Skip to main content

A Polynomial Time Algorithm for Finding a Spanning Tree with Maximum Number of Internal Vertices on Interval Graphs

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9711))

Included in the following conference series:

Abstract

This paper studies the Maximum Internal Spanning Tree problem which is to find a spanning tree with the maximum number of internal vertices on a graph. We prove that the problem can be solved in polynomial time on interval graphs. The idea is based on the observation that the number of internal vertices in a maximum internal spanning tree is at most one less than the number of edges in a maximum path cover on any graph. On an interval graph, we present an \(O(n^{2})\)-algorithm to find a spanning tree in which the number of internal vertices is exactly one less than the number of edges in a maximum path cover of the graph, where n is the number of vertices in the interval graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akiyama, T., Nishizeki, T., Saito, N.: NP-completeness of the Hamiltonian cycle problem for bipartite graphs. J. Inf. Process. 3(2), 73–76 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Binkele-Raible, D., Fernau, H., Gaspers, S., Liedloff, M.: Exact and parameterized algorithms for max internal spanning tree. Algorithmica 65, 95–128 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coben, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for finding k-vertex out-trees and its application to k-internal out-branching problem. JCSS 76(7), 650–662 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Flandrin, E., Kaiser, T., Kuzel, R., Li, H., Ryjacek, Z.: Neighborhood unions and extremal spanning trees. Discrete Math. 308(12), 2343–2350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fomin, F.V., Lokshtanov, D., Grandoni, F., Saurabh, S.: Sharp seperation and applications to exact and parameterized algorithms. Algorithmica 63(3), 692–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fomin, F.V., Gaspers, S., Saurabh, S., Thomass\(\acute{e}\), S.: A linear vertex kernel for maximum internal spanning tree. JCSS 79, 1–6 (2013)

    Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, W. H (1979)

    MATH  Google Scholar 

  8. Knauer, M., Spoerhase, J.: Better approximation algorithms for the maximum internal spanning tree problem. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 459–470. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Kyaw, A.: Spanning trees with at most 3 leaves in \(K_{1,4}\)-free graphs. Discrete Math. 309(20), 6146–6148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lu, H., Ravi, R.: The power of local optimization approximation algorithms for maximum-leaf spanning tree. Technical report, Department of Computer Science, Brown University (1996)

    Google Scholar 

  11. Prieto, E., Sloper, C.: Either/Or: using vertex cover structure in designing FPT-Algorithms — the case of k-internal spanning tree. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 474–483. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Prieto, E.: Systematic kernelization in FPT algorithm design. Ph.D. thesis, The University of Newcastle, Australia (2005)

    Google Scholar 

  13. Prieto, E., Sloper, C.: Reducing to independent set structure the case of k-internal spanning tree. Nord. J. Comput. 12(3), 308–318 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Salamon, G., Wiener, G.: On finding spanning trees with few leaves. Inf. Process. Lett. 105(5), 164–169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Salamon, G.: Approximating the maximum internal spanning tree problem. Theor. Comput. Sci. 410(50), 5273–5284 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Salamon, G.: Degree-Based Spanning Tree Optimization. Ph.D. thesis, Budapest University of Technology and Ecnomics, Hungary (2009)

    Google Scholar 

  17. Shiloach, Y.: Another look at the degree constrained subgraph problem. Inf. Process. Lett. 12(2), 89–92 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zehavi, M.: Algorithms for k-internal out-branching. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 361–373. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Arikati, S.R., Rangan, C.: Linear algorithm for optimal path cover problem on interval graphs. Inform. Process. Lett. 35, 149–153 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ramalingam, G., Rangan, C.: A unified approach to domination problems on interval graphs. Inform. Proc. Lett. 27, 271–274 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, W., Chen, J., Wang, J.: Deeper local search for better approximation on maximum internal spanning trees. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 642–653. Springer, Heidelberg (2014)

    Google Scholar 

  22. Li, X., Zhu, D.: Approximating the maximum internal spanning tree problem via a maximum path-cycle cover. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 467–478. Springer, Heidelberg (2014)

    Google Scholar 

  23. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against physical mapping of DNA. J. Comp. Biol. 2, 139–152 (1995)

    Article  Google Scholar 

  24. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, vol. 57). North-Holland Publishing Co., Amsterdam (2004)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the Doctoral Science Foundation of Shanxi Agriculture University under the grant of 2015YJ19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, X., Feng, H., Jiang, H., Zhu, B. (2016). A Polynomial Time Algorithm for Finding a Spanning Tree with Maximum Number of Internal Vertices on Interval Graphs. In: Zhu, D., Bereg, S. (eds) Frontiers in Algorithmics. FAW 2016. Lecture Notes in Computer Science(), vol 9711. Springer, Cham. https://doi.org/10.1007/978-3-319-39817-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39817-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39816-7

  • Online ISBN: 978-3-319-39817-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics