Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2160))

  • 900 Accesses

Abstract

Positive-definiteness arises naturally in the theory of the Fourier transform. There are two directions in transform theory. In the present setting, one is straightforward, and the other (Bochner) is deep. First, it is easy to see directly that the Fourier transform of a positive finite measure is a positive definite function; and that it is continuous. The converse result is Bochner’s theorem. It states that any continuous positive definite function on the real line is the Fourier transform of a unique positive and finite measure. However, if some given positive definite function is only partially defined, for example in an interval, or in the planar case, in a disk or a square, then Bochner’s theorem does not apply. One is faced with first seeking a positive definite extension; hence the theme of our monograph.

Mathematics is an experimental science, and definitions do not come first, but later on.

—Oliver Heaviside

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    M.H. Stone, Ann. Math. 33 (1932) 643–648M.A. Naimark, Izv. Akad. Nauk SSSR. Ser. Mat. 7 (1943) 237–244 W. Ambrose, Duke Math. J. 11 (1944) 589–595 R. Godement, C.R. Acad. Sci. Paris 218 (1944) 901–903.

  2. 2.

    We refer to Sect. 2.1 for details. A Hermitian operator, also called formally selfadjoint, may well be non-selfadjoint.

References

  1. D. Alpay, V. Bolotnikov, A. Dijksma, H. de Snoo, On some operator colligations and associated reproducing kernel Hilbert spaces, in Operator Extensions, Interpolation of Functions and Related Topics (Timişoara, 1992). Operator Theory: Advances and Applications, vol. 61 (Birkhäuser, Basel, 1993), pp. 1–27. MR 1246577 (94i:47018)

    Google Scholar 

  2. D. Alpay, H. Dym, On applications of reproducing kernel spaces to the Schur algorithm and rational J unitary factorization, I, in Schur Methods in Operator Theory and Signal Processing. Operator Theory: Advances and Applications, vol. 18 (Birkhäuser, Basel, 1986), pp. 89–159. MR 902603 (89g:46051)

    Google Scholar 

  3. N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Space (Dover, New York, 1993). Translated from the Russian and with a preface by Merlynd Nestell, Reprint of the 1961 and 1963 translations, Two volumes bound as one. MR 1255973 (94i:47001)

    Google Scholar 

  4. G. Auchmuty, Q. Han, Spectral representations of solutions of linear elliptic equations on exterior regions. J. Math. Anal. Appl. 398 (1), 1–10 (2013). MR 2984310

    Google Scholar 

  5. D. Alpay, P.E.T. Jorgensen, Stochastic processes induced by singular operators. Numer. Funct. Anal. Optim. 33 (7–9), 708–735 (2012). MR 2966130

    Google Scholar 

  6. D. Alpay, P. Jorgensen, D. Levanony, A class of Gaussian processes with fractional spectral measures. J. Funct. Anal. 261 (2), 507–541 (2011). MR 2793121 (2012e:60101)

    Google Scholar 

  7. D. Alpay, P. Jorgensen, R. Seager, D. Volok, On discrete analytic functions: products, rational functions and reproducing kernels. J. Appl. Math. Comput. 41 (1–2), 393–426 (2013). MR 3017129

    Google Scholar 

  8. D. Alpay, On linear combinations of positive functions, associated reproducing kernel spaces and a non-Hermitian Schur algorithm. Arch. Math. (Basel) 58 (2), 174–182 (1992). MR 1143167 (92m:46039)

    Google Scholar 

  9. D. Alpay, A theorem on reproducing kernel Hilbert spaces of pairs. Rocky Mountain J. Math. 22 (4), 1243–1258 (1992). MR 1201089 (94b:46035)

    Google Scholar 

  10. D. Applebaum, Probability measures on compact groups which have square-integrable densities. Bull. Lond. Math. Soc. 40 (6), 1038–1044 (2008). MR 2471953 (2009m:60014)

    Google Scholar 

  11. D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 116 (Cambridge University Press, Cambridge, 2009). MR 2512800 (2010m:60002)

    Google Scholar 

  12. N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc. 68, 337–404 (1950). MR 0051437 (14,479c)

    Google Scholar 

  13. L. Accardi, H. Rebei, A. Riahi, The quantum decomposition of random variables without moments. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16 (2), 1350012, 28 (2013). MR 3078823

    Google Scholar 

  14. W. Arveson, Markov operators and OS-positive processes. J. Funct. Anal. 66 (2), 173–234 (1986). MR 832989 (87i:46139)

    Google Scholar 

  15. S. Bochner, K. Chandrasekharan, On the localization property for multiple Fourier series. Ann. Math. (2) 49, 966–978 (1948). MR 0027089 (10,248a)

    Google Scholar 

  16. S. Bochner, K. Chandrasekharan, Fourier series of L 2-functions. Duke Math. J. 16, 579–583 (1949). MR 0032807 (11,349d)

    Google Scholar 

  17. C. Berg, J.P.R. Christensen, P. Ressel, Harmonic Analysis on Semigroups. Graduate Texts in Mathematics, vol. 100 (Springer, New York, 1984). Theory of positive definite and related functions. MR 747302 (86b:43001)

    Google Scholar 

  18. R. Bruzual, M. Domínguez, On extension of scalar valued positive definite functions on ordered groups. Divulg. Mat. 15 (2), 115–122 (2007). MR 2422404 (2009d:43016)

    Google Scholar 

  19. S. Bernstein, Sur le théorème limite de la théorie des probabilités. Bull. [Izvestiya] Math. Mech. Inst. Univ. Tomsk 3, 174–190 (1946). MR 0019854 (8,471b)

    Google Scholar 

  20. G. Berschneider, Decomposition of conditionally positive definite functions on commutative hypergroups. Monatsh. Math. 166 (3–4), 329–340 (2012). MR 2925140

    Google Scholar 

  21. T.M. Bisgaard, Factoring of positive definite functions: a counterexample based on an extension theorem. Semigroup Forum 64 (2), 265–288 (2002). MR 1876859 (2002m:43006)

    Google Scholar 

  22. J.P. Boyd, P.W. McCauley, Quartic Gaussian and inverse-quartic Gaussian radial basis functions: the importance of a nonnegative Fourier transform. Comput. Math. Appl. 65 (1), 75–88 (2013). MR 3003386

    Google Scholar 

  23. S. Bochner, Finitely additive set functions and stochastic processes. Proc. Natl. Acad. Sci. U. S. A. 32, 259–261 (1946). MR 0017897 (8,215a)

    Google Scholar 

  24. S. Bochner, Stochastic processes. Ann. Math. (2) 48, 1014–1061 (1947). MR 0022322 (9,193g)

    Google Scholar 

  25. M. Bakonyi, D. Timotin, Extensions of positive definite functions on free groups. J. Funct. Anal. 246 (1), 31–49 (2007). MR 2316876 (2008g:43009)

    Google Scholar 

  26. M. Bakonyi, D. Timotin, Extensions of positive definite functions on amenable groups. Can. Math. Bull. 54 (1), 3–11 (2011). MR 2797482

    Google Scholar 

  27. P. Cotta-Ramusino, W. Krüger, R. Schrader, Quantum scattering by external metrics and Yang-Mills potentials. Ann. Inst. Henri Poincaré Sect. A (N.S.) 31 (1), 43–71 (1979). MR 557051 (81h:81129)

    Google Scholar 

  28. L. de Branges, Hilbert Spaces of Entire Functions (Prentice-Hall, Englewood Cliffs, NJ, 1968). MR 0229011 (37 #4590)

    Google Scholar 

  29. L. de Branges, J. Rovnyak, Canonical models in quantum scattering theory, in Perturbation Theory and its Applications in Quantum Mechanics. Proceedings of an Advanced Seminar Conducted by the Mathematics Research Center, U.S. Army. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 1965 (Wiley, New York, 1966), pp. 295–392. MR 0244795 (39 #6109)

    Google Scholar 

  30. A. Devinatz, On the extensions of positive definite functions. Acta Math. 102, 109–134 (1959). MR 0109992 (22 #875)

    Google Scholar 

  31. A. Devinatz, The deficiency index of a certain class of ordinary self-adjoint differential operators. Adv. Math. 8, 434–473 (1972). MR 0298102 (45 #7154)

    Google Scholar 

  32. N. Dunford, J.T. Schwartz, Linear Operators. Part II. Wiley Classics Library (Wiley, New York, 1988). Spectral theory. Selfadjoint operators in Hilbert space, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1963 original, A Wiley-Interscience Publication. MR 1009163 (90g:47001b)

    Google Scholar 

  33. J. Emonds, H. Führ, Strictly positive definite functions on compact abelian groups. Proc. Am. Math. Soc. 139 (3), 1105–1113 (2011). MR 2745662 (2012a:43002)

    Google Scholar 

  34. B.J. Falkowski, Factorizable and infinitely divisible PUA representations of locally compact groups. J. Math. Phys. 15, 1060–1066 (1974). MR 0372115 (51 #8332)

    Google Scholar 

  35. M. Fannes, An introduction to quantum probability, in Theoretical Foundations of Quantum Information Processing and Communication. Lecture Notes in Physics, vol. 787 (Springer, Berlin, 2010), pp. 1–38. MR 2762151 (2012d:81174)

    Google Scholar 

  36. B. Fuglede, Boundary minimum principles in potential theory. Math. Ann. 210, 213–226 (1974). MR 0357827 (50 #10293b)

    Google Scholar 

  37. T. Gneiting, Strictly and non-strictly positive definite functions on spheres. Bernoulli 19 (4), 1327–1349 (2013). MR 3102554

    Google Scholar 

  38. T.N.E. Greville, I.J. Schoenberg, A. Sharma, The behavior of the exponential Euler spline S n (x; t) as n →  for negative values of the base t, in Second Edmonton Conference on Approximation Theory (Edmonton, Alta, 1982), CMS Conference Proceedings, vol. 3 (American Mathematical Society, Providence, RI, 1983), pp. 185–198. MR 729330 (85c:41017)

    Google Scholar 

  39. N.I. Goloshchapova, V.P. Zastavnyĭ, M.M. Malamud, Positive-definite functions and the spectral properties of the Schrödinger operator with point interactions. Mat. Zametki 90 (1), 151–156 (2011). MR 2908176

    Google Scholar 

  40. T. Hida, Brownian Motion. Applications of Mathematics, vol. 11 (Springer, New York, 1980). Translated from the Japanese by the author and T. P. Speed. MR 562914 (81a:60089)

    Google Scholar 

  41. A. Hinrichs, J. Vybíral, On positive positive-definite functions and Bochner’s Theorem. J. Complexity 27 (3–4), 264–272 (2011). MR 2793862 (2012g:65038)

    Google Scholar 

  42. K. Itô, H.P. McKean Jr., Diffusion processes and their sample paths. Die Grundlehren der Mathematischen Wissenschaften, Band 125 (Academic, New York, 1965). MR 0199891 (33 #8031)

    Google Scholar 

  43. E.J. Ionascu, Rank-one perturbations of diagonal operators. Integr. Equ. Oper. Theory 39 (4), 421–440 (2001). MR 1829279 (2002c:47014)

    Google Scholar 

  44. K. Itô, Stochastic Processes (Springer, Berlin, 2004). Lectures given at Aarhus University, Reprint of the 1969 original, Edited and with a foreword by Ole E. Barndorff-Nielsen and Ken-iti Sato. MR 2053326 (2005e:60002)

    Google Scholar 

  45. P.E.T. Jorgensen, R.T. Moore, Operator Commutation Relations. Mathematics and its Applications (D. Reidel, Dordrecht, 1984). Commutation relations for operators, semigroups, and resolvents with applications to mathematical physics and representations of Lie groups. MR 746138 (86i:22006)

    Google Scholar 

  46. P.E.T. Jorgensen, R. Niedzialomski, Extension of positive definite functions. J. Math. Anal. Appl. 422 (1), 712–740 (2015). MR 3263485

    Google Scholar 

  47. P.E.T. Jorgensen, G. Ólafsson, Unitary representations of Lie groups with reflection symmetry. J. Funct. Anal. 158 (1), 26–88 (1998). MR 1641554 (99m:22013)

    Google Scholar 

  48. P.E.T. Jorgensen, G. Ólafsson, Unitary representations and Osterwalder-Schrader duality, in The Mathematical Legacy of Harish-Chandra (Baltimore, MD, 1998). Proceedings of Symposia in Pure Mathematics, vol. 68 (American Mathematical Society, Providence, RI, 2000), pp. 333–401. MR 1767902 (2001f:22036)

    Google Scholar 

  49. P.E.T. Jørgensen, A uniqueness theorem for the Heisenberg-Weyl commutation relations with nonselfadjoint position operator. Am. J. Math. 103 (2), 273–287 (1981). MR 610477 (82g:81033)

    Google Scholar 

  50. P.E.T. Jorgensen, Analytic continuation of local representations of Lie groups. Pac. J. Math. 125 (2), 397–408 (1986). MR 863534 (88m:22030)

    Google Scholar 

  51. P.E.T. Jorgensen, Positive definite functions on the Heisenberg group. Math. Z. 201 (4), 455–476 (1989). MR 1004167 (90m:22024)

    Google Scholar 

  52. P.E.T. Jorgensen, Extensions of positive definite integral kernels on the Heisenberg group. J. Funct. Anal. 92 (2), 474–508 (1990). MR 1069255 (91m:22013)

    Google Scholar 

  53. P.E.T. Jorgensen, Integral representations for locally defined positive definite functions on Lie groups. Int. J. Math. 2 (3), 257–286 (1991). MR 1104120 (92h:43017)

    Google Scholar 

  54. P.E.T. Jorgensen, The measure of a measurement. J. Math. Phys. 48 (10), 103506, 15 (2007). MR 2362879 (2008i:81011)

    Google Scholar 

  55. P.E.T. Jorgensen, A.M. Paolucci, q-frames and Bessel functions. Numer. Funct. Anal. Optim. 33 (7–9), 1063–1069 (2012). MR 2966144

    Google Scholar 

  56. P.E.T. Jorgensen, E.P.J. Pearse, A discrete Gauss-Green identity for unbounded Laplace operators, and the transience of random walks. Isr. J. Math. 196 (1), 113–160 (2013). MR 3096586

    Google Scholar 

  57. P. Jorgensen, S. Pedersen, F. Tian, Translation representations and scattering by two intervals. J. Math. Phys. 53 (5), 053505, 49 (2012). MR 2964262

    Google Scholar 

  58. P.E.T. Jorgensen, S. Pedersen, F. Tian, Momentum operators in two intervals: spectra and phase transition. Compl. Anal. Oper. Theory 7 (6), 1735–1773 (2013). MR 3129890

    Google Scholar 

  59. P. Jorgensen, S. Pedersen, F. Tian, Spectral theory of multiple intervals. Trans. Am. Math. Soc. 367 (3), 1671–1735 (2015). MR 3286496

    Google Scholar 

  60. P. Jorgensen, F. Tian, Unbounded operators, lie algebras, and local representations, in Operator Theory (Springer, Basel, 2014), pp. 1–21

    Google Scholar 

  61. E. Kaniuth, A.T. Lau, Extension and separation properties of positive definite functions on locally compact groups. Trans. Am. Math. Soc. 359 (1), 447–463 (2007) (electronic). MR 2247899 (2007k:43008)

    Google Scholar 

  62. M.G. Krein, H. Langer, Continuation of Hermitian positive definite functions and related questions. Integr. Equ. Oper. Theory 78 (1), 1–69 (2014). MR 3147401

    Google Scholar 

  63. A. Klein, An explicitly solvable model in “Euclidean” field theory: the fixed source. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28, 323–334 (1973/74). MR 0389089 (52 #9920)

    Google Scholar 

  64. A. Koldobsky, Positive definite functions and stable random vectors. Isr. J. Math. 185, 277–292 (2011). MR 2837137 (2012h:60014)

    Google Scholar 

  65. M. Krein, Concerning the resolvents of an Hermitian operator with the deficiency-index (m, m). C. R. (Doklady) Acad. Sci. URSS (N.S.) 52, 651–654 (1946). MR 0018341 (8,277a)

    Google Scholar 

  66. V. Kostrykin, R. Schrader, Statistical ensembles and density of states, in Mathematical Results in Quantum Mechanics (Taxco, 2001). Contemporary Mathematics, vol. 307 (American Mathematical Society, Providence, RI, 2002), pp. 177–208. MR 1946030 (2004g:82007)

    Google Scholar 

  67. S. Kotani, S. Watanabe, Kreĭn’s spectral theory of strings and generalized diffusion processes, in Functional Analysis in Markov Processes (Katata/Kyoto, 1981). Lecture Notes in Mathematics, vol. 923 (Springer, Berlin, New York, 1982), pp. 235–259. MR 661628 (83h:60081)

    Google Scholar 

  68. M.M. Laila, Integral representation of positive definite functions on infinite dimensional spaces. Far East J. Math. Sci. 29 (3), 629–641 (2008). MR 2482547 (2009k:43006)

    Google Scholar 

  69. P.D. Lax, R.S. Phillips, Scattering Theory, 2nd edn. Pure and Applied Mathematics, vol. 26 (Academic, Boston, MA, 1989). With appendices by Cathleen S. Morawetz and Georg Schmidt. MR 1037774 (90k:35005)

    Google Scholar 

  70. H. Maassen, Quantum probability and quantum information theory, in Quantum Information, Computation and Cryptography. Lecture Notes in Physics, vol. 808 (Springer, Berlin, 2010), pp. 65–108. MR 2768446

    Google Scholar 

  71. M.M. Malamud, K. Schmüdgen, Spectral theory of Schrödinger operators with infinitely many point interactions and radial positive definite functions. J. Funct. Anal. 263 (10), 3144–3194 (2012). MR 2973337

    Google Scholar 

  72. D. Mumford, The dawning of the age of stochasticity, in Mathematics: Frontiers and Perspectives (American Mathematical Society, Providence, RI, 2000), pp. 197–218. MR 1754778 (2001e:01004)

    Google Scholar 

  73. E. Nelson, Kernel functions and eigenfunction expansions. Duke Math. J. 25, 15–27 (1957). MR 0091442 (19,969f)

    Google Scholar 

  74. E. Nelson, Analytic vectors. Ann. Math. (2) 70, 572–615 (1959). MR 0107176 (21 #5901)

    Google Scholar 

  75. E. Nelson, Topics in Dynamics. I: Flows. Mathematical Notes (Princeton University Press, Princeton, NJ, 1969). MR 0282379 (43 #8091)

    Google Scholar 

  76. A.E. Nussbaum, Extension of positive definite functions and representation of functions in terms of spherical functions in symmetric spaces of noncompact type of rank 1. Math. Ann. 215, 97–116 (1975). MR 0385473 (52 #6334)

    Google Scholar 

  77. A. Odzijewicz, M. Horowski, Positive kernels and quantization. J. Geom. Phys. 63, 80–98 (2013). MR 2996399

    Google Scholar 

  78. B. Ørsted, Induced representations and a new proof of the imprimitivity theorem. J. Funct. Anal. 31 (3), 355–359 (1979). MR 531137 (80d:22007)

    Google Scholar 

  79. K. Osterwalder, R. Schrader, Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973). MR 0329492 (48 #7834)

    Google Scholar 

  80. K.R. Parthasarathy, An invitation to quantum information theory, in Perspectives in Mathematical Sciences. I. Statistical Science and Interdisciplinary Research, vol. 7 (World Scientific, Hackensack, NJ, 2009), pp. 225–245. MR 2581746 (2011d:81061)

    Google Scholar 

  81. G. Pólya, Remarks on characteristic functions, in Proceedings of First Berkeley Conference on Mathematical Statistics and Probability (1949), pp. 115–123

    Google Scholar 

  82. K.R. Parthasarathy, K. Schmidt, Stable positive definite functions. Trans. Am. Math. Soc. 203, 161–174 (1975). MR 0370681 (51 #6907)

    Google Scholar 

  83. T. Poggio, S. Smale, The mathematics of learning: dealing with data. Not. Am. Math. Soc. 50, 2003 (2003)

    MATH  MathSciNet  Google Scholar 

  84. W. Rudin, The extension problem for positive-definite functions. Ill. J. Math. 7, 532–539 (1963). MR 0151796 (27 #1779)

    Google Scholar 

  85. W. Rudin, An extension theorem for positive-definite functions. Duke Math. J. 37, 49–53 (1970). MR 0254514 (40 #7722)

    Google Scholar 

  86. Z. Sasvári, The extension problem for positive definite functions. A short historical survey, in Operator Theory and Indefinite Inner Product Spaces. Operator Theory: Advances and Applications, vol. 163 (Birkhäuser, Basel, 2006), pp. 365–379. MR 2215871 (2006m:43005)

    Google Scholar 

  87. I.J. Schoenberg, Metric spaces and completely monotone functions. Ann. Math. (2) 39 (4), 811–841 (1938). MR 1503439

    Google Scholar 

  88. I.J. Schoenberg, Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44 (3), 522–536 (1938). MR 1501980

    Google Scholar 

  89. I.J. Schoenberg, Spline interpolation and the higher derivatives. Proc. Natl. Acad. Sci. U.S.A. 51, 24–28 (1964). MR 0160064 (28 #3278)

    Google Scholar 

  90. K. Schmüdgen, On commuting unbounded selfadjoint operators. I. Acta Sci. Math. (Szeged) 47 (1–2), 131–146 (1984). MR 755571 (86b:47045)

    Google Scholar 

  91. K. Schmüdgen, On commuting unbounded selfadjoint operators. III. Manuscripta Math. 54 (1–2), 221–247 (1985). MR 808690 (87h:47061)

    Google Scholar 

  92. K. Schmüdgen, A note on commuting unbounded selfadjoint operators affiliated to properly infinite von Neumann algebras. II. Bull. Lond. Math. Soc. 18 (3), 287–292 (1986). MR 829589 (87g:47079)

    Google Scholar 

  93. K. Schmüdgen, On commuting unbounded selfadjoint operators. IV. Math. Nachr. 125, 83–102 (1986). MR 847352 (88j:47026)

    Google Scholar 

  94. K. Schmüdgen, J. Friedrich, On commuting unbounded selfadjoint operators. II. Integr. Equ. Oper. Theory 7 (6), 815–867 (1984). MR 774726 (86i:47032)

    Google Scholar 

  95. B. Sz.-Nagy, C. Foias, H. Bercovici, L. Kérchy, Harmonic Analysis of Operators on Hilbert Space, enlarged edn. Universitext (Springer, New York, 2010). MR 2760647 (2012b:47001)

    Google Scholar 

  96. S. Smale, D.-X. Zhou, Learning theory estimates via integral operators and their approximations. Constr. Approx. 26 (2), 153–172 (2007). MR 2327597 (2009b:68184)

    Google Scholar 

  97. S. Smale, D.-X. Zhou, Geometry on probability spaces. Constr. Approx. 30 (3), 311–323 (2009). MR 2558684 (2011c:60006)

    Google Scholar 

  98. F. Trèves, Basic Linear Partial Differential Equations (Dover, Mineola, NY, 2006). Reprint of the 1975 original. MR 2301309 (2007k:35004)

    Google Scholar 

  99. J. von Neumann, Über adjungierte Funktionaloperatoren. Ann. Math. (2) 33 (2), 294–310 (1932). MR 1503053

    Google Scholar 

  100. J. von Neumann, Über einen Satz von Herrn M. H. Stone. Ann. Math. (2) 33 (3), 567–573 (1932). MR 1503076

    Google Scholar 

  101. J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik. Ann. Math. (2) 33 (3), 587–642 (1932). MR 1503078

    Google Scholar 

  102. J. Ziegel, Convolution roots and differentiability of isotropic positive definite functions on spheres. Proc. Am. Math. Soc. 142 (6), 2063–2077 (2014). MR 3182025

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jorgensen, P., Pedersen, S., Tian, F. (2016). Introduction. In: Extensions of Positive Definite Functions. Lecture Notes in Mathematics, vol 2160. Springer, Cham. https://doi.org/10.1007/978-3-319-39780-1_1

Download citation

Publish with us

Policies and ethics