Skip to main content

Electrospun Polymer Nanofiber Separators and Electrolyte Membranes for Energy Storage and Conversion Applications

  • Chapter
  • First Online:
Nano-size Polymers

Abstract

Electrospinning is a versatile approach to obtain one-dimensional nanofiber-based composites which possess high surface area to volume ratio, large porosity, and fully interconnected pore structures for high electrolyte uptake and easy transport of ions. Therefore, this chapter reviews the recent progresses in preparation of polymer nanofiber separators and electrolyte membranes, including single-component, multi-component polymer nanofibers, and inorganic nanofiller/polymer composite nanofibers, which have been successfully achieved by conventional electrospinning, coaxial electrospinning, and surface modification methods. Moreover, physical and electrochemical properties of these electrospun nanofiber-based separators and electrolyte membranes have been thoroughly investigated for energy storage and conversion applications in high-performance lithium-ion batteries and proton exchange membrane fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rolison DR, Long JW, Lytle JC, Fischer AE, Rhodes CP, McEvoy TM, Bourg ME, Lubers AM (2009) Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem Soc Rev 38(1):226–252

    Article  Google Scholar 

  2. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887

    Article  Google Scholar 

  3. Pintauro PN (2015) Perspectives on membranes and separators for electrochemical energy conversion and storage devices. Polym Rev 55(2):201–207

    Article  Google Scholar 

  4. Choi NS, Chen ZH, Freunberger SA, Ji X, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51(40):9994–10024

    Article  Google Scholar 

  5. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946

    Article  Google Scholar 

  6. Lee KT, Cho J (2011) Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 6(1):28–41

    Article  Google Scholar 

  7. Zhang XW, Ji L, Toprakci O, Liang YZ, Alcoutlabi M (2011) Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries. Polym Rev 51(3):239–264

    Article  Google Scholar 

  8. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35(2–3):151–160

    Article  Google Scholar 

  9. Tan SH, Inai R, Kotaki M, Ramakrishna S (2005) Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 46(16):6128–6134

    Article  Google Scholar 

  10. Huang YP, Miao YE, Liu TX (2014) Electrospun fibrous membranes for efficient heavy metal removal. J Appl Polym Sci 131(19)

    Google Scholar 

  11. Aravindan V, Sundaramurthy J, Kumar PS, Shubha N, Ling WC, Ramakrishna S, Madhavi S (2013) A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators. Nanoscale 5(21):10636–10645

    Article  Google Scholar 

  12. Dong Z, Kennedy SJ, Wu Y (2011) Electrospinning materials for energy-related applications and devices. J Power Sources 196(11):4886–4904

    Article  Google Scholar 

  13. Aravindan V, Sundaramurthy J, Suresh Kumar P, Ramakrishna Y-S, Ramakrishna S, Madhavi S (2015) Electrospun nanofibers: a prospective electro-active material for constructing high performance Li-ion batteries. Chem Commun 51(12):2225–2234

    Article  Google Scholar 

  14. Cavaliere S, Subianto S, Savych I, Jones DJ, Roziere J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4(12):4761–4785

    Article  Google Scholar 

  15. Kalluri S, Seng KH, Guo ZP, Liu HK, Dou SX (2013) Electrospun lithium metal oxide cathode materials for lithium-ion batteries. RSC Adv 3(48):25576–25601

    Article  Google Scholar 

  16. Patil A, Patil V, Wook Shin D, Choi JW, Paik DS, Yoon SJ (2008) Issue and challenges facing rechargeable thin film lithium batteries. Mater Res Bull 43(8–9):1913–1942

    Article  Google Scholar 

  17. Djian D, Alloin F, Martinet S, Lignier H, Sanchez JY (2007) Lithium-ion batteries with high charge rate capacity: influence of the porous separator. J Power Sources 172(1):416–421

    Article  Google Scholar 

  18. Venugopal G, Moore J, Howard J, Pendalwar S (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 77(1):34–41

    Article  Google Scholar 

  19. Liang YZ, Ji LW, Guo BK, Lin Z, Yao YF, Li Y, Alcoutlabi M, Qiu YP, Zhang XW (2011) Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators. J Power Sources 196(1):436–441

    Article  Google Scholar 

  20. Raghavan P, Choi J-W, Ahn J-H, Cheruvally G, Chauhan GS, Ahn H-J, Nah C (2008) Novel electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-in situ SiO2 composite membrane-based polymer electrolyte for lithium batteries. J Power Sources 184(2):437–443

    Article  Google Scholar 

  21. Jung HR, Ju DH, Lee WJ, Zhang XW, Kotek R (2009) Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochim Acta 54(13):3630–3637

    Article  Google Scholar 

  22. Choi SW, Jo SM, Lee WS, Kim YR (2003) An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv Mater 15(23):2027–2032

    Article  Google Scholar 

  23. Li X, Cheruvally G, Kim JK, Choi JW, Ahn JH, Kim KW, Ahn HJ (2007) Polymer electrolytes based on an electrospun poly(vinylidene fluoride-co-hexafluoropropylene) membrane for lithium batteries. J Power Sources 167(2):491–498

    Article  Google Scholar 

  24. Raghavan P, Zhao X, Manuel J, Shin C, Heo MY, Ahn JH, Ryu HS, Ahn HJ, Noh JP, Cho GB (2010) Electrochemical studies on polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) membranes prepared by electrospinning and phase inversion-A comparative study. Mater Res Bull 45(3):362–366

    Article  Google Scholar 

  25. Kim HS, Shin JH, Doh CH, Moon SI, Kim SP (2002) Preparation and electrochemical performance of gel polymer electrolytes using tri(ethylene glycol) dimethacrylate. J Power Sources 112(2):469–476

    Article  Google Scholar 

  26. Kader MA, Kwak SK, Kang SL, Ahn JH, Nah C (2008) Novel microporous poly(vinylidene fluoride)-graft-poly(tert-butyl acrylate) electrolytes for secondary lithium batteries. Polym Int 57(11):1199–1205

    Article  Google Scholar 

  27. Liang YZ, Cheng SC, Zhao JM, Zhang CH, Sun SY, Zhou NT, Qiu YP, Zhang XW (2013) Heat treatment of electrospun Polyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries. J Power Sources 240:204–211

    Article  Google Scholar 

  28. Bansal D, Meyer B, Salomon M (2008) Gelled membranes for Li and Li-ion batteries prepared by electrospinning. J Power Sources 178(2):848–851

    Article  Google Scholar 

  29. Kritzer P (2006) Nonwoven support material for improved separators in Li–polymer batteries. J Power Sources 161(2):1335–1340

    Article  Google Scholar 

  30. Alcoutlabi M, Lee H, Watson J, Zhang XW (2013) Preparation and properties of nanofiber-coated composite membranes as battery separators via electrospinning. J Mater Sci 48(6):2690–2700

    Article  Google Scholar 

  31. Lee H, Alcoutlabi M, Watson JV, Zhang XW (2013) Electrospun nanofiber-coated separator membranes for lithium-ion rechargeable batteries. J Appl Polym Sci 129(4):1939–1951

    Article  Google Scholar 

  32. Lee H, Alcoutlabi M, Toprakci O, Xu G, Watson J, Zhang XW (2014) Preparation and characterization of electrospun nanofiber-coated membrane separators for lithium-ion batteries. J Solid State Electrochem 18(9):2451–2458

    Article  Google Scholar 

  33. Huang BY, Wang ZX, Li GB, Huang H, Xue RJ, Chen LQ, Wang F (1996) Lithium ion conduction in polymer electrolytes based on PAN. Solid State Ionics 85(1–4):79–84

    Article  Google Scholar 

  34. Yang CR, Perng JT, Wang YY, Wan CC (1996) Conductive behaviour of lithium ions in polyacrylonitrile. J Power Sources 62(1):89–93

    Article  Google Scholar 

  35. Cho TH, Sakai T, Tanase S, Kimura K, Kondo Y, Tarao T, Tanaka M (2007) Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery. Electrochem Solid-State Lett 10(7):A159–A162

    Article  Google Scholar 

  36. Carol P, Ramakrishnan P, John B, Cheruvally G (2011) Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries. J Power Sources 196(23):10156–10162

    Article  Google Scholar 

  37. Chen D, Liu TX, Zhou XP, Tjiu WW, Hou HQ (2009) Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. J Phys Chem B 113(29):9741–9748

    Article  Google Scholar 

  38. Chen D, Miao YE, Liu TX (2013) Electrically conductive polyaniline/polyimide nanofiber membranes prepared via a combination of electrospinning and subsequent in situ polymerization growth. ACS Appl Mater Interfaces 5(4):1206–1212

    Article  Google Scholar 

  39. Miao YE, Zhu GN, Hou HQ, Xia YY, Liu TX (2013) Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sources 226:82–86

    Article  Google Scholar 

  40. Wang QJ, Song WL, Wang LN, Song Y, Shi Q, Fan LZ (2014) Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries. Electrochim Acta 132:538–544

    Article  Google Scholar 

  41. Wang QJ, Jian ZX, Song WL, Zhang SC, Fan LZ (2014) Facile fabrication of safe and robust polyimide fibrous membrane based on triethylene glycol diacetate-2-propenoic acid butyl ester gel electrolytes for lithium-ion batteries. Electrochim Acta 149:176–185

    Article  Google Scholar 

  42. Qi W, Lu C, Chen P, Han L, Yu Q, Xu RQ (2012) Electrochemical performances and thermal properties of electrospun Poly(phthalazinone ether sulfone ketone) membrane for lithium-ion battery. Mater Lett 66(1):239–241

    Article  Google Scholar 

  43. Wu N, Cao Q, Wang XY, Li XY, Deng HY (2011) A novel high-performance gel polymer electrolyte membrane basing on electrospinning technique for lithium rechargeable batteries. J Power Sources 196(20):8638–8643

    Article  Google Scholar 

  44. Wu N, Cao Q, Wang XY, Chen QQ (2011) Study of a novel porous gel polymer electrolyte based on TPU/PVdF by electrospinning technique. Solid State Ionics 203(1):42–46

    Article  Google Scholar 

  45. Wu N, Jing B, Cao Q, Wang XY, Kuang H, Wang Q (2012) A novel electrospun TPU/PVdF porous fibrous polymer electrolyte for lithium ion batteries. J Appl Polym Sci 125(4):2556–2563

    Article  Google Scholar 

  46. Zhou L, Cao Q, Jing B, Wang XY, Tang XL, Wu N (2014) Study of a novel porous gel polymer electrolyte based on thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) by electrospinning technique. J Power Sources 263:118–124

    Article  Google Scholar 

  47. Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohyd Polym 82(2):329–336

    Article  Google Scholar 

  48. Lalia B, Samad Y, Hashaikeh R (2013) Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: electrochemical and thermomechanical performance. J Solid State Electrochem 17(3):575–581

    Article  Google Scholar 

  49. Yvonne T, Zhang CY, Zhang CH, Omollo E, Ncube S (2014) Properties of electrospun PVDF/PMMA/CA membrane as lithium based battery separator. Cellulose 21(4):2811–2818

    Article  Google Scholar 

  50. Prasanth R, Shubha N, Hng HH, Srinivasan M (2014) Effect of poly(ethylene oxide) on ionic conductivity and electrochemical properties of poly(vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. J Power Sources 245:283–291

    Article  Google Scholar 

  51. Prasanth R, Aravindan V, Srinivasan M (2012) Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly(methyl methacrylate)/polystyrene for lithium ion batteries-Preparation and electrochemical characterization. J Power Sources 202:299–307

    Article  Google Scholar 

  52. Jung HR, Lee WJ (2011) Electrochemical characteristics of electrospun poly(methyl methacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery. Electrochim Acta 58:674–680

    Article  Google Scholar 

  53. Samad YA, Asghar A, Hashaikeh R (2013) Electrospun cellulose/PEO fiber mats as a solid polymer electrolytes for Li ion batteries. Renew Energy 56:90–95

    Article  Google Scholar 

  54. Kimura N, Sakumoto T, Mori Y, Wei K, Kim BS, Song KH, Kim IS (2014) Fabrication and characterization of reinforced electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofiber membranes. Compos Sci Technol 92:120–125

    Article  Google Scholar 

  55. Chen D, Wang RY, Tjiu WW, Liu TX (2011) High performance polyimide composite films prepared by homogeneity reinforcement of electrospun nanofibers. Compos Sci Technol 71(13):1556–1562

    Article  Google Scholar 

  56. Miao YE, Yan JJ, Huang YP, Fan W, Liu TX (2015) Electrospun polymer nanofiber membrane electrodes and an electrolyte for highly flexible and foldable all-solid-state supercapacitors. RSC Adv 5(33):26189–26196

    Article  Google Scholar 

  57. Nah C, Jeong KU, Lee YS, Lee SH, Kader MMA, Lee HK, Ahn JH (2013) Polymer electrolyte membranes composed of an electrospun poly(vinylidene fluoride) fibrous mat in a poly(4-vinylpyridine) matrix. Polym Int 62(3):375–381

    Article  Google Scholar 

  58. Chen WY, Liu YB, Ma Y, Liu JZ, Liu XR (2014) Improved performance of PVdF-HFP/PI nanofiber membrane for lithium ion battery separator prepared by a bicomponent cross-electrospinning method. Mater Lett 133:67–70

    Article  Google Scholar 

  59. Liu ZH, Jiang W, Kong QS, Zhang CJ, Han PX, Wang XJ, Yao JH, Cui GL (2013) A core@sheath nanofibrous separator for lithium ion batteries obtained by coaxial electrospinning. Macromol Mater Eng 298(7):806–813

    Article  Google Scholar 

  60. Zhou XH, Yue LP, Zhang JJ, Kong QS, Liu ZH, Yao JH, Cui GL (2013) A core-shell structured polysulfonamide-based composite nonwoven towards high power lithium ion battery separator. J Electrochem Soc 160(9):A1341–A1347

    Article  Google Scholar 

  61. Huang FL, Xu YF, Peng B, Su YF, Jiang F, Hsieh YL, Wei QF (2015) Coaxial electrospun cellulose-core fluoropolymer-shell fibrous membrane from recycled cigarette filter as separator for high performance lithium-ion battery. ACS Sustain Chem Eng 3(5):932–940

    Article  Google Scholar 

  62. Angulakshmi N, Stephan AM (2014) Electrospun trilayer polymeric membranes as separator for lithium-ion batteries. Electrochim Acta 127:167–172

    Article  Google Scholar 

  63. Zhai YY, Wang N, Mao X, Si Y, Yu JY, Al-Deyab SS, El-Newehy M, Ding B (2014) Sandwich-structured PVdF/PMIA/PVdF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries. J Mater Chem A 2(35):14511–14518

    Article  Google Scholar 

  64. Yanilmaz M, Dirican M, Zhang XW (2014) Evaluation of electrospun SiO2/nylon 6,6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochim Acta 133:501–508

    Article  Google Scholar 

  65. Yanilmaz M, Lu Y, Dirican M, Fu K, Zhang XW (2014) Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. J Membrane Sci 456:57–65

    Article  Google Scholar 

  66. Li WL, Xing YJ, Wu YH, Wang JW, Chen LZ, Yang G, Tang BZ (2015) Study the effect of ion-complex on the properties of composite gel polymer electrolyte based on Electrospun PVdF nanofibrous membrane. Electrochim Acta 151:289–296

    Article  Google Scholar 

  67. Zhai YY, Xiao K, Yu JY, Ding B (2015) Fabrication of hierarchical structured SiO2/polyetherimide-polyurethane nanofibrous separators with high performance for lithium ion batteries. Electrochim Acta 154:219–226

    Article  Google Scholar 

  68. Zhang JJ, Yue L, Kong QS, Liu ZH, Zhou XH, Zhang CJ, Pang SP, Wang XJ, Yao JH, Cui GL (2013) A heat-resistant silica nanoparticle enhanced polysulfonamide nonwoven separator for high-performance lithium ion battery. J Electrochem Soc 160(6):A769–A774

    Article  Google Scholar 

  69. Lee J, Lee C-L, Park K, Kim I-D (2014) Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J Power Sources 248:1211–1217

    Article  Google Scholar 

  70. Wootthikanokkhan J, Phiriyawirut M, Pongchumpon O (2014) Effects of electrospinning parameters and nanofiller content on morphology and gel electrolyte properties of composite nanofibers based on La2O3-filled PVDF-HFP. Int J Polym Mater 64(8):416–426

    Article  Google Scholar 

  71. Zaccaria M, Fabiani D, Cannucciari G, Gualandi C, Focarete ML, Arbizzani C, De Giorgio F, Mastragostino M (2015) Effect of silica and tin oxide nanoparticles on properties of nanofibrous electrospun separators. J Electrochem Soc 162(6):A915–A920

    Article  Google Scholar 

  72. Shokrollahi M, Morshed M, Semnani D, Rezaei B (2013) Development of electro-spun poly (vinyl alcohol)/titanium dioxide membrane-based polymer electrolytes for lithium-ion batteries. Int J Polym Mater 63(3):161–171

    Article  Google Scholar 

  73. Zhou L, Wu N, Cao Q, Jing B, Wang XY, Wang Q, Kuang H (2013) A novel electrospun PVDF/PMMA gel polymer electrolyte with in situ TiO2 for Li-ion batteries. Solid State Ionics 249–250:93–97

    Article  Google Scholar 

  74. Hojjati B, Sui R, Charpentier PA (2007) Synthesis of TiO2/PAA nanocomposite by RAFT polymerization. Polymer 48(20):5850–5858

    Article  Google Scholar 

  75. Cui WW, Tang DY, Gong ZL (2013) Electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries. J Power Sources 223:206–213

    Article  Google Scholar 

  76. Chen WY, Liu YB, Ma Y, Yang WX (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). J Power Sources 273:1127–1135

    Article  Google Scholar 

  77. Wu N, Cao Q, Wang XY, Li S, Li XY, Deng HY (2011) In situ ceramic fillers of electrospun thermoplastic polyurethane/poly(vinylidene fluoride) based gel polymer electrolytes for Li-ion batteries. J Power Sources 196(22):9751–9756

    Article  Google Scholar 

  78. Shi BL, He MJ (2008) Lewis acid-base property of P(VDF-co-HFP) measured by inverse gas chromatography. J Appl Polym Sci 107(3):1642–1646

    Article  Google Scholar 

  79. Padmaraj O (2014) Nageswara Rao B, Jena P, Venkateswarlu M, Satyanarayana N. Electrochemical studies of electrospun organic/inorganic hybrid nanocomposite fibrous polymer electrolyte for lithium battery. Polymer 55(5):1136–1142

    Article  Google Scholar 

  80. Padmaraj O, Rao BN, Venkateswarlu M, Satyanarayana N (2015) Electrochemical characterization of electrospun nanocomposite polymer blend electrolyte fibrous membrane for lithium battery. J Phys Chem B 119(16):5299–5308

    Article  Google Scholar 

  81. Padmaraj O, Venkateswarlu M, Satyanarayana N (2014) Characterization and electrochemical properties of P(VdF-co-HFP) based electrospun nanocomposite fibrous polymer electrolyte membrane for lithium battery applications. Electroanalysis 26(11):2373–2379

    Article  Google Scholar 

  82. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352

    Article  Google Scholar 

  83. Bauen A, Hart D (2000) Assessment of the environmental benefits of transport and stationary fuel cells. J Power Sources 86(1–2):482–494

    Article  Google Scholar 

  84. Hickner MA, Pivovar BS (2005) The chemical and structural nature of proton exchange membrane fuel cell properties. Fuel Cells 5(2):213–229

    Article  Google Scholar 

  85. Li QF, He RH, Jensen JO, Bjerrum NJ (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ℃. Chem Mater 15(26):4896–4915

    Article  Google Scholar 

  86. Dong B, Gwee L, Salas-de la Cruz D, Winey KI, Elabd YA (2010) Super proton conductive high-purity Nafion nanofibers. Nano Lett 10(9):3785–3790

    Article  Google Scholar 

  87. Mollá S, Compañ V, Gimenez E, Blazquez A, Urdanpilleta I (2011) Novel ultrathin composite membranes of Nafion/PVA for PEMFCs. Int J Hydrogen Energy 36(16):9886–9895

    Article  Google Scholar 

  88. Pan CF, Wu H, Wang C, Wang B, Zhang L, Cheng ZD, Hu P, Pan W, Zhou ZY, Yang X, Zhu J (2008) Nanowire-based high-performance “micro fuel cells”: one nanowire, one fuel cell. Adv Mater 20(9):1644–1648

    Article  Google Scholar 

  89. Shabani I, Hasani-Sadrabadi MM, Haddadi-Asl V, Soleimanid M (2011) Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications. J Membrane Sci 368:233–240

    Article  Google Scholar 

  90. Takemori R, Ito G, Tanaka M, Kawakami H (2014) Ultra-high proton conduction in electrospun sulfonated polyimide nanofibers. RSC Adv 4(38):20005–20009

    Article  Google Scholar 

  91. Li HY, Liu YL (2013) Polyelectrolyte composite membranes of polybenzimidazole and crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton exchange membrane fuel cells. J Mater Chem A 1(4):1171–1178

    Article  Google Scholar 

  92. Liu DS, Ashcraft JN, Mannarino MM, Silberstein MN, Argun AA, Rutledge GC, Boyce MC, Hammond PT (2013) Spray layer-by-layer electrospun composite proton exchange membranes. Adv Funct Mater 23(24):3087–3095

    Article  Google Scholar 

  93. Kim TE, Juon SM, Park JH, Shul YG, Cho KY (2014) Silicon carbide fiber-reinforced composite membrane for high-temperature and low-humidity polymer exchange membrane fuel cells. Int J Hydrogen Energy 39(29):16474–16485

    Article  Google Scholar 

  94. Haile SM, Boysen DA, Chisholm CRI, Merle RB (2001) Solid acids as fuel cell electrolytes. Nature 410(6831):910–913

    Article  Google Scholar 

  95. Goni-Urtiaga A, Scott K, Cavaliere S, Jones DJ, Roziere J (2013) A new fabrication method of an intermediate temperature proton exchange membrane by the electrospinning of CsH2PO4. J Mater Chem A 1(36):10875–10880

    Article  Google Scholar 

  96. Yao YF, Guo BK, Ji L, Jung KH, Lin Z, Alcoutlabi M, Hamouda H, Zhang XW (2011) Highly proton conductive electrolyte membranes: fiber-induced long-range ionic channels. Electrochem Commun 13(9):1005–1008

    Article  Google Scholar 

  97. Lee C, Jo SM, Choi J, Baek KY, Truong YB, Kyratzis IL, Shul YG (2013) SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. J Mater Sci 48:3665–3671

    Article  Google Scholar 

  98. Choi J, Lee C, Hawkins SC, Huynh CP, Park J, Jeon Y, Truong YB, Kyratzis IL, Shul Y-G, Caruso RA (2014) Direct spun aligned carbon nanotube web-reinforced proton exchange membranes for fuel cells. RSC Adv 4(62):32787–32790

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (51125011, 51373037, 51433001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianxi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miao, YE., Liu, T. (2016). Electrospun Polymer Nanofiber Separators and Electrolyte Membranes for Energy Storage and Conversion Applications. In: Fakirov, S. (eds) Nano-size Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-39715-3_7

Download citation

Publish with us

Policies and ethics