Skip to main content

Artifacts of the Craniocervical Arterial System on MRI

  • Chapter
  • First Online:
  • 3751 Accesses

Abstract

Three-dimensional time-of-flight (3DTOF) MRA utilizes the concept of flow-related enhancement (FRE) to produce bright signal on a gradient echo acquisition, where fresh spins in blood flowing into (and preferentially perpendicular to) the slice are unsaturated and exhibit strong signal prior to being saturated. Arteries do not always follow a perpendicular orientation, however. Particular examples include tortuous internal carotid arteries (ICAs) in the cervical region, vertebral arteries (VAs) near their origin, or the normal horizontal course of the petrous ICAs. When travelling horizontally within a slice, the phenomenon of in-plane saturation may reduce FRE and thus decrease the visualized flow of vasculature. This phenomenon is overcome on contrast-enhanced MRA (CEMRA), as the T1-bright gadolinium usually overpowers the saturation effect. Note that the FRE effect is also useful with 2D or 3DTOF MR venography, most commonly in the transverse sinuses with an axial acquisition, or within the superior sagittal sinus with a sagittal acquisition. It is also important to point out that 3D acquisitions can be susceptible to saturation if a larger volume is obtained, or if the technique of multiple overlapping thin slab acquisition (MOTSA) is not used properly. Hence, most facilities utilize overlapping slabs to decrease in-plane saturation for noncontrast cranial MRA, but saturation may still occur if flow occurs within the same plane as the plane of acquisition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gullberg GT, Wehrli FW, Shimakawa A, Simons MA. MR vascular imaging with a fast gradient refocusing pulse sequence and reformatted images from transaxial sections. Radiology. 1987;165:241–6.

    Article  CAS  PubMed  Google Scholar 

  2. Needell WM, Maravilla KR. MR flow imaging in vascular malformations using gradient recalled acquisition. AJNR Am J Neuroradiol. 1988;9:637–42.

    CAS  PubMed  Google Scholar 

  3. Tsuruda JS, Halbach VV, Higashida RT, Mark AS, Hieshima GB, Norman D. MR evaluation of large intracranial aneurysms using cine low flip angle gradient-refocused imaging. AJR Am J Roentgenol. 1988;151:153–62.

    Article  CAS  PubMed  Google Scholar 

  4. Parker DL, Yuan C, Blatter DD. MR angiography by multiple thin slab 3D acquisition. Magn Reson Med. 1991;17:434–51.

    Article  CAS  PubMed  Google Scholar 

  5. Hausmann R, Lewin JS, Laub G. Phase-contrast MR angiography with reduced acquisition time: new concepts in sequence design. J Magn Reson Imaging. 1991;1:415–22.

    Article  CAS  PubMed  Google Scholar 

  6. Chakeres DW, Schmalbrock P, Brogan M, Yuan C, Cohen L. Normal venous anatomy of the brain: demonstration with gadopentetate dimeglumine in enhanced 3-D MR angiography. AJR Am J Roentgenol. 1991;156:161–72.

    Article  CAS  PubMed  Google Scholar 

  7. Anderson CM, Haacke EM. Approaches to diagnostic magnetic resonance carotid angiography. Semin Ultrasound CT MR. 1992;13:246–55.

    CAS  PubMed  Google Scholar 

  8. Blatter DD, Bahr AL, Parker DL, Robison RO, Kimball JA, Perry DM, Horn S. Cervical carotid MR angiography with multiple overlapping thin-slab acquisition: comparison with conventional angiography. AJR Am J Roentgenol. 1993;161:1269–77.

    Article  CAS  PubMed  Google Scholar 

  9. Ding X, Tkach JA, Ruggieri PR, Masaryk TJ. Sequential three-dimensional time-of-flight MR angiography of the carotid arteries: value of variable excitation and postprocessing in reducing venetian blind artifact. AJR Am J Roentgenol. 1994;163:683–8.

    Article  CAS  PubMed  Google Scholar 

  10. Bosmans H, Wilms G, Marchal G, Demaerel P, Baert AL. Characterisation of intracranial aneurysms with MR angiography. Neuroradiology. 1995;37:262–6.

    Article  CAS  PubMed  Google Scholar 

  11. Talagala SL, Jungreis CA, Kanal E, Meyers SP, Foo TK, Rubin RA, Applegate GR. Fast three-dimensional time-of-flight MR angiography of the intra-cranial vasculature. J Magn Reson Imaging. 1995;5:317–23.

    Article  CAS  PubMed  Google Scholar 

  12. Cloft HJ, Murphy KJ, Prince MR, Brunberg JA. 3D gadolinium-enhanced MR angiography of the carotid arteries. Magn Reson Imaging. 1996;14:593–600.

    Article  CAS  PubMed  Google Scholar 

  13. Nesbit GM, DeMarco JK. 2D time-of-flight MR angiography using concatenated saturation bands for determining direction of flow in the intracranial vessels. Neuroradiology. 1997;39:461–8.

    Article  CAS  PubMed  Google Scholar 

  14. Alexander AL, Buswell HR, Sun Y, Chapman BE, Tsuruda JS, Parker DL. Intracranial black-blood MR angiography with high-resolution 3D fast spin echo. Magn Reson Med. 1998;40:298–310.

    Article  CAS  PubMed  Google Scholar 

  15. Willig DS, Turski PA, Frayne R, Graves VB, Korosec FR, Swan JS, et al. Contrast-enhanced 3D MR DSA of the carotid artery bifurcation: preliminary study of comparison with unenhanced 2D and 3D time-of-flight MR angiography. Radiology. 1998;208:447–51.

    Article  CAS  PubMed  Google Scholar 

  16. Slosman F, Stolpen AH, Lexa FJ, Schnall MD, Langlotz CP, Carpenter JP, Goldberg HI. Extracranial atherosclerotic carotid artery disease: evaluation of non-breath-hold three-dimensional gadolinium-enhanced MR angiography. AJR Am J Roentgenol. 1998;170:489–95.

    Article  CAS  PubMed  Google Scholar 

  17. Scarabino T, Carriero A, Magarelli N, Florio F, Giannatempo GM, Bonomo L, Salvolini U. MR angiography in carotid stenosis: a comparison of three techniques. Eur J Radiol. 1998;28:117–25.

    Article  CAS  PubMed  Google Scholar 

  18. Fellner FA, Fellner C, Wutke R, Lang W, Laub G, Schmidt M, et al. Fluoroscopically triggered contrast-enhanced 3D MR DSA and 3D time-of-flight turbo MRA of the carotid arteries: first clinical experiences in correlation with ultrasound, x-ray angiography, and endarterectomy findings. Magn Reson Imaging. 2000;18:575–85.

    Article  CAS  PubMed  Google Scholar 

  19. Al-Kwifi O, Emery DJ, Wilman AH. Vessel contrast at three Tesla in time-of-flight magnetic resonance angiography of the intracranial and carotid arteries. Magn Reson Imaging. 2002;20:181–7.

    Article  PubMed  Google Scholar 

  20. Jeong EK, Parker DL, Tsuruda JS, Won JY. Reduction of flow-related signal loss in flow-compensated 3D TOF MR angiography, using variable echo time (3D TOF-VTE). Magn Reson Med. 2002;48:667–76.

    Article  PubMed  Google Scholar 

  21. Ozsarlak O, Van Goethem JW, Parizel PM. 3D time-of-flight MR angiography of the intracranial vessels: optimization of the technique with water excitation, parallel acquisition, eight-channel phased-array head coil and low-dose contrast administration. Eur Radiol. 2004;14:2067–71.

    Article  CAS  PubMed  Google Scholar 

  22. Gibbs GF, Huston 3rd J, Bernstein MA, Riederer SJ, Brown Jr RD. Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. AJNR Am J Neuroradiol. 2004;25:84–7.

    PubMed  Google Scholar 

  23. Ozsarlak O, Van Goethem JW, Maes M, Parizel PM. MR angiography of the intracranial vessels: technical aspects and clinical applications. Neuroradiology. 2004;46:955–72.

    Article  PubMed  Google Scholar 

  24. DeMarco JK, Willinek WA, Finn JP, Huston 3rd J. Current state-of-the-art 1.5 T and 3 T extracranial carotid contrast-enhanced magnetic resonance angiography. Neuroimaging Clin N Am. 2012;22:235–57.

    Article  PubMed  Google Scholar 

  25. Pandey S, Hakky M, Kwak E, Jara H, Geyer CA, Erbay SH. Application of basic principles of physics to head and neck MR angiography: troubleshooting for artifacts. Radiographics. 2013;33:E113–23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McKinney, A.M. (2017). Artifacts of the Craniocervical Arterial System on MRI. In: Atlas of Normal Imaging Variations of the Brain, Skull, and Craniocervical Vasculature . Springer, Cham. https://doi.org/10.1007/978-3-319-39790-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39790-0_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39789-4

  • Online ISBN: 978-3-319-39790-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics