Skip to main content

Diagnosis of Cystoid Macular Edema: Imaging

  • Chapter
  • First Online:
Cystoid Macular Edema

Abstract

Early detection of cystoid macula edema (CME) is critical for diagnosis and management. Traditional methods of accessing macular edema include contact and noncontact slit lamp biomicroscopy, indirect ophthalmoscopy, fluorescein angiography (FA), and fundus stereo photography. However the interpretation of their results can be subjective, and subtle changes in retinal thickness in early CME may not be evident.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, et al. Optical coherence tomography of the human retina. Arch Ophthalmol. 1995;113:325–32.

    Article  CAS  PubMed  Google Scholar 

  2. Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report Number 2. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1987;94:761–74

    Google Scholar 

  3. Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch Ophthalmol. 1985;103:1796–806

    Google Scholar 

  4. Baskin DE. Optical coherence tomography in diabetic macular edema. Curr Opin Ophthalmol. 2010;21:172–7.

    Article  PubMed  Google Scholar 

  5. Sakamoto A, Nishijima K, Kita M, Oh H, Tsujikawa A, et al. Association between foveal photoreceptor status and visual acuity after resolution of diabetic macular edema by pars plana vitrectomy. Graefes Arch Clin Exp Ophthalmol. 2009;247:1325–30.

    Article  PubMed  Google Scholar 

  6. Alasil T, Keane PA, Updike JF, Dustin L, Ouyang Y, et al. Relationship between optical coherence tomography retinal parameters and visual acuity in diabetic macular edema. Ophthalmology. 2010;117:2379–86.

    Article  PubMed  Google Scholar 

  7. Forooghian F, Stetson PF, Meyer SA, Chew EY, Wong WT, et al. Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema. Retina. 2010;30:63–70.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Maheshwary AS, Oster SF, Yuson RM, Cheng L, Mojana F, et al. The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema. Am J Ophthalmol. 2010;150(63–67):e61.

    Google Scholar 

  9. Otani T, Yamaguchi Y, Kishi S. Correlation between visual acuity and foveal microstructural changes in diabetic macular edema. Retina. 2010;30:774–80.

    Article  PubMed  Google Scholar 

  10. Shin HJ, Lee SH, Chung H, Kim HC. Association between photoreceptor integrity and visual outcome in diabetic macular edema. Graefes Arch Clin Exp Ophthalmol. 2012;250:61–70.

    Article  PubMed  Google Scholar 

  11. Uji A, Murakami T, Nishijima K, Akagi T, Horii T, et al. Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema. Am J Ophthalmol. 2012;153:710–7, 717.e711.

    Article  PubMed  Google Scholar 

  12. Browning DJ, Fraser CM, Propst BW. The variation in optical coherence tomography-measured macular thickness in diabetic eyes without clinical macular edema. Am J Ophthalmol. 2008;145:889–93.

    Article  PubMed  Google Scholar 

  13. Otani T, Kishi S, Maruyama Y. Patterns of diabetic macular edema with optical coherence tomography. Am J Ophthalmol. 1999;127:688–93.

    Article  CAS  PubMed  Google Scholar 

  14. Kim BY, Smith SD, Kaiser PK. Optical coherence tomographic patterns of diabetic macular edema. Am J Ophthalmol. 2006;142:405–12.

    Article  PubMed  Google Scholar 

  15. Kaiser PK, Riemann CD, Sears JE, Lewis H. Macular traction detachment and diabetic macular edema associated with posterior hyaloidal traction. Am J Ophthalmol. 2001;131:44–9.

    Article  CAS  PubMed  Google Scholar 

  16. Bolz M, Schmidt-Erfurth U, Deak G, Mylonas G, Kriechbaum K, et al. Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology. 2009;116:914–20.

    Article  PubMed  Google Scholar 

  17. Framme C, Schweizer P, Imesch M, Wolf S, Wolf-Schnurrbusch U. Behavior of SD-OCT-detected hyperreflective foci in the retina of anti-VEGF-treated patients with diabetic macular edema. Invest Ophthalmol Vis Sci. 2012;53:5814–8.

    Article  CAS  PubMed  Google Scholar 

  18. Pemp B, Deak G, Prager S, Mitsch C, Lammer J, et al. Distribution of intraretinal exudates in diabetic macular edema during anti-vascular endothelial growth factor therapy observed by spectral domain optical coherence tomography and fundus photography. Retina. 2014;34:2407–15.

    Article  CAS  PubMed  Google Scholar 

  19. De Benedetto U, Sacconi R, Pierro L, Lattanzio R, Bandello F. Optical coherence tomographic hyperreflective foci in early stages of diabetic retinopathy. Retina. 2015;35:449–53.

    Article  PubMed  Google Scholar 

  20. Gelman SK, Freund KB, Shah VP, Sarraf D. The pearl necklace sign: a novel spectral domain optical coherence tomography finding in exudative macular disease. Retina. 2014;34:2088–95.

    Article  PubMed  Google Scholar 

  21. Bolz M, Ritter M, Schneider M, Simader C, Scholda C, et al. A systematic correlation of angiography and high-resolution optical coherence tomography in diabetic macular edema. Ophthalmology. 2009;116:66–72.

    Article  PubMed  Google Scholar 

  22. Horii T, Murakami T, Nishijima K, Sakamoto A, Ota M, et al. Optical coherence tomographic characteristics of microaneurysms in diabetic retinopathy. Am J Ophthalmol. 2010;150:840–8.

    Article  PubMed  Google Scholar 

  23. Lee SN, Chhablani J, Chan CK, Wang H, Barteselli G, et al. Characterization of microaneurysm closure after focal laser photocoagulation in diabetic macular edema. Am J Ophthalmol. 2013;155:905–12.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Diabetic Retinopathy Clinical Research N, Browning DJ, Glassman AR, Aiello LP, Beck RW, et al. Relationship between optical coherence tomography-measured central retinal thickness and visual acuity in diabetic macular edema. Ophthalmology. 2007;114:525–36.

    Article  Google Scholar 

  25. Ito S, Miyamoto N, Ishida K, Kurimoto Y. Association between external limiting membrane status and visual acuity in diabetic macular oedema. Br J Ophthalmol. 2013;97:228–32.

    Article  PubMed  Google Scholar 

  26. Deak GG, Bolz M, Kriechbaum K, Prager S, Mylonas G, et al. Effect of retinal photocoagulation on intraretinal lipid exudates in diabetic macular edema documented by optical coherence tomography. Ophthalmology. 2010;117:773–9.

    Article  PubMed  Google Scholar 

  27. Deak GG, Bolz M, Ritter M, Prager S, Benesch T, et al. A systematic correlation between morphology and functional alterations in diabetic macular edema. Invest Ophthalmol Vis Sci. 2010;51:6710–4.

    Article  PubMed  Google Scholar 

  28. Horii T, Murakami T, Akagi T, Uji A, Ueda-Arakawa N, et al. Optical coherence tomographic reflectivity of cystoid spaces is related to recurrent diabetic macular edema after triamcinolone. Retina. 2015;35:264–71.

    Article  CAS  PubMed  Google Scholar 

  29. Murakami T, Nishijima K, Sakamoto A, Ota M, Horii T, et al. Association of pathomorphology, photoreceptor status, and retinal thickness with visual acuity in diabetic retinopathy. Am J Ophthalmol. 2011;151:310–7.

    Article  PubMed  Google Scholar 

  30. Bonnin S, Tadayoni R, Erginay A, Massin P, Dupas B. Correlation between ganglion cell layer thinning and poor visual function after resolution of diabetic macular edema. Invest Ophthalmol Vis Sci. 2015;56:978–82.

    Article  PubMed  Google Scholar 

  31. Lee DH, Kim JT, Jung DW, Joe SG, Yoon YH. The relationship between foveal ischemia and spectral-domain optical coherence tomography findings in ischemic diabetic macular edema. Invest Ophthalmol Vis Sci. 2013;54:1080–5.

    Article  PubMed  Google Scholar 

  32. Soliman W, Sander B, Hasler PW, Larsen M. Correlation between intraretinal changes in diabetic macular oedema seen in fluorescein angiography and optical coherence tomography. Acta Ophthalmol. 2008;86:34–9.

    Article  PubMed  Google Scholar 

  33. Sun JK, Lin MM, Lammer J, Prager S, Sarangi R, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol. 2014;132:1309–16.

    Article  PubMed  Google Scholar 

  34. Sun JK, Radwan S, Soliman AZ, Lammer J, Lin MM, et al. Neural retinal disorganization as a robust marker of visual acuity in current and resolved diabetic macular edema. Diabetes. 2015.

    Google Scholar 

  35. Lee JY, Chiu SJ, Srinivasan PP, Izatt JA, Toth CA, et al. Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems. Invest Ophthalmol Vis Sci. 2013;54:7595–602.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wilkins GR, Houghton OM, Oldenburg AL. Automated segmentation of intraretinal cystoid fluid in optical coherence tomography. IEEE Trans Biomed Eng. 2012;59:1109–14.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Srinivasan PP, Kim LA, Mettu PS, Cousins SW, Comer GM, et al. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed Opt Express. 2014;5:3568–77.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pelosini L, Hull CC, Boyce JF, McHugh D, Stanford MR, et al. Optical coherence tomography may be used to predict visual acuity in patients with macular edema. Invest Ophthalmol Vis Sci. 2011;52:2741–8.

    Article  PubMed  Google Scholar 

  39. Hidayat AA, Fine BS. Diabetic choroidopathy light and electron microscopic observations of seven cases. Ophthalmology. 1985;92:512–22.

    Article  CAS  PubMed  Google Scholar 

  40. Regatieri CV, Branchini L, Carmody J, Fujimoto JG, Duker JS. Choroidal thickness in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography. Retina. 2012;32:563–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gerendas BS, Waldstein SM, Simader C, Deak G, Hajnajeeb B, et al. Three-dimensional automated choroidal volume assessment on standard spectral-domain optical coherence tomography and correlation with the level of diabetic macular edema. Am J Ophthalmol. 2014;158:1039–48.

    Article  PubMed  Google Scholar 

  42. Adhi M, Brewer E, Waheed NK, Duker JS. Analysis of morphological features and vascular layers of choroid in diabetic retinopathy using spectral-domain optical coherence tomography. JAMA Ophthalmol. 2013;131:1267–74.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kim JT, Lee DH, Joe SG, Kim JG, Yoon YH. Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Invest Ophthalmol Vis Sci. 2013;54:3378–84.

    Article  PubMed  Google Scholar 

  44. Yiu G, Manjunath V, Chiu SJ, Farsiu S, Mahmoud TH. Effect of anti-vascular endothelial growth factor therapy on choroidal thickness in diabetic macular edema. Am J Ophthalmol. 2014;158(745–751):e742.

    Google Scholar 

  45. Rayess N, Rahimy E, Ying GS, Bagheri N, Ho AC, et al. Baseline choroidal thickness as a predictor for response to anti-vascular endothelial growth factor therapy in diabetic macular edema. Am J Ophthalmol. 2015;159(85–91):e81–3.

    Google Scholar 

  46. Schmidt-Erfurth U, Lang GE, Holz FG, Schlingemann RO, Lanzetta P, et al. Three-year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema: the RESTORE extension study. Ophthalmology. 2014;121:1045–53.

    Article  PubMed  Google Scholar 

  47. Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, et al. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology. 2012;119:789–801.

    Article  PubMed  Google Scholar 

  48. Browning DJ, Glassman AR, Aiello LP, Bressler NM, Bressler SB, et al. Optical coherence tomography measurements and analysis methods in optical coherence tomography studies of diabetic macular edema. Ophthalmology. 2008;115:1366–71, 1371.e1361.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bhagat N, Grigorian RA, Tutela A, Zarbin MA. Diabetic macular edema: pathogenesis and treatment. Surv Ophthalmol. 2009;54:1–32.

    Article  PubMed  Google Scholar 

  50. Kang SW, Park CY, Ham DI. The correlation between fluorescein angiographic and optical coherence tomographic features in clinically significant diabetic macular edema. Am J Ophthalmol. 2004;137:313–22.

    Article  PubMed  Google Scholar 

  51. Hee MR, Puliafito CA, Duker JS, Reichel E, Coker JG, et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology. 1998;105:360–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goebel W, Kretzchmar-Gross T. Retinal thickness in diabetic retinopathy: a study using optical coherence tomography (OCT). Retina. 2002;22:759–67.

    Article  PubMed  Google Scholar 

  53. Horii T, Murakami T, Nishijima K, Akagi T, Uji A, et al. Relationship between fluorescein pooling and optical coherence tomographic reflectivity of cystoid spaces in diabetic macular edema. Ophthalmology. 2012;119:1047–55.

    Article  PubMed  Google Scholar 

  54. Frame AJ, Undrill PE, Cree MJ, Olson JA, McHardy KC, et al. A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms. Comput Biol Med. 1998;28:225–38.

    Article  CAS  PubMed  Google Scholar 

  55. Cree MJ, Olson JA, McHardy KC, Sharp PF, Forrester JV. A fully automated comparative microaneurysm digital detection system. Eye (Lond). 1997;11(Pt 5):622–8.

    Article  Google Scholar 

  56. Koprowski R, Teper SJ, Weglarz B, Wylegala E, Krejca M, et al. Fully automatic algorithm for the analysis of vessels in the angiographic image of the eye fundus. Biomed Eng Online. 2012;11:35.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zheng Y, Gandhi JS, Stangos AN, Campa C, Broadbent DM, et al. Automated segmentation of foveal avascular zone in fundus fluorescein angiography. Invest Ophthalmol Vis Sci. 2010;51:3653–9.

    Article  PubMed  Google Scholar 

  58. Phillips RP, Ross PG, Tyska M, Sharp PF, Forrester JV. Detection and quantification of hyperfluorescent leakage by computer analysis of fundus fluorescein angiograms. Graefes Arch Clin Exp Ophthalmol. 1991;229:329–35.

    Article  CAS  PubMed  Google Scholar 

  59. Cree MJ, Olson JA, McHardy KC, Sharp PF, Forrester JV. The preprocessing of retinal images for the detection of fluorescein leakage. Phys Med Biol. 1999;44:293–308.

    Article  CAS  PubMed  Google Scholar 

  60. Chen X, Zhang L, Sohn EH, Lee K, Niemeijer M, et al. Quantification of external limiting membrane disruption caused by diabetic macular edema from SD-OCT. Invest Ophthalmol Vis Sci. 2012;53:8042–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Smith RT, Lee CM, Charles HC, Farber M, Cunha-Vaz JG. Quantification of diabetic macular edema. Arch Ophthalmol. 1987;105:218–22.

    Article  CAS  PubMed  Google Scholar 

  62. Rabbani H, Allingham MJ, Mettu PS, Cousins SW, Farsiu S. Fully Automatic Segmentation of Fluorescein Leakage in Subjects with Diabetic Macular Edema. Invest Ophthalmol Vis Sci. 2015;56:1482–92.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bolz M, Lammer J, Deak G, Pollreisz A, Mitsch C, et al. SAVE: a grading protocol for clinically significant diabetic macular oedema based on optical coherence tomography and fluorescein angiography. Br J Ophthalmol. 2014;98:1612–7.

    Article  PubMed  Google Scholar 

  64. Irvine SR. A newly defined vitreous syndrome following cataract surgery. Am J Ophthalmol. 1953;36:599–619.

    Article  CAS  PubMed  Google Scholar 

  65. Gass JD, Norton EW. Cystoid macular edema and papilledema following cataract extraction. A fluorescein fundoscopic and angiographic study. Arch Ophthalmol. 1966;76:646–61.

    Article  CAS  PubMed  Google Scholar 

  66. Munk MR Automated, software based differentiation of diabetic macular edema from pseudophakic cystoid macular edema using SD-OCT. 2015. IOVS 2015: ARVO E-Abstract 2020.

    Google Scholar 

  67. Neudorfer M, Weinberg A, Loewenstein A, Barak A. Differential optical density of subretinal spaces. Invest Ophthalmol Vis Sci. 2012;53:3104–10.

    Article  PubMed  Google Scholar 

  68. Oh JH, Chuck RS, Do JR, Park CY. Vitreous hyper-reflective dots in optical coherence tomography and cystoid macular edema after uneventful phacoemulsification surgery. PLoS One. 2014;9:e95066.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Saito M, Barbazetto IA, Spaide RF. Intravitreal cellular infiltrate imaged as punctate spots by spectral-domain optical coherence tomography in eyes with posterior segment inflammatory disease. Retina. 2013;33:559–65.

    Article  PubMed  Google Scholar 

  70. Hunter AA, Modjtahedi SP, Long K, Zawadzki R, Chin EK, et al. Improving visual outcomes by preserving outer retina morphology in eyes with resolved pseudophakic cystoid macular edema. J Cataract Refract Surg. 2014;40:626–31.

    Article  PubMed  Google Scholar 

  71. Schubert HD. Cystoid macular edema: the apparent role of mechanical factors. Prog Clin Biol Res. 1989;312:277–91.

    CAS  PubMed  Google Scholar 

  72. Martinez MR, Ophir A. Pseudophakic cystoid macular edema associated with extrafoveal vitreoretinal traction. Open Ophthalmol J. 2011;5:35–41.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Henderson BA, Kim JY, Ament CS, Ferrufino-Ponce ZK, Grabowska A, et al. Clinical pseudophakic cystoid macular edema. Risk factors for development and duration after treatment. J Cataract Refract Surg. 2007;33:1550–8.

    Article  PubMed  Google Scholar 

  74. Huynh TH, Johnson MW. The behavior of surgically repaired idiopathic macular holes in the setting of subsequent cystoid macular edema. Retina. 2007;27:759–63.

    Article  PubMed  Google Scholar 

  75. Odrobina D, LaudaNska-Olszewska I. Choroidal thickness in clinically significant pseudophakic cystoid macular edema. Retina. 2015;35:136–40.

    Article  PubMed  Google Scholar 

  76. Pierru A, Carles M, Gastaud P, Baillif S. Measurement of subfoveal choroidal thickness after cataract surgery in enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55:4967–74.

    Article  PubMed  Google Scholar 

  77. Hayreh SS. Classification of central retinal vein occlusion. Ophthalmology. 1983;90:458–74.

    Article  CAS  PubMed  Google Scholar 

  78. Lima VC, Yeung L, Castro LC, Landa G, Rosen RB. Correlation between spectral domain optical coherence tomography findings and visual outcomes in central retinal vein occlusion. Clin Ophthalmol. 2011;5:299–305.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ota M, Tsujikawa A, Murakami T, Kita M, Miyamoto K, et al. Association between integrity of foveal photoreceptor layer and visual acuity in branch retinal vein occlusion. Br J Ophthalmol. 2007;91:1644–9.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Martinet V, Guigui B, Glacet-Bernard A, Zourdani A, Coscas G, et al. Macular edema in central retinal vein occlusion: correlation between optical coherence tomography, angiography and visual acuity. Int Ophthalmol. 2012;32:369–77.

    Article  PubMed  Google Scholar 

  81. Kim M, Lee JH, Lee SJ. Diabetic papillopathy with macular edema treated with intravitreal ranibizumab. Clin Ophthalmol. 2013;7:2257–60.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hoeh AE, Ruppenstein M, Ach T, Dithmar S. OCT patterns of macular edema and response to bevacizumab therapy in retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2010;248:1567–72.

    Article  CAS  PubMed  Google Scholar 

  83. Ota M, Tsujikawa A, Kita M, Miyamoto K, Sakamoto A, et al. Integrity of foveal photoreceptor layer in central retinal vein occlusion. Retina. 2008;28:1502–8.

    Article  PubMed  Google Scholar 

  84. Murakami T, Tsujikawa A, Ohta M, Miyamoto K, Kita M, et al. Photoreceptor status after resolved macular edema in branch retinal vein occlusion treated with tissue plasminogen activator. Am J Ophthalmol. 2007;143:171–3.

    Article  CAS  PubMed  Google Scholar 

  85. Ota M, Tsujikawa A, Murakami T, Yamaike N, Sakamoto A, et al. Foveal photoreceptor layer in eyes with persistent cystoid macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2008;145:273–80.

    Article  PubMed  Google Scholar 

  86. Tsujikawa A, Sakamoto A, Ota M, Kotera Y, Oh H, et al. Serous retinal detachment associated with retinal vein occlusion. Am J Ophthalmol. 2010;149(291–301):e295.

    Google Scholar 

  87. Marmor MF. Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol. 1999;97:239–49.

    Article  CAS  PubMed  Google Scholar 

  88. Hasegawa T, Masuda N, Ogata N. Highly reflective line in optical coherence tomography images of eyes with macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2015;159(5):925–33.e1.

    Article  PubMed  Google Scholar 

  89. Kang JW, Lee H, Chung H, Kim HC. Correlation between optical coherence tomographic hyperreflective foci and visual outcomes after intravitreal bevacizumab for macular edema in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2014;252:1413–21.

    Article  CAS  PubMed  Google Scholar 

  90. Nishijima K, Murakami T, Hirashima T, Uji A, Akagi T, et al. Hyperreflective foci in outer retina predictive of photoreceptor damage and poor vision after vitrectomy for diabetic macular edema. Retina. 2014;34:732–40.

    Article  PubMed  Google Scholar 

  91. Akagi-Kurashige Y, Tsujikawa A, Oishi A, Ooto S, Yamashiro K, et al. Relationship between retinal morphological findings and visual function in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2012;250:1129–36.

    Article  PubMed  Google Scholar 

  92. Hasegawa T, Ueda T, Okamoto M, Ogata N. Presence of foveal bulge in optical coherence tomographic images in eyes with macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2014;157(390–396):e391.

    Google Scholar 

  93. Yamaike N, Tsujikawa A, Ota M, Sakamoto A, Kotera Y, et al. Three-dimensional imaging of cystoid macular edema in retinal vein occlusion. Ophthalmology. 2008;115(355–362):e352.

    Google Scholar 

  94. Kang HM, Chung EJ, Kim YM, Koh HJ. Spectral-domain optical coherence tomography (SD-OCT) patterns and response to intravitreal bevacizumab therapy in macular edema associated with branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2013;251:501–8.

    Article  CAS  PubMed  Google Scholar 

  95. Shin HJ, Chung H, Kim HC. Association between integrity of foveal photoreceptor layer and visual outcome in retinal vein occlusion. Acta Ophthalmol. 2011;89:e35–40.

    Article  PubMed  Google Scholar 

  96. Haymore JG, Mejico LJ. Retinal vascular occlusion syndromes. Int Ophthalmol Clin. 2009;49:63–79.

    Article  PubMed  Google Scholar 

  97. Chung YK, Shin JA, Park YH. Choroidal volume in branch retinal vein occlusion before and after intravitreal anti-vegf injection. Retina. 2015;35(6):1234–9.

    Article  CAS  PubMed  Google Scholar 

  98. Tsuiki E, Suzuma K, Ueki R, Maekawa Y, Kitaoka T. Enhanced depth imaging optical coherence tomography of the choroid in central retinal vein occlusion. Am J Ophthalmol. 2013;156(543–547):e541.

    Google Scholar 

  99. Mirza RG, Johnson MW, Jampol LM. Optical coherence tomography use in evaluation of the vitreoretinal interface: a review. Surv Ophthalmol. 2007;52:397–421.

    Article  PubMed  Google Scholar 

  100. Wilkins JR, Puliafito CA, Hee MR, Duker JS, Reichel E, et al. Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology. 1996;103:2142–51.

    Article  CAS  PubMed  Google Scholar 

  101. Sebag J. Oval defect in detached posterior hyaloid membrane in idiopathic preretinal macular fibrosis. Am J Ophthalmol. 1995;119:814–5.

    Article  CAS  PubMed  Google Scholar 

  102. Kishi S, Shimizu K. Oval defect in detached posterior hyaloid membrane in idiopathic preretinal macular fibrosis. Am J Ophthalmol. 1994;118:451–6.

    Article  CAS  PubMed  Google Scholar 

  103. Johnson MW. Perifoveal vitreous detachment and its macular complications. Trans Am Ophthalmol Soc. 2005;103:537–67.

    PubMed  PubMed Central  Google Scholar 

  104. Jaffe NS. Vitreous traction at the posterior pole of the fundus due to alterations in the vitreous posterior. Trans Am Acad Ophthalmol Otolaryngol. 1967;71:642–52.

    CAS  PubMed  Google Scholar 

  105. Gandorfer A, Benz MS, Haller JA, Stalmans P, Pakola SJ, et al. Association between anatomical resolution and functional outcomes in the mivi-trust studies using ocriplasmin to treat symptomatic vitreomacular adhesion/vitreomacular traction, including when associated with macular hole. Retina. 2015;35(6):1151–7.

    Article  PubMed  Google Scholar 

  106. Chang LK, Fine HF, Spaide RF, Koizumi H, Grossniklaus HE. Ultrastructural correlation of spectral-domain optical coherence tomographic findings in vitreomacular traction syndrome. Am J Ophthalmol. 2008;146:121–7.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Koizumi H, Spaide RF, Fisher YL, Freund KB, Klancnik Jr JM, et al. Three-dimensional evaluation of vitreomacular traction and epiretinal membrane using spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;145:509–17.

    Article  PubMed  Google Scholar 

  108. Sonmez K, Capone Jr A, Trese MT, Williams GA. Vitreomacular traction syndrome: impact of anatomical configuration on anatomical and visual outcomes. Retina. 2008;28:1207–14.

    Article  PubMed  Google Scholar 

  109. Yamada N, Kishi S. Tomographic features and surgical outcomes of vitreomacular traction syndrome. Am J Ophthalmol. 2005;139:112–7.

    Article  PubMed  Google Scholar 

  110. Hassenstein A, Bialasiewicz AA, Richard G. Optical coherence tomography in uveitis patients. Am J Ophthalmol. 2000;130:669–70.

    Article  CAS  PubMed  Google Scholar 

  111. Markomichelakis NN, Halkiadakis I, Pantelia E, Peponis V, Patelis A, et al. Patterns of macular edema in patients with uveitis: qualitative and quantitative assessment using optical coherence tomography. Ophthalmology. 2004;111:946–53.

    Article  PubMed  Google Scholar 

  112. Iannetti L, Accorinti M, Liverani M, Caggiano C, Abdulaziz R, et al. Optical coherence tomography for classification and clinical evaluation of macular edema in patients with uveitis. Ocul Immunol Inflamm. 2008;16:155–60.

    Article  PubMed  Google Scholar 

  113. Estafanous MF, Lowder CY, Kaiser PK. Patterns of macular edema in uveitis patients. Ophthalmology. 2005;112:360; author reply 360–1.

    Article  PubMed  Google Scholar 

  114. Sivaprasad S, Ikeji F, Xing W, Lightman S. Tomographic assessment of therapeutic response to uveitic macular oedema. Clin Experiment Ophthalmol. 2007;35:719–23.

    Article  PubMed  Google Scholar 

  115. Castellano CG, Stinnett SS, Mettu PS, McCallum RM, Jaffe GJ. Retinal thickening in iridocyclitis. Am J Ophthalmol. 2009;148:341–9.

    Article  PubMed  Google Scholar 

  116. Moreno-Arrones JP, Gorrono-Echebarria MB, Teus-Guezala MA. Macular thickening in acute anterior uveitis with a 6-month remission period. Can J Ophthalmol. 2010;45:91–2.

    Article  PubMed  Google Scholar 

  117. Al-Mezaine HS, Al-Muammar A, Kangave D, Abu El-Asrar AM. Clinical and optical coherence tomographic findings and outcome of treatment in patients with presumed tuberculous uveitis. Int Ophthalmol. 2008;28:413–23.

    Article  PubMed  Google Scholar 

  118. Iannetti L, Spinucci G, Abbouda A, De Geronimo D, Tortorella P, et al. Spectral-domain optical coherence tomography in uveitic macular edema: morphological features and prognostic factors. Ophthalmologica. 2012;228:13–8.

    Article  PubMed  Google Scholar 

  119. Roesel M, Heimes B, Heinz C, Henschel A, Spital G, et al. Comparison of retinal thickness and fundus-related microperimetry with visual acuity in uveitic macular oedema. Acta Ophthalmol. 2011;89:533–7.

    Article  PubMed  Google Scholar 

  120. Belair ML, Kim SJ, Thorne JE, Dunn JP, Kedhar SR, et al. Incidence of cystoid macular edema after cataract surgery in patients with and without uveitis using optical coherence tomography. Am J Ophthalmol. 2009;148(128–135):e122.

    Google Scholar 

  121. Faia LJ, Sen HN, Li Z, Yeh S, Wroblewski KJ, et al. Treatment of inflammatory macular edema with humanized anti-CD11a antibody therapy. Invest Ophthalmol Vis Sci. 2011;52:6919–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Androudi S, Tsironi E, Kalogeropoulos C, Theodoridou A, Brazitikos P. Intravitreal adalimumab for refractory uveitis-related macular edema. Ophthalmology. 2010;117:1612–6.

    Article  PubMed  Google Scholar 

  123. Lehpamer B, Moshier E, Goldberg N, Ackert J, Godbold J, et al. Subretinal fluid in uveitic macular edema: effect on vision and response to therapy. Am J Ophthalmol. 2013;155:143–9.

    Article  PubMed  Google Scholar 

  124. Markomichelakis NN, Halkiadakis I, Pantelia E, Georgalas I, Chrysanthi K, et al. Course of macular edema in uveitis under medical treatment. Ocul Immunol Inflamm. 2007;15:71–9.

    Article  PubMed  Google Scholar 

  125. Munk MR, Kiss CG, Ekmekcioglu C, Huf W, Sulzbacher F, et al. Influence of orthostasis and daytime on retinal thickness in uveitis-associated cystoid macular edema. Curr Eye Res. 2014;39:395–402.

    Article  CAS  PubMed  Google Scholar 

  126. Ducos de Lahitte G, Terrada C, Tran TH, Cassoux N, LeHoang P, et al. Maculopathy in uveitis of juvenile idiopathic arthritis: an optical coherence tomography study. Br J Ophthalmol. 2008;92:64–9.

    Article  CAS  PubMed  Google Scholar 

  127. Kalinina Ayuso V, Makhotkina N, van Tent-Hoeve M, de Groot-Mijnes JD, Wulffraat NM, et al. Pathogenesis of juvenile idiopathic arthritis associated uveitis: the known and unknown. Surv Ophthalmol. 2014;59:517–31.

    Article  PubMed  Google Scholar 

  128. de Boer J, Steijaert A, van den Bor R, Stellato R, Ossewaarde-van Norel J. Development of macular edema and impact on visual acuity in uveitis associated with juvenile idiopathic arthritis. Ocul Immunol Inflamm. 2015;23:67–73.

    Article  PubMed  Google Scholar 

  129. Sugar EA, Jabs DA, Altaweel MM, Lightman S, Acharya N, et al. Identifying a clinically meaningful threshold for change in uveitic macular edema evaluated by optical coherence tomography. Am J Ophthalmol. 2011;152(1044–1052):e1045.

    Google Scholar 

  130. Kempen JH, Sugar EA, Jaffe GJ, Acharya NR, Dunn JP, et al. Fluorescein angiography versus optical coherence tomography for diagnosis of uveitic macular edema. Ophthalmology. 2013;120:1852–9.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Domalpally A, Altaweel MM, Kempen JH, Myers D, Davis JL, et al. Optical coherence tomography evaluation in the Multicenter Uveitis Steroid Treatment (MUST) trial. Ocul Immunol Inflamm. 2012;20:443–7.

    Article  PubMed  Google Scholar 

  132. Payne JF, Bruce BB, Lee LB, Yeh S. Logarithmic transformation of spectral-domain optical coherence tomography data in uveitis-associated macular edema. Invest Ophthalmol Vis Sci. 2011;52:8939–43.

    Article  PubMed  Google Scholar 

  133. Brar M, Yuson R, Kozak I, Mojana F, Cheng L, et al. Correlation between morphologic features on spectral-domain optical coherence tomography and angiographic leakage patterns in macular edema. Retina. 2010;30:383–9.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Tran TH, de Smet MD, Bodaghi B, Fardeau C, Cassoux N, et al. Uveitic macular oedema: correlation between optical coherence tomography patterns with visual acuity and fluorescein angiography. Br J Ophthalmol. 2008;92:922–7.

    Article  CAS  PubMed  Google Scholar 

  135. De Laey JJ. Fluorescein angiography in posterior uveitis. Int Ophthalmol Clin. 1995;35:33–58.

    Article  PubMed  Google Scholar 

  136. Miyake K. Prevention of cystoid macular edema after lens extraction by topical indomethacin (I). A preliminary report. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1977;203:81–8.

    Article  CAS  PubMed  Google Scholar 

  137. Munk MR, Sacu S, Huf W, Sulzbacher F, Mittermuller TJ, et al. Differential diagnosis of macular edema of different pathophysiologic origins by spectral domain optical coherence tomography. Retina. 2014;34:2218–32.

    Article  PubMed  Google Scholar 

  138. Ogino K, Murakami T, Tsujikawa A, Miyamoto K, Sakamoto A, et al. Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion. Retina. 2012;32:77–85.

    Article  PubMed  Google Scholar 

  139. Tso MO. Animal modeling of cystoid macular edema. Surv Ophthalmol. 1984;28(Suppl):512–9.

    Article  PubMed  Google Scholar 

  140. Ossewaarde-van Norel J, Berg EM, Sijssens KM, Rothova A. Subfoveal serous retinal detachment in patients with uveitic macular edema. Arch Ophthalmol. 2011;129:158–62.

    Article  PubMed  Google Scholar 

  141. Nakayama M, Keino H, Okada AA, Watanabe T, Taki W, et al. Enhanced depth imaging optical coherence tomography of the choroid in Vogt-Koyanagi-Harada disease. Retina. 2012;32:2061–9.

    Article  PubMed  Google Scholar 

  142. Kim M, Kim H, Kwon HJ, Kim SS, Koh HJ, et al. Choroidal thickness in Behcet's uveitis: an enhanced depth imaging-optical coherence tomography and its association with angiographic changes. Invest Ophthalmol Vis Sci. 2013;54:6033–9.

    Article  PubMed  Google Scholar 

  143. Gehl Z, Kulcsar K, Kiss HJ, Nemeth J, Maneschg OA, et al. Retinal and choroidal thickness measurements using spectral domain optical coherence tomography in anterior and intermediate uveitis. BMC Ophthalmol. 2014;14:103.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Moroi SE, Gottfredsdottir MS, Schteingart MT, Elner SG, Lee CM, et al. Cystoid macular edema associated with latanoprost therapy in a case series of patients with glaucoma and ocular hypertension. Ophthalmology. 1999;106:1024–9.

    Article  CAS  PubMed  Google Scholar 

  145. Telander DG, Sarraf D. Cystoid macular edema with docetaxel chemotherapy and the fluid retention syndrome. Semin Ophthalmol. 2007;22:151–3.

    Article  PubMed  Google Scholar 

  146. Modi D, Dubovy SR. Non-leaking cystoid maculopathy secondary to systemic paclitaxel. Ophthalmic Surg Lasers Imaging Retina. 2013;44:183–6.

    Article  PubMed  Google Scholar 

  147. Koo NK, Kim YC. A case of paclitaxel-induced maculopathy treated with methazolamide. Korean J Ophthalmol. 2012;26:394–7.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Joshi MM, Garretson BR. Paclitaxel maculopathy. Arch Ophthalmol. 2007;125:709–10.

    Article  PubMed  Google Scholar 

  149. Ryan Jr EH, Han DP, Ramsay RC, Cantrill HL, Bennett SR, et al. Diabetic macular edema associated with glitazone use. Retina. 2006;26:562–70.

    Article  PubMed  Google Scholar 

  150. Schmitz-Valckenberg S, Holz FG, Bird AC, Spaide RF. Fundus autofluorescence imaging: review and perspectives. Retina. 2008;28:385–409.

    Article  PubMed  Google Scholar 

  151. Trieschmann M, van Kuijk FJ, Alexander R, Hermans P, Luthert P, et al. Macular pigment in the human retina: histological evaluation of localization and distribution. Eye (Lond). 2008;22:132–7.

    Article  CAS  Google Scholar 

  152. Meleth AD, Sen HN. Use of fundus autofluorescence in the diagnosis and management of uveitis. Int Ophthalmol Clin. 2012;52:45–54.

    Article  PubMed  PubMed Central  Google Scholar 

  153. McBain VA, Forrester JV, Lois N. Fundus autofluorescence in the diagnosis of cystoid macular oedema. Br J Ophthalmol. 2008;92:946–9.

    Article  CAS  PubMed  Google Scholar 

  154. Bessho K, Gomi F, Harino S, Sawa M, Sayanagi K, et al. Macular autofluorescence in eyes with cystoid macula edema, detected with 488 nm-excitation but not with 580 nm-excitation. Graefes Arch Clin Exp Ophthalmol. 2009;247:729–34.

    Article  PubMed  Google Scholar 

  155. Pece A, Isola V, Holz F, Milani P, Brancato R. Autofluorescence imaging of cystoid macular edema in diabetic retinopathy. Ophthalmologica. 2010;224:230–5.

    Article  PubMed  Google Scholar 

  156. Chung H, Park B, Shin HJ, Kim HC. Correlation of fundus autofluorescence with spectral-domain optical coherence tomography and vision in diabetic macular edema. Ophthalmology. 2012;119:1056–65.

    Article  PubMed  Google Scholar 

  157. Vujosevic S, Casciano M, Pilotto E, Boccassini B, Varano M, et al. Diabetic macular edema: fundus autofluorescence and functional correlations. Invest Ophthalmol Vis Sci. 2011;52:442–8.

    Article  PubMed  Google Scholar 

  158. Roesel M, Henschel A, Heinz C, Dietzel M, Spital G, et al. Fundus autofluorescence and spectral domain optical coherence tomography in uveitic macular edema. Graefes Arch Clin Exp Ophthalmol. 2009;247:1685–9.

    Article  PubMed  Google Scholar 

  159. Bindewald A, Jorzik JJ, Roth F, Holz FG. cSLO digital fundus autofluorescence imaging. Ophthalmologe. 2005;102:259–64.

    Article  CAS  PubMed  Google Scholar 

  160. Shen Y, Xu X, Liu K. Fundus autofluorescence characteristics in patients with diabetic macular edema. Chin Med J (Engl). 2014;127:1423–8.

    Google Scholar 

  161. Lumbroso B, Huang D, Romano A, Rispoli M, Coscas G. Clinical en face OCT atlas. New Delhi: Jaypee Brother Medical Publishers; 2013.

    Book  Google Scholar 

  162. Wanek J, Zelkha R, Lim JI, Shahidi M. Feasibility of a method for en face imaging of photoreceptor cell integrity. Am J Ophthalmol. 2011;152(807–814):e801.

    Google Scholar 

  163. Ohkoshi K, Tsuiki E, Kitaoka T, Yamaguchi T. Visualization of subthreshold micropulse diode laser photocoagulation by scanning laser ophthalmoscopy in the retro mode. Am J Ophthalmol. 2010;150:856–62.

    Article  PubMed  Google Scholar 

  164. Yamamoto M, Mizukami S, Tsujikawa A, Miyoshi N, Yoshimura N. Visualization of cystoid macular oedema using a scanning laser ophthalmoscope in the retro-mode. Clin Experiment Ophthalmol. 2010;38:27–36.

    Article  PubMed  Google Scholar 

  165. Michaely R, Bachmann AH, Villiger ML, Blatter C, Lasser T, et al. Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography. J Biomed Opt. 2007;12:041213.

    Article  PubMed  Google Scholar 

  166. Yasuno Y, Hong Y, Makita S, Yamanari M, Akiba M, et al. In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. Opt Express. 2007;15:6121–39.

    Article  PubMed  Google Scholar 

  167. Povazay B, Hermann B, Unterhuber A, Hofer B, Sattmann H, et al. Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients. J Biomed Opt. 2007;12:041211.

    Article  PubMed  Google Scholar 

  168. Gocho K, Kikuchi S, Kabuto T, Kameya S, Shinoda K, et al. High-resolution en face images of microcystic macular edema in patients with autosomal dominant optic atrophy. Biomed Res Int. 2013;2013:676803.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Akagi-Kurashige Y, Tsujikawa A, Ooto S, Makiyama Y, Muraoka Y, et al. Retinal microstructural changes in eyes with resolved branch retinal vein occlusion: an adaptive optics scanning laser ophthalmoscopy study. Am J Ophthalmol. 2014;157(1239–1249):e1233.

    Google Scholar 

  170. Scholl S, Kirchhof J, Augustin AJ. Pathophysiology of macular edema. Ophthalmologica. 2010;224 Suppl 1:8–15.

    Article  CAS  PubMed  Google Scholar 

  171. Augustin A, Loewenstein A, Kuppermann BD. Macular edema. General pathophysiology. Dev Ophthalmol. 2010;47:10–26.

    Article  PubMed  Google Scholar 

  172. Reichenbach A, Wurm A, Pannicke T, Iandiev I, Wiedemann P, et al. Muller cells as players in retinal degeneration and edema. Graefes Arch Clin Exp Ophthalmol. 2007;245:627–36.

    Article  PubMed  Google Scholar 

  173. Wang RK. Optical microangiography: a label free 3D imaging technology to visualize and quantify blood circulations within tissue beds in vivo. IEEE J Sel Top Quantum Electron. 2010;16:545–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kim DY, Fingler J, Werner JS, Schwartz DM, Fraser SE, et al. In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography. Biomed Opt Express. 2011;2:1504–13.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y. Optical coherence angiography. Opt Express. 2006;14:7821–40.

    Article  PubMed  Google Scholar 

  176. Xu J, Han S, Balaratnasingam C, Mammo Z, Wong KS, et al. Retinal angiography with real-time speckle variance optical coherence tomography. Br J Ophthalmol. 2015;99(10):1315–9.

    Article  PubMed  Google Scholar 

  177. Hendargo HC, Estrada R, Chiu SJ, Tomasi C, Farsiu S, et al. Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography. Biomed Opt Express. 2013;4:803–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hong Y, Makita S, Yamanari M, Miura M, Kim S, et al. Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography. Opt Express. 2007;15:7538–50.

    Article  PubMed  Google Scholar 

  179. Vujosevic S, Trento B, Bottega E, Urban F, Pilotto E, et al. Scanning laser ophthalmoscopy in the retromode in diabetic macular oedema. Acta Ophthalmol. 2012;90:e374–80.

    Article  PubMed  Google Scholar 

  180. Vujosevic S, Pucci P, Daniele AR, Convento E, Pilotto E, et al. Extent of diabetic macular edema by scanning laser ophthalmoscope in the retromode and its functional correlations. Retina. 2014;34:2416–22.

    Article  PubMed  Google Scholar 

  181. Murakami T, Nishijima K, Sakamoto A, Ota M, Horii T, et al. Foveal cystoid spaces are associated with enlarged foveal avascular zone and microaneurysms in diabetic macular edema. Ophthalmology. 2011;118:359–67.

    Article  PubMed  Google Scholar 

  182. Maldonado RS, O'Connell R, Ascher SB, Sarin N, Freedman SF, et al. Spectral-domain optical coherence tomographic assessment of severity of cystoid macular edema in retinopathy of prematurity. Arch Ophthalmol. 2012;130:569–78.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Rothman AL, Tran-Viet D, Gustafson KE, Goldstein RF, Maguire MG, et al. Poorer neurodevelopmental outcomes associated with cystoid macular edema identified in preterm infants in the intensive care nursery. Ophthalmology. 2015;122:610–9.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest Disclosures

Dr. Jaffe is a consultant to Heidelberg Engineering. Dr. Grewal does not have any financial or proprietary interests in this manuscript. Grant Support: Heed Ophthalmic Foundation, San Francisco, CA (DSG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn J. Jaffe MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grewal, D.S., Jaffe, G.J. (2017). Diagnosis of Cystoid Macular Edema: Imaging. In: Schaal, S., Kaplan, H. (eds) Cystoid Macular Edema. Springer, Cham. https://doi.org/10.1007/978-3-319-39766-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39766-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39764-1

  • Online ISBN: 978-3-319-39766-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics