Skip to main content

Isolation of Mouse Pancreatic Islets of Langerhans

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 938))

Abstract

The aim of any pancreatic islet isolation is obtaining pure, viable and functional pancreatic islets, either for in vitro or in vivo purposes. The islets of Langerhans are complex microorgans with the important role of regulating glucose homeostasis. Imbalances in glucose homeostasis lead to diabetes, which is defined by the American Diabetes Association as a “group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action or both” (American Diabetes Association 2011). Currently, the rising demand of human islets is provoking a shortage of this tissue, limiting research and clinical practice on this field. In this scenario, it is essential to investigate and improve islet isolation procedures in animal models, while keeping in mind the anatomical and functional differences between species. This chapter discusses the main aspects of mouse islet isolation research, highlighting the critical factors and shortcomings to take into account for the selection and/or optimization of a mouse islet isolation protocol.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34(Suppl1):S62–9.

    Article  PubMed Central  Google Scholar 

  2. Bensley R. Studies on the pancreas of the guinea pig. Am J Anat. 1911;12(3):297–388.

    Article  Google Scholar 

  3. Shapiro A, Lakey J, Ryan E, Korbutt G, Toth E, Warnock G, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8.

    Article  CAS  PubMed  Google Scholar 

  4. Chakradhar S. Diabetes researchers fear worsening access to human islets. Nat Med. 2014;20(6):567.

    Article  CAS  PubMed  Google Scholar 

  5. Kulkarni R, Stewart A. Summary of the keystone islet workshop (April 2014): the increasing demand for human islet availability in diabetes research. Diabetes. 2014;63(12):3979–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marzorati S, Ramirez-Dominguez M. Mouse islet isolation. In: Islam S, Editor. Islets of Langerhans. 2nd ed. Dordrecht: Springer; 2015. p. 83–107.ISBN:978-94-007-6685-3.

    Google Scholar 

  7. Carter J, Dula S, Corbin K, Wu R, Nunemaker C. A practical guide to rodent islet isolation and assessment. Biol Proc Online. 2009;11(1):3–31.

    Article  CAS  Google Scholar 

  8. Neuman J, Truchan N, Joseph J, Kimple M. A method for mouse pancreatic islet isolation and intracellular cAMP determination. J Vis Exp. 2014;88:e50374.

    PubMed  Google Scholar 

  9. Li D, Yuan Y, Tu H, Liang Q, Dai L. A protocol for islet isolation from mouse pancreas. Nat Protoc. 2009;4(11):1649–52.

    Article  CAS  PubMed  Google Scholar 

  10. Zmuda E, Powell C, Hai T. A method for murine islet isolation and subcapsular kidney transplantation. J Vis Exp. 2011;50:pii: 2096.

    Google Scholar 

  11. Gotoh M, Maki T, Kiyozumi T, Satomi S, Monaco A. An improved method for isolation of mouse pancreatic islets. Transplantation. 1985;40(4):437.

    Article  CAS  PubMed  Google Scholar 

  12. Lacy P, Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967;16(1):35–9.

    Article  CAS  PubMed  Google Scholar 

  13. O’Dowd J. The isolation and purification of rodent pancreatic islets of Langerhans. In: Stocker C, editor. Type 2 diabetes methods and protocols (Methods in Molecular Biology), vol. 560. 1st ed. Totowa: Humana Press; 2009. p. 37–42.

    Google Scholar 

  14. Szot G, Koudria P, Bluestone J. Murine pancreatic islet isolation. J Vis Exp. 2007;7:255.

    PubMed  Google Scholar 

  15. Stull N, Breite A, McCarthy R, Tersey S, Mirmira R. Mouse islet of Langerhans isolation using a combination of purified collagenase and neutral protease. J Vis Exp. 2012;67:pii: 4137.

    Google Scholar 

  16. Shapiro A. High yield of rodent islets with intraductal collagenase and stationary digestion. A comparison with standard technique. Cell Transplant. 1996;5(6):631–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kelly C, Blair L, Corbett J, Scarim A. Isolation of islets of Langerhans from rodent pancreas. In: Özcan S, editor. Diabetes melitus: methods and protocols (Methods in Molecular Biology). 1st ed. Totowa: Humana Press; 2003. p. 3–15.

    Google Scholar 

  18. Moskalewski S. Isolation and culture of the islets of Langerhans of the guinea pig. Gen Comp Endocrinol. 1965;5(3):342–53.

    Article  CAS  PubMed  Google Scholar 

  19. McCarthy R, Breite A, Green M, Dwulet F. Tissue dissociation enzymes for isolating human islets for transplantation: factors to consider in setting enzyme acceptance criteria. Transplantation. 2011;91(2):137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wolters GH, Vos -Scheperkeuter GH, van Deijnen JH, van Schilfgaarde R. An analysis of the role of collagenase and protease in the enzymatic dissociation of the rat pancreas for islet isolation. Diabetologia. 1992;35(8):735–42.

    Google Scholar 

  21. Wang Y, Paushter D, Wang S, Barbaro B, Harvat T, Danielson K, et al. Highly purified versus filtered crude collagenase: comparable human islet isolation outcomes. Cell Transplant. 2011;20(11):1817–25.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brandhorst H, Friberg A, Andersson H, Felldin M, Foss A, Salmela K, et al. The importance of tryptic-like activity in purified enzyme blends for efficient islet isolation. Transplantation. 2009;87(3):370–5.

    Article  CAS  PubMed  Google Scholar 

  23. Fujio A, Murayama K, Yamagata Y, Watanabe K, Imura T, Inagaki A, et al. Collagenase H is crucial for isolation of rat pancreatic islets. Cell Transplant. 2014;23(10):1187–98.

    Article  PubMed  Google Scholar 

  24. Wolters GH, Vos-Scheperkeuter GH, Lin H, van Schilfgaarde R. Different roles of class I and class II clostridium histolyticum collagenase in rat pancreatic islet isolation. Diabetes. 1995;44(2):227–33.

    Google Scholar 

  25. Brandhorst D, Huettler S, Alt A, Raemsch-Guenther N, Kurfuerst M, Bretzel R, et al. Adjustment of the ratio between collagenase class II and I improves islet isolation outcome. Transplant Proc. 2005;37(8):3450–1.

    Article  CAS  PubMed  Google Scholar 

  26. Brandhorst H, Raemsch-Guenther N, Raemsch C, Friedrich O, Huettler S, Kurfuerst M, et al. The ratio between collagenase class I and class II influences the efficient islet release from the rat pancreas. Transplantation. 2008;85(3):456–61.

    Article  CAS  PubMed  Google Scholar 

  27. Barnett M, Zhai X, LeGatt D, Cheng S, Shapiro A, Lakey J. Quantitative assessment of collagenase blends for human islet isolation. Transplantation. 2005;80(6):723–8.

    Article  CAS  PubMed  Google Scholar 

  28. van Deijnen J, Hulstaert C, Wolters G, van Schilfgaarde R. Significance of the peri-insular extracellular matrix for islet isolation from the pancreas of rat, dog, pig, and man. Cell Tissue Res. 1992;267(1):139–46.

    Article  PubMed  Google Scholar 

  29. O’Gorman D, Kin T, Pawlick R, Imes S, Senior P, Shapiro A. Clinical islet isolation outcomes with a highly purified neutral protease for pancreas dissociation. Islets. 2013;5(3):111–5.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yesil P, Michel M, Chwalek K, Pedack S, Jany C, Ludwig B, et al. A new collagenase blend increases the number of islets isolated from mouse pancreas. Islets. 2009;1(3):185–90.

    Article  PubMed  Google Scholar 

  31. Dendo M, Maeda H, Yamagata Y, Murayama K, Watanabe K, Imura T, et al. Synergistic effect of neutral protease and clostripain on rat pancreatic islet isolation. Transplantation. 2015;99(7):1349–55.

    Article  CAS  PubMed  Google Scholar 

  32. Wolters G, van Suylichem P, van Deijnen J, van Schilfgaarde R. Factors influencing the isolation process of islets of Langerhans. Horm Metab Res Suppl. 1990;25:20–6.

    CAS  PubMed  Google Scholar 

  33. Nduaguibe C, Bentsi-Barnes K, Mullen Y, Kandeel F, Al-Abdullah I. Serine protease inhibitors suppress pancreatic endogenous proteases and modulate bacterial neutral proteases. Islets. 2010;2(3):200–6.

    Article  PubMed  Google Scholar 

  34. de Haan B, Faas M, Spijker H, van Willigen J, de Haan A, de Vos P. Factors influencing isolation of functional pancreatic rat islets. Pancreas. 2004;29(1):e15–22.

    Article  PubMed  Google Scholar 

  35. Lakey J, Burridge P, Shapiro A. Technical aspects of islet preparation and transplantation. Transpl Int. 2003;16(9):613–32.

    Article  PubMed  Google Scholar 

  36. Gray D, Sutton R, McShane P, Peters M, Morris P. Exocrine contamination impairs implantation of pancreatic islets transplanted beneath the kidney capsule. J Surg Res. 1988;45(5):432–42.

    Article  CAS  PubMed  Google Scholar 

  37. Loganathan G, Dawra RK, Pugazhenthhi S, Guo Z, Soltani SM, Wiseman A, Sanders MA, Papas KK, Velayutham K, Saluja AK, Sutherland DE, Hering BJ, Balamurugan AN. Insulin degradation by acinar cell proteases creates a dysfunctional environment for human islets before/after transplantation: benefits for α-1 antytripsin treatment. Transplantation. 2011;92(11):1222–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scharp D, Kemp C, Knight M, Ballinger W, Lacy P. The use of Ficoll in the preparation of viable islets of Langerhans from the rat pancreas. Transplantation. 1973;16(6):686–8.

    Article  CAS  PubMed  Google Scholar 

  39. Li N, Zhang Y, Liu Y, Xiu Z, Tan M, Li S, et al. Improved islet purity by the hypertonic-hypotonic method. IJAO. 2014;37(6):477–85.

    Article  Google Scholar 

  40. Lindall A, Steffes M, Sorenson R. Immunoassayable insulin content of subcellular fractions of rat islets 1. Endocrinology. 1969;85(2):218–23.

    Article  CAS  PubMed  Google Scholar 

  41. Suylichem P, Wolters G, Schilfgaarde R. The efficacy of density gradients for islet purification: a comparison of seven density gradients. Transpl Int. 1990;3(1):156–61.

    Article  PubMed  Google Scholar 

  42. Kaufman D, Sutherland D. Pancreatic islet isolation in rats with ductal collagenase distention, stationary digestion and dextran separation. Transplantation. 1988;45(2):493–4.

    Article  PubMed  Google Scholar 

  43. McCall M, Maciver A, Pawlick R, Edgar R, Shapiro A. Histopaque provides optimal mouse islet purification kinetics: comparison study with Ficoll, iodixanol and dextran. Islets. 2011;3(4):144–9.

    Article  PubMed  Google Scholar 

  44. Lake S, Anderson J, Chamberlain J, Gardner S, Bell P, James R. Bovine serum albumin density gradient isolation of rat pancreatic islets. Transplantation. 1987;43(6):805–8.

    Article  CAS  PubMed  Google Scholar 

  45. Salvalaggio P, Deng S, Ariyan C, Millet I, Zawalich W, Basadonna G, et al. Islet filtration: a simple and rapid new purification procedure that avoids Ficoll and improves islet mass and function. Transplantation. 2002;74(6):877–9.

    Google Scholar 

  46. Delle, Saito M, Yoshimoto P, Noronha I. The use of iodixanol for the purification of rat pancreatic islets. Transplant Proc. 2007;39(2):467–9.

    Article  CAS  PubMed  Google Scholar 

  47. Ramirez-Dominguez M, Castaño L. Filtration is a time-efficient option to Histopaque, providing good-quality islets in mouse islet isolation. Cytotechnology. 2015;67(2):199–206.

    Google Scholar 

  48. van der Burg M, Basir I, Bouwman E. No porcine islet loss during density gradient purification in a novel iodixanol in university of Wisconsin solution. Transplant Proc. 1998;30(2):362–3.

    Article  PubMed  Google Scholar 

  49. Noguchi H, Ikemoto T, Naziruddin B, Jackson A, Shimoda M, Fujita Y, et al. Iodixanol-controlled density gradient during islet purification improves recovery rate in human islet isolation. Transplantation. 2009;87(11):1629–35.

    Article  CAS  PubMed  Google Scholar 

  50. Mita A, Ricordi C, Miki A, Barker S, Khan A, Alvarez A, et al. Purification method using iodixanol (OptiPrep)-based density gradient significantly reduces cytokine chemokine production from human islet preparations, leading to prolonged cell survival during pretransplantation culture. Transplant Proc. 2009;41(1):314–5.

    Google Scholar 

  51. Mita A, Ricordi C, Messinger S, Miki A, Misawa R, Barker S, et al. Antiproinflammatory effects of iodixanol (OptiPrep)-based density gradient purification on human islet preparations. Cell Transplant. 2010;19(12):1537–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brunicardi F, Suh E, Kleinman R. Selective photodynamic laser treatment of dispersed pancreatic tissue for islet isolation. Transplant Proc. 1992;24(2):2796.

    CAS  PubMed  Google Scholar 

  53. Nason R, Rajotte V, Procyshyn A. Purification of pancreatic islet cell grafts with radiation. Transplant Proc. 1986;18:174.

    Google Scholar 

  54. Shimoda M, Itoh T, Sugimoto K, Takita M, Chujo D, Iwahashi S, et al. An effective method to release human islets from surrounding acinar cells with agitation in high osmolality solution. Transplant Proc. 2011;43(9):3161–6.

    Article  CAS  PubMed  Google Scholar 

  55. Taylor M, Baicu S. 91. Cryo-isolation: a novel new method for enzyme-free isolation of pancreatic islets involving in situ cryopreservation of islets and selective destruction of acinar tissue. Cryobiology. 2011;63(3):331.

    Article  Google Scholar 

  56. Jiao L, Gray D, Gohde W, Flynn G, Morris P. In vitro staining of islets of Langerhans for fluorescence-activated cell sorting. Transplantation. 1991;52(3):450–2.

    Article  CAS  PubMed  Google Scholar 

  57. Fujioka T, Terasaki P, Heintz R, Merideth N, Lanza R, Zheng T, et al. Rapid purification of islets using magnetic microspheres coated with anti-acinar cell monoclonal antibodies. Transplantation. 1990;49(2):404–7.

    Article  CAS  PubMed  Google Scholar 

  58. Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, Powers AC. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Cyotchem Histochem. 2005;53(9):1087–97.

    Article  CAS  Google Scholar 

  59. Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. PNAS. 2006;103(7):2334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bonner-Weir S, Sullivan BA, Weir GC. Human islet morphology revisited: human and rodent islets are not so different after all. J Histochem Cytochem. 2015;63(8):604–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dolenek J, Rupnik M, Stoer A. Structural similarities and differences between the human and the mouse pancreas. Islets. 2015;7(1):e1024405.

    Article  Google Scholar 

  62. In’t Veld P, Smeets S. Microscopic anatomy of the human islet of Langerhans. In: Islam S, editor. Islets of Langerhans. 2nd ed. Dordrecht: Springer; 2015. p. 19–38.

    Google Scholar 

  63. Wang R. Maintenance of beta-cell function and survival following islet isolation requires re-establishment of the islet-matrix relationship. J Endocrinol. 1999;163(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  64. Ilieva A. Pancreatic islet cell survival following islet isolation: the role of cellular interactions in the pancreas. J Endocrinol. 1999;161(3):357–64.

    Article  CAS  PubMed  Google Scholar 

  65. Marzorati S, Antonioli B, Nano R, Maffi P, Piemonti L, Giliola C, et al. Culture medium modulates proinflammatory conditions of human pancreatic islets before transplantation. Am J Transplant. 2006;6(11):2791–5.

    Article  CAS  PubMed  Google Scholar 

  66. Robertson R, Harmon J, Tran P, Tanaka Y, Takahashi H. Glucose toxicity in  -cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes. 2003;52(3):581–7.

    Article  CAS  PubMed  Google Scholar 

  67. Takahashi H, Goto M, Ogawa N, Saito Y, Fujimori K, Kurokawa Y, et al. Superiority of fresh islets compared with cultured islets. Transplant Proc. 2009;41(1):350–1.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Ramírez-Domínguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ramírez-Domínguez, M. (2016). Isolation of Mouse Pancreatic Islets of Langerhans. In: Ramírez-Domínguez, M. (eds) Pancreatic Islet Isolation. Advances in Experimental Medicine and Biology, vol 938. Springer, Cham. https://doi.org/10.1007/978-3-319-39824-2_3

Download citation

Publish with us

Policies and ethics