaarde R. Endothelial cells in pancreatic islets and the effect of culture. Transplant Proc. 1994;26(3):1171.

    PubMed  Google Scholar 

  128. Ilieva A, Yuan S, Wang R, Duguid WP, Rosenberg L. The structural integrity of the islet in vitro: the effect of incubation temperature. Pancreas. 1999;19(3):297–303.

    Article  CAS  PubMed  Google Scholar 

  129. Escolar JC, Hoo-Paris R, Castex C, Sutter BC. Effect of low temperatures on glucose-induced insulin secretion and glucose metabolism in isolated pancreatic islets of the rat. J Endocrinol. 1990;125(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  130. Mueller KR, Martins KV, Murtaugh MP, Schuurman HJ, Papas KK. Manufacturing porcine islets: culture at 22 degrees C has no advantage above culture at 37 degrees C: a gene expression evaluation. Xenotransplantation. 2013;20(6):418–28.

    Article  PubMed  Google Scholar 

  131. Brandhorst D, Brandhorst H, Mullooly N, Acreman S, Johnson PR. High seeding density induces local hypoxia and triggers a proinflammatory response in isolated human Islets. Cell Transplant. 2015.

    Google Scholar 

  132. Avgoustiniatos ES, Colton CK. Effect of external oxygen mass transfer resistances on viability of immunoisolated tissue. Ann N Y Acad Sci. 1997;831:145–67.

    Article  CAS  PubMed  Google Scholar 

  133. Lau J, Henriksnas J, Svensson J, Carlsson PO. Oxygenation of islets and its role in transplantation. Curr Opin Organ Transplant. 2009;14(6):688–93.

    Article  PubMed  Google Scholar 

  134. Bentsi-Barnes K, Kandeel F, Al-Abdullah IH. Evaluation of human islet-specific functional quality cultured on different gas-permeable membranes. Transplant Proc. 2008;40(2):401–2.

    Article  CAS  PubMed  Google Scholar 

  135. Papas KK, Avgoustiniatos ES, Tempelman LA, Weir GC, Colton CK, Pisania A, et al. High-density culture of human islets on top of silicone rubber membranes. Transplant Proc. 2005;37(8):3412–4.

    Article  CAS  PubMed  Google Scholar 

  136. Goto M, Yoshikawa Y, Matsuo K, Shirasu A, Ogawa N, Takahashi H, et al. Optimization of a prominent oxygen-permeable device for pancreatic islets. Transplant Proc. 2008;40(2):411–2.

    Article  CAS  PubMed  Google Scholar 

  137. Murray HE, Paget MB, Downing R. Preservation of glucose responsiveness in human islets maintained in a rotational cell culture system. Mol Cell Endocrinol. 2005;238(1–2):39–49.

    Article  CAS  PubMed  Google Scholar 

  138. Linetsky E, Ricordi C. Regulatory challenges in manufacturing of pancreatic islets. Transplant Proc. 2008;40(2):424–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. U.S. Department of Health and Human Services FDA. Guidance for industry: considerations for allogeneic pancreatic Islet cell products 2009 [updated 15/09/14. Available from: http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/ucm182440.htm.

  140. Papas KK, Suszynski TM, Colton CK. Islet assessment for transplantation. Curr Opin Organ Transplant. 2009;14(6):674–82.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Bennet W, Groth CG, Larsson R, Nilsson B, Korsgren O. Isolated human islets trigger an instant blood mediated inflammatory reaction: implications for intraportal islet transplantation as a treatment for patients with type 1 diabetes. Ups J Med Sci. 2000;105(2):125–33.

    Article  CAS  PubMed  Google Scholar 

  142. Bennet W, Sundberg B, Groth CG, Brendel MD, Brandhorst D, Brandhorst H, et al. Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes. 1999;48(10):1907–14.

    Article  CAS  PubMed  Google Scholar 

  143. Davalli AM, Scaglia L, Zangen DH, Hollister J, Bonner-Weir S, Weir GC. Vulnerability of islets in the immediate posttransplantation period. Dynamic changes in structure and function. Diabetes. 1996;45(9):1161–7.

    Article  CAS  PubMed  Google Scholar 

  144. Mellert J, Hering BJ, Liu X, Brandhorst D, Brandhorst H, Pfeffer F, et al. Critical islet mass for successful porcine islet autotransplantation. J Mol Med (Berlin Germany). 1999;77(1):126–9.

    Article  CAS  Google Scholar 

  145. Ryan EA, Lakey JR, Rajotte RV, Korbutt GS, Kin T, Imes S, et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes. 2001;50(4):710–9.

    Article  CAS  PubMed  Google Scholar 

  146. Davalli AM, Ogawa Y, Scaglia L, Wu YJ, Hollister J, Bonner-Weir S, et al. Function, mass, and replication of porcine and rat islets transplanted into diabetic nude mice. Diabetes. 1995;44(1):104–11.

    Article  CAS  PubMed  Google Scholar 

  147. Pisania A, Weir GC, O’Neil JJ, Omer A, Tchipashvili V, Lei J, et al. Quantitative analysis of cell composition and purity of human pancreatic islet preparations. Lab Invest J Tech Methods Pathol. 2010;90(11):1661–75.

    Article  Google Scholar 

  148. Keymeulen B, Gillard P, Mathieu C, Movahedi B, Maleux G, Delvaux G, et al. Correlation between beta cell mass and glycemic control in type 1 diabetic recipients of islet cell graft. Proc Natl Acad Sci U S A. 2006;103(46):17444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Keymeulen B, Ling Z, Gorus FK, Delvaux G, Bouwens L, Grupping A, et al. Implantation of standardized beta-cell grafts in a liver segment of IDDM patients: graft and recipients characteristics in two cases of insulin-independence under maintenance immunosuppression for prior kidney graft. Diabetologia. 1998;41(4):452–9.

    Article  CAS  PubMed  Google Scholar 

  150. Buchwald P, Wang X, Khan A, Bernal A, Fraker C, Inverardi L, et al. Quantitative assessment of islet cell products: estimating the accuracy of the existing protocol and accounting for islet size distribution. Cell Transplant. 2009;18(10):1223–35.

    Article  PubMed  Google Scholar 

  151. Huang HH, Ramachandran K, Stehno-Bittel L. A replacement for islet equivalents with improved reliability and validity. Acta Diabetol. 2013;50(5):687–96.

    Article  PubMed  Google Scholar 

  152. Ramachandran K, Huang HH, Stehno-Bittel L. A simple method to replace islet equivalents for volume quantification of human islets. Cell Transplant. 2015;24(7):1183–94.

    Article  PubMed  Google Scholar 

  153. Lehmann R, Zuellig RA, Kugelmeier P, Baenninger PB, Moritz W, Perren A, et al. Superiority of small islets in human islet transplantation. Diabetes. 2007;56(3):594–603.

    Article  CAS  PubMed  Google Scholar 

  154. MacGregor RR, Williams SJ, Tong PY, Kover K, Moore WV, Stehno-Bittel L. Small rat islets are superior to large islets in in vitro function and in transplantation outcomes. Am J Physiol Endocrinol Metab. 2006;290(5):E771–9.

    Article  CAS  PubMed  Google Scholar 

  155. Loganathan G, Graham ML, Radosevich DM, Soltani SM, Tiwari M, Anazawa T, et al. Factors affecting transplant outcomes in diabetic nude mice receiving human, porcine, and nonhuman primate islets: analysis of 335 transplantations. Transplantation. 2013;95(12):1439–47.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Migliavacca B, Nano R, Antonioli B, Marzorati S, Davalli AM, Di Carlo V, et al. Identification of in vitro parameters predictive of graft function: a study in an animal model of islet transplantation. Transplant Proc. 2004;36(3):612–3.

    Article  CAS  PubMed  Google Scholar 

  157. Kitzmann JP, Karatzas T, Mueller KR, Avgoustiniatos ES, Gruessner AC, Balamurugan AN, et al. Islet preparation purity is overestimated, and less pure fractions have lower post-culture viability before clinical allotransplantation. Transplant Proc. 2014;46(6):1953–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gray DW, Sutton R, McShane P, Peters M, Morris PJ. Exocrine contamination impairs implantation of pancreatic islets transplanted beneath the kidney capsule. J Surg Res. 1988;45(5):432–42.

    Article  CAS  PubMed  Google Scholar 

  159. London NJ, Contractor H, Lake SP, Aucott GC, Bell PR, James RF. A microfluorometric viability assay for isolated human and rat islets of Langerhans. Diabetes Res (Edinburgh, Scotland). 1989;12(3):141–9.

    CAS  Google Scholar 

  160. London NJ, Contractor H, Lake SP, Aucott GC, Bell PR, James RF. A fluorometric viability assay for single human and rat islets. Horm Metab Res Suppl Ser. 1990;25:82–7.

    CAS  Google Scholar 

  161. Kramer DN, Guilbault GG. A substrate for the fluorometric determination of lipase activity. Anal Chem. 1963;35(4):588–9.

    Article  CAS  Google Scholar 

  162. Barnett MJ, McGhee-Wilson D, Shapiro AM, Lakey JR. Variation in human islet viability based on different membrane integrity stains. Cell Transplant. 2004;13(5):481–8.

    Article  CAS  PubMed  Google Scholar 

  163. Boyd V, Cholewa OM, Papas KK. Limitations in the use of Fluorescein Diacetate/Propidium Iodide (FDA/PI) and cell permeable nucleic acid stains for viability measurements of isolated islets of langerhans. Curr Trends Biotechnol Pharm. 2008;2(2):66–84.

    PubMed  PubMed Central  Google Scholar 

  164. Lukowiak B, Vandewalle B, Riachy R, Kerr-Conte J, Gmyr V, Belaich S, et al. Identification and purification of functional human beta-cells by a new specific zinc-fluorescent probe. J Histochem Cytochem. 2001;49(4):519–28.

    Article  CAS  PubMed  Google Scholar 

  165. Scaduto Jr RC, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. 1999;76(1 Pt 1):469–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Goto M, Holgersson J, Kumagai-Braesch M, Korsgren O. The ADP/ATP ratio: a novel predictive assay for quality assessment of isolated pancreatic islets. Am J Transplant. 2006;6(10):2483–7.

    Article  CAS  PubMed  Google Scholar 

  167. Taylor GD, Kirkland T, Lakey J, Rajotte R, Warnock GL. Bacteremia due to transplantation of contaminated cryopreserved pancreatic islets. Cell Transplant. 1994;3(1):103–6.

    CAS  PubMed  Google Scholar 

  168. Berney T, Molano RD, Cattan P, Pileggi A, Vizzardelli C, Oliver R, et al. Endotoxin-mediated delayed islet graft function is associated with increased intra-islet cytokine production and islet cell apoptosis. Transplantation. 2001;71(1):125–32.

    Article  CAS  PubMed  Google Scholar 

  169. Vargas F, Vives-Pi M, Somoza N, Armengol P, Alcalde L, Marti M, et al. Endotoxin contamination may be responsible for the unexplained failure of human pancreatic islet transplantation. Transplantation. 1998;65(5):722–7.

    Article  CAS  PubMed  Google Scholar 

  170. Vives-Pi M, Somoza N, FernÁNdez-Alvarez J, Vargas F, Caro P, Alba A, et al. Evidence of expression of endotoxin receptors CD14, toll-like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endotoxin (LPS) in islet beta cells. Clin Exp Immunol. 2003;133(2):208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bucher P, Mathe Z, Bosco D, Oberholzer J, Toso C, Andres A, et al. Microbial surveillance during human pancreatic islet isolation. Transplant Proc. 2004;36(4):1147–8.

    Article  CAS  PubMed  Google Scholar 

  172. Kin T, Rosichuk S, Shapiro AM, Lakey JR. Detection of microbial contamination during human islet isolation. Cell Transplant. 2007;16(1):9–13.

    Article  PubMed  Google Scholar 

  173. Lakey JR, Rajotte RV, Warnock GL. Microbial surveillance of human islet isolation, in vitro culture, and cryopreservation. Clin Invest Med. 1995;18(3):168–76.

    CAS  PubMed  Google Scholar 

  174. Scharp DW, Lacy PE, McLear M, Longwith J, Olack B. The bioburden of 590 consecutive human pancreata for islet transplant research. Transplant Proc. 1992;24(3):974–5.

    CAS  PubMed  Google Scholar 

  175. Carroll PB, Ricordi C, Fontes P, Rilo HR, Phipps J, Tzakis AG, et al. Microbiologic surveillance as part of human islet transplantation: results of the first 26 patients. Transplant Proc. 1992;24(6):2798–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Gala-Lopez B, Kin T, O’Gorman D, Pepper AR, Senior P, Humar A, et al. Microbial contamination of clinical islet transplant preparations is associated with very low risk of infection. Diabetes Technol Ther. 2013;15(4):323–7.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kim JH, Park SG, Lee HN, Lee YY, Park HS, Kim HI, et al. ATP measurement predicts porcine islet transplantation outcome in nude mice. Transplantation. 2009;87(2):166–9.

    Article  CAS  PubMed  Google Scholar 

  178. Bradbury DA, Simmons TD, Slater KJ, Crouch SP. Measurement of the ADP:ATP ratio in human leukaemic cell lines can be used as an indicator of cell viability, necrosis and apoptosis. J Immunol Methods. 2000;240(1–2):79–92.

    Article  CAS  PubMed  Google Scholar 

  179. Ishii S, Saito T, Ise K, Sato Y, Tsutiya T, Kenjo A, et al. Evaluation of energy state of islet independent of size using a newly developed ATP bioluminescence assay. Transplant Proc. 2005;37(8):3499–500.

    Article  CAS  PubMed  Google Scholar 

  180. Ishii S, Sato Y, Terashima M, Saito T, Suzuki S, Murakami S, et al. A novel method for determination of ATP, ADP, and AMP contents of a single pancreatic islet before transplantation. Transplant Proc. 2004;36(4):1191–3.

    Article  CAS  PubMed  Google Scholar 

  181. Hellerstrom C. Oxygen consumption of isolated pancreatic islets of mice studied with the cartesian-diver micro-gasometer. Biochem J. 1966;98(1):7c–9c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Papas KK, Colton CK, Nelson RA, Rozak PR, Avgoustiniatos ES, Scott 3rd WE, et al. Human islet oxygen consumption rate and DNA measurements predict diabetes reversal in nude mice. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2007;7(3):707–13.

    Article  CAS  Google Scholar 

  183. Sweet IR, Gilbert M, Jensen R, Sabek O, Fraga DW, Gaber AO, et al. Glucose stimulation of cytochrome C reduction and oxygen consumption as assessment of human islet quality. Transplantation. 2005;80(8):1003–11.

    Article  CAS  PubMed  Google Scholar 

  184. Fraker C, Timmins MR, Guarino RD, Haaland PD, Ichii H, Molano D, et al. The use of the BD oxygen biosensor system to assess isolated human islets of langerhans: oxygen consumption as a potential measure of islet potency. Cell Transplant. 2006;15(8–9):745–58.

    Article  PubMed  Google Scholar 

  185. Papas KK, Bellin MD, Sutherland DE, Suszynski TM, Kitzmann JP, Avgoustiniatos ES, et al. Islet Oxygen Consumption Rate (OCR) dose predicts insulin independence in clinical islet autotransplantation. PLoS One. 2015;10(8):e0134428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Sweet IR, Gilbert M, Scott S, Todorov I, Jensen R, Nair I, et al. Glucose-stimulated increment in oxygen consumption rate as a standardized test of human islet quality. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2008;8(1):183–92.

    CAS  Google Scholar 

  187. Sweet IR, Khalil G, Wallen AR, Steedman M, Schenkman KA, Reems JA, et al. Continuous measurement of oxygen consumption by pancreatic islets. Diabetes Technol Ther. 2002;4(5):661–72.

    Article  PubMed  Google Scholar 

  188. Pepper AR, Hasilo CP, Melling CW, Mazzuca DM, Vilk G, Zou G, et al. The islet size to oxygen consumption ratio reliably predicts reversal of diabetes posttransplant. Cell Transplant. 2012;21(12):2797–804.

    Article  PubMed  Google Scholar 

  189. Papas KK, Colton CK, Qipo A, Wu H, Nelson RA, Hering BJ, et al. Prediction of marginal mass required for successful islet transplantation. J Invest Surg. 2010;23(1):28–34.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Wang W, Upshaw L, Strong DM, Robertson RP, Reems J. Increased oxygen consumption rates in response to high glucose detected by a novel oxygen biosensor system in non-human primate and human islets. J Endocrinol. 2005;185(3):445–55.

    Article  CAS  PubMed  Google Scholar 

  191. Wikstrom JD, Sereda SB, Stiles L, Elorza A, Allister EM, Neilson A, et al. A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets. PLoS One. 2012;7(5):e33023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ricordi C. Quantitative and qualitative standards for islet isolation assessment in humans and large mammals. Pancreas. 1991;6(2):242–4.

    Article  CAS  PubMed  Google Scholar 

  193. Bertuzzi F, Garancini P, Socci TC, Nano R, Taglietti MV, Santopinto M, et al. Lessons from in vitro perifusion of pancreatic islets isolated from 80 human pancreases. Cell Transplant. 1999;8(6):709–12.

    CAS  PubMed  Google Scholar 

  194. Street CN, Lakey JR, Shapiro AM, Imes S, Rajotte RV, Ryan EA, et al. Islet graft assessment in the Edmonton protocol: implications for predicting long-term clinical outcome. Diabetes. 2004;53(12):3107–14.

    Article  CAS  PubMed  Google Scholar 

  195. Ricordi C, Lacy PE, Scharp DW. Automated islet isolation from human pancreas. Diabetes. 1989;38 Suppl 1:140–2.

    Article  PubMed  Google Scholar 

  196. Grant AM, Christie MR, Ashcroft SJ. Insulin release from human pancreatic islets in vitro. Diabetologia. 1980;19(2):114–7.

    Article  CAS  PubMed  Google Scholar 

  197. Gerling IC, Kotb M, Fraga D, Sabek O, Gaber AO. No correlation between in vitro and in vivo function of human islets. Transplant Proc. 1998;30(2):587–8.

    Article  CAS  PubMed  Google Scholar 

  198. Kayton NS, Poffenberger G, Henske J, Dai C, Thompson C, Aramandla R, et al. Human islet preparations distributed for research exhibit a variety of insulin-secretory profiles. Am J Physiol Endocrinol Metab. 2015;308(7):E592–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bertuzzi F, Ricordi C. Prediction of clinical outcome in islet allotransplantation. Diabetes Care. 2007;30(2):410–7.

    Article  PubMed  Google Scholar 

  200. London NJ, Thirdborough SM, Swift SM, Bell PR, James RF. The diabetic “human reconstituted” severe combined immunodeficient (SCID-hu) mouse: a model for isogeneic, allogeneic, and xenogeneic human islet transplantation. Transplant Proc. 1991;23(1 Pt 1):749.

    CAS  PubMed  Google Scholar 

  201. Sabek OM, Fraga DW, Minoru O, McClaren JL, Gaber AO. Assessment of human islet viability using various mouse models. Transplant Proc. 2005;37(8):3415–6.

    Article  CAS  PubMed  Google Scholar 

  202. Caiazzo R, Gmyr V, Kremer B, Hubert T, Soudan B, Lukowiak B, et al. Quantitative in vivo islet potency assay in normoglycemic nude mice correlates with primary graft function after clinical transplantation. Transplantation. 2008;86(2):360–3.

    Article  PubMed  Google Scholar 

  203. Pepper AR, Gall C, Mazzuca DM, Melling CW, White DJ. Diabetic rats and mice are resistant to porcine and human insulin: flawed experimental models for testing islet xenografts. Xenotransplantation. 2009;16(6):502–10.

    Article  PubMed  Google Scholar 

  204. Merino JF, Nacher V, Raurell M, Biarnes M, Soler J, Montanya E. Optimal insulin treatment in syngeneic islet transplantation. Cell Transplant. 2000;9(1):11–8.

    CAS  PubMed  Google Scholar 

  205. Weber DJ. FDA regulation of allogeneic islets as a biological product. Cell Biochem Biophys. 2004;40(3 Suppl):19–22.

    Article  PubMed  Google Scholar 

  206. Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AJ. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes Targets Ther. 2014;7:211–23.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne J. Hawthorne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hawthorne, W.J., Williams, L., Chew, Y.V. (2016). Clinical Islet Isolation. In: Ramírez-Domínguez, M. (eds) Pancreatic Islet Isolation. Advances in Experimental Medicine and Biology, vol 938. Springer, Cham. https://doi.org/10.1007/978-3-319-39824-2_7

Download citation

Publish with us

Policies and ethics