Skip to main content

Preprocessing Methods in Nuclear Magnetic Resonance Spectroscopy

  • Conference paper
  • First Online:
Information Technologies in Medicine (ITiB 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 471))

Included in the following conference series:

  • 718 Accesses

Abstract

Magnetic resonance spectroscopy is currently used in chemistry and medicine as a diagnostic tool. Due to many imperfections that are present during measurement the signal has to be corrected by so called preprocessing methods or techniques. Some of them are performed by a scanner, but it is still necessary to improve the quality of the numerical signal. This paper presents a description of the most important preprocessing techniques which are applied by most current software and is an extension of the most currently reviews presented on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binczyk, F., Tarnawski, R., Polanska, J.: Strategies for optimizing the phase correction algorithms in nuclear magnetic resonance spectroscopy. Biomed. Eng. Online 14(Suppl 2), S5 (2015)

    Article  Google Scholar 

  2. Bruker. http://www.bruker.com/products/mr/nmr.html

  3. Cabanes, E., Confort-Gouny, S., Le Fur, Y., Simond, G., Cozzone, P. J.: Optimization of residual water signal removal by HLSVD on simulated short echo time proton MR spectra of the human brain. J. Magn. Reson. 150(2), 116–125 (2001). San Diego Calif 1997

    Google Scholar 

  4. Cavanagh, J., Fairbrother, W.J., Skelton, A.G., Palmer III, N.J., Rance, M.: Protein NMR Spectroscopy: Principles and Practice. Academic Press (2010)

    Google Scholar 

  5. Chen, L., Weng, Z., Goh, L., Garland, M.: An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. J. Magn. Reson. 158(1–2), 164–168 (2002)

    Article  Google Scholar 

  6. Cobas, C., Sykora, S.: Extended DISPersion-Absorption (eDISPA) Approach to Automatic Phasing of HR-NMR Spectra. Mestrelab Research

    Google Scholar 

  7. De Meyer, T., Sinnaeve, D., Van Gasse, B., Rietzschel, E.-R., De Buyzere, M.L., Langlois, M.R., Bekaert, S., Martins, J.C., Van Criekinge, W.: Evaluation of standard and advanced preprocessing methods for the univariate analysis of blood serum 1H-NMR spectra. Anal. Bioanal. Chem. 398(4), 1781–1790 (2010)

    Article  Google Scholar 

  8. Eilers, P.H.C.: Parametric time warping. Anal. Chem. 76(2), 404–411 (2004)

    Article  MathSciNet  Google Scholar 

  9. Ernst, R.R.: Sensitivity enhancement in magnetic resonance. I. Analysis of the method of time averaging. Rev. Sci. Instrum. 36(12), 1689–1695 (1965)

    Article  Google Scholar 

  10. Friedrichs, M.S.: A model-free algorithm for the removal of baseline artifacts. J. Biomol. NMR 5(2), 147–153 (1995)

    Article  Google Scholar 

  11. Gan, F., Ruan, G., Mo, J.: Baseline correction by improved iterative polynomial fitting with automatic threshold. Chemom. Intell. Lab. Syst. 82(1–2), 59–65 (2006)

    Article  Google Scholar 

  12. GE Healthcare Worldwide. http://www.gehealthcare.com

  13. Global Siemens Healthcare. http://www.medical.siemens.com

  14. Herring, F.G., Phillips, P.S.: Automatic phase correction in magnetic resonance using DISPA. J. Magn. Reson. (1969) 59(3), 489–496 (1984)

    Google Scholar 

  15. Jiru, F.: Introduction to post-processing techniques. Eur. J. Radiol. 67(2), 202–217 (2008)

    Article  Google Scholar 

  16. Jiru, F., et al.: The role of relaxation time corrections for the evaluation of long and short echo time 1H MR spectra of the hippocampus by NUMARIS and LCModel techniques. Magma N.Y. N 16(3), 135–143 (2003)

    Article  Google Scholar 

  17. Keeler, J.: Understanding NMR Spectroscopy, 2nd edn. Wiley-Blackwell, Chichester (2010)

    Google Scholar 

  18. Kim, S.B., Wang, Z., Hiremath, B.: A Bayesian approach for the alignment of high-resolution NMR spectra. Ann. Oper. Res. 174(1), 19–32 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Klose, U.: In vivo proton spectroscopy in presence of eddy currents. Magn. Reson. Med. 14(1), 26–30 (1990)

    Article  Google Scholar 

  20. Kreis, R.: Quantitative localized 1H MR spectroscopy for clinical use. Prog. Nucl. Magn. Reson. Spectrosc. 31(2–3), 155–195 (1997)

    Article  Google Scholar 

  21. Liland, K.H., Almoy, T., Mevik, B.-H.: Optimal choice of baseline correction for multivariate calibration of spectra. Appl. Spectrosc. 64(9), 1007–1016 (2010)

    Article  Google Scholar 

  22. Mitchell, J., Chandrasekera, T.C., Gladden, L.F.: Obtaining true transverse relaxation time distributions in high-field NMR measurements of saturated porous media: Removing the influence of internal gradients. J. Chem. Phys. 132(24), 244705 (2010)

    Article  Google Scholar 

  23. Philips Healthcare. http://www.medical.philips.com

  24. Poullet, J.-B.: Quantification and Classification of Magnetic Resonance Spectroscopic Data For Brain Tumor Diagnosis. Katholic University of Leuven (2008)

    Google Scholar 

  25. Poullet, J.-B., Sima, D.M., Van Huffel, S.: MRS signal quantitation: a review of time- and frequency-domain methods. J. Magn. Reson. 195(2), 134–144 (2008)

    Article  Google Scholar 

  26. Reynolds, G., Wilson, M., Peet, A., Arvanitis, T.N.: An algorithm for the automated quantitation of metabolites in in vitro NMR signals. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med. 56(6), 1211–1219 (2006)

    Article  Google Scholar 

  27. Sava, A.R.C.: Signal Processing and Classification for Magnetic Resonance Spectroscopic Data with Clinical Applications. Katholic University of Leuven (2011)

    Google Scholar 

  28. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)

    Article  Google Scholar 

  29. Seeger, U., Mader, I., Nagele, T., Grodd, W., Lutz, O., Klose, U.: Reliable detection of macromolecules in single-volume 1H NMR spectra of the human brain. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med. 45(6), 948–954 (2001)

    Article  Google Scholar 

  30. Skorupa, A., Wicher, M., Banasik, T., Jamroz, E., Paprocka, J., Kieltyka, A., Sokol, M., Konopka, M.: Four-and-one-half years experience in monitoring of reproducibility of an MR spectroscopy system-application of in vitro results to interpretation of in vivo data. J. Appl. Clin. Med. Phys. Am. Coll. Med. Phys. 15(3), 4754 (2014)

    Google Scholar 

  31. Staab, J.M., O’Connell, T.M., Gomez, S.M.: Enhancing metabolomic data analysis with progressive consensus alignment of NMR spectra (PCANS). BMC Bioinform. 11(1), 123 (2010)

    Article  Google Scholar 

  32. Staniszewski, M., Binczyk, F., Skorupa, A., Boguszewicz, L., Sokol, M., Polanska, J., Polanski, A.: Comparison of black box implementations of two algorithms of processing of NMR spectra. In: Gaussian Mixture Model and Singular Value Decomposition. BIOSTEC, Lisbon (2015)

    Google Scholar 

  33. Staniszewski, M., Skorupa, A., Boguszewicz, L., Sokol, M., Polanski, A.: Reiteration of Hankel singular value decomposition for modeling of complex-valued signal. In: ICNAAM, Rhodes (2015)

    Google Scholar 

  34. Toshiba Medical System. http://www.toshiba-europe.com/medical/

  35. Trickett, S.: F-xy Cadzow noise suppression. SEG Tech. Program Expanded Abs. 27(1) (2008)

    Google Scholar 

  36. Vanhamme, L., Fierro, R.D., Van Huffel, S., de Beer, R.: Fast removal of residual water in proton spectra. J. Magn. Reson. 132(2), 197–203 (1998). San Diego Calif 1997

    Google Scholar 

  37. Varian. http://www.agilent.com/home

  38. Wilson, M., Reynolds, G., Kauppinen, R.A., Arvanitis, T.N., Peet, A.C.: A constrained least-squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med. 65(1), 1–12 (2011)

    Article  Google Scholar 

  39. Wong, J.W.H., Cagney, G., Cartwright, H.M.: SpecAlign-processing and alignment of mass spectra datasets. Bioinform. Oxf. Engl. 21(9), 2088–2090 (2005)

    Article  Google Scholar 

  40. Wong, J.W.H., Durante, C., Cartwright, H.M.: Application of fast Fourier transform cross-correlation for the alignment of large chromatographic and spectral datasets. Anal. Chem. 77(17), 5655–5661 (2005)

    Article  Google Scholar 

  41. Worley, B., Powers, R.: Simultaneous phase and scatter correction for NMR datasets. Chemom. Intell. Lab. Syst. 131, 1–6 (2014)

    Article  Google Scholar 

  42. Wu, W., Daszykowski, M., Walczak, B., Sweatman, B.C., Connor, S.C., Haselden, J.N., Crowther, D.J., Gill, R.W., Lutz, M.W.: Peak alignment of urine NMR spectra using fuzzy warping. J. Chem. Inf. Model. 46(2), 863–875 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by: projects for Young Scientist on Institute of Informatics BKM515/2014/9, BKM515/2015/9 (MS) and partly by infrastructure of POIG.02.03.01- 24-099/13 grant: GCONiI—Upper-Silesian Center for Scientific Computation (AP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Staniszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Staniszewski, M., Skorupa, A., Boguszewicz, L., Sokol, M., Polanski, A. (2016). Preprocessing Methods in Nuclear Magnetic Resonance Spectroscopy. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technologies in Medicine. ITiB 2016. Advances in Intelligent Systems and Computing, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-319-39796-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39796-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39795-5

  • Online ISBN: 978-3-319-39796-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics