Skip to main content

From Polymer Blends to Nano-size Materials with Controlled Nanomorphology

  • Chapter
  • First Online:
Book cover Nano-size Polymers
  • 1493 Accesses

Abstract

Although nanoparticles are generally considered a discovery of modern science, they actually have a very long history. Nanoparticles were used by artisans as far back as the ninth century in Mesopotamia for generating a glittering effect on the surface of pots. The peculiarities of nanomaterials arise mainly from their sizes and for this reason the search of methods for their preparation is of increasing importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71

    Google Scholar 

  2. http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm. Accessed 20 Apr 2014

  3. Buffat P, Borel J (1976) Size effect on melting temperature of gold particles. Phys Rev A 13:2287–2298

    Article  Google Scholar 

  4. Schaefer DW, Justice RS (2007) How nano are nanocomposites? Macromolecules 40(24):8501–8517

    Article  Google Scholar 

  5. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    Article  Google Scholar 

  6. Zeleny J (1914) The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. J Phys Rev 3(2):69–91

    Article  Google Scholar 

  7. Formhals A (1934) Process and apparatus for preparing artificial threads, U.S. Patent No. 1,975,504

    Google Scholar 

  8. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  Google Scholar 

  9. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fiber. Angew Chem Int Ed 46(30):5670–5703

    Article  Google Scholar 

  10. Agarwal S, Wendorff JH, Greiner A (2008) Polymer 49(26):5603–5621

    Article  Google Scholar 

  11. Editors (1991) Time-life, inventive genius. Time-Life Books, New York, p 52

    Google Scholar 

  12. Glaeson C (2007) The biography of silk. Crabtree Publishing Company, p 12

    Google Scholar 

  13. Fakirov S (2012) The concept of micro- or nanofibrils reinforced polymer–polymer composites. In: Bhattacharyya D, Fakirov S (eds) Synthetic polymer–polymer composites. Hanser Publisher, Munich, pp 353–400

    Google Scholar 

  14. Fakirov S (2013) H-bonding—a chance for novel nano-sized polymers. Expr Polym Lett 7(6):494–494

    Google Scholar 

  15. Fakirov S, Evstatiev M, Schultz JM (1993) Microfibrillar reinfporced composites from drawn poly(ethylene terephthalate)/nylon blends. Macromolecules 34(22):4669–4679

    Google Scholar 

  16. Evstatiev M, Fakirov S, Krasteva B, Friedrich K, Covas J, Cunha A (2002) Recycling of PET as polymer–polymer composites. Polym Eng Sci 42(4):826–835

    Article  Google Scholar 

  17. Fakirov S, Kamo H, Evstatiev M, Friedrich K (2004) Microfibrillar reinforced composites from PET/LDPE blends: morphology and mechanical properties. J Macromol Sci B Phys B43(4):775–789

    Google Scholar 

  18. Friedrich K, Ueda E, Kamo H, Evstatiev M, Fakirov S, Krasteva B (2002) Direct electron microscopic observation of transcrystalline layers in microfibrillar reinforced polymer–polymer composites. J Mater Sci 37(20):4299–4305

    Article  Google Scholar 

  19. Krumova M, Michler GH, Evstatiev M, Friedrich K, Stribeck N, Fakirov S (2005) Transcrystallization with reorientation of polypropylene in drawn PET/PP and PA66/PP blends. Part 2 Electron microscopic observations on the PET/PP blend. Prog Colloid Polym Sci 130:167–173

    Google Scholar 

  20. Sapoundjieva D, Denchev Z, Evstatiev M, Fakirov S, Stribeck N, Stamm M (1999) Transcrystallization with reorientation in drawn PET/PA12 blend as revealed by WAXS from synchrotron radiation. J Mater Sci 34(13):3063–3067

    Article  Google Scholar 

  21. Bhattacharyya D, Maitrot P, Fakirov S (2009) Polyamide 6 single polymer composites. Expr Polym Lett 3(8):525–532

    Article  Google Scholar 

  22. Evstatiev M, Fakirov S, Bechtold G, Friedrich K (2000) Structure—property relationships of injection- and compression-molded microfibrillar reinforced PET/PA-6 composites. Adv Polym Technol 19(4):249–259

    Article  Google Scholar 

  23. Fakirov S, Sarac Z, Anbar T, Boz B, Bahar I, Evstatiev M, Apostolov A, Mark J, Kloczkowski A (1996) Mechanical properties and transition temperatures of crosslinked oriented gelatin. 1. Static and dynamic mechanical properties of cross-linked gelatin. Colloid Polym Sci 274(4):334–341

    Google Scholar 

  24. Fakirov S, Evstatiev M (1990) New routes to poly(ethylene terephthalate) with improved mechanical properties. Polymer 31(3):431–434

    Article  Google Scholar 

  25. Kargin VA, Bakeev NF, Fakirov SK (1964) New direct observation technique of structure of polymer solutions with aid of electron microscope. Dokl Acad Nauk SSSR 159(4):885

    Google Scholar 

  26. Fuchs C, Bhattacharyya D, Fakirov S (2006) Microfibril reinforced polymer–polymer composites: application of Tsai-Hill equation to PP/PET composite. Compos Sci Technol 66(16):3161–3171

    Article  Google Scholar 

  27. Fuchs C, Bhattacharyya D, Friedrich K, Fakirov S (2006) Application of Halpin–Tsai equation to microfibril reinforced polypropylene/poly(ethylene terephthalate) composites. Compos Interfaces 13(4–6):331–344

    Article  Google Scholar 

  28. Fakirov S, Bhattacharyya D, Shields RJ (2008) Nanofibril reinforced composites from polymer blends. Coll Surf A Physicochem Eng Aspects 313–314:2–8

    Article  Google Scholar 

  29. Fakirov S, Evstatiev M, Schultz JM (1993) Microfibrillar reinforced composite from drawn poly(ethylene terephthalate) nylon blends. Polymer 34(22):4669–4679

    Article  Google Scholar 

  30. Fakirov S, Evstatiev M, Petrovich S (1993) Microfibrillar reinforced composites. Macromolecules 26(19):5219–5226

    Article  Google Scholar 

  31. Li ZM, Huang CG, Yang W, Yang MB, Huang R (2004) Morphology dependent double yielding in injection molded polycarbonate/polyethylene blend. Macromol Mater Eng 289(11):1004–1011

    Article  Google Scholar 

  32. Li ZM, Lu A, Lu ZY, Shen KZ, Li LB, Yang MB (2005) In-situ microfibrillar PET/iPP blend via a slit die extrusion, hot stretching and quenching process: influences of PET concentration on morphology and crystallization of iPP at a fixed hot stretching ratio. J Macromol Sci Phys B44(2):203–216

    Google Scholar 

  33. Li ZM, Yang MB, Lu A, Feng JM, Huang R (2002) Tensile properties of poly(ethylene terephthalate) and polyethylene in-situ microfiber reinforced composite formed via slit die extrusion and hot stretching. Mater Lett 56(5):756–762

    Article  Google Scholar 

  34. Li ZM, Yang MB, Xie BH, Lu A, Feng JM, Huang R (2003) In-situ microfiber reinforced composite based on PET and PE via slit die extrusion and hot stretching. Influences of hot stretching ratio on morphology and tensile properties at a fixed composition. Polym Eng Sci 43(3):615–628

    Article  Google Scholar 

  35. Li ZM, Li LB, Shen KZ, Yang MB, Huang R (2004) In-situ microfibrillar PET/iPP blend via slit die extrusion, hot stretching, and quenching: influence of hot stretch ratio on morphology, crystallization, and crystal structure of iPP at a fixed PET concentration. J Polym Sci B Polym Phys 42(22):4095–4106

    Google Scholar 

  36. Zhong GJ, Li LB, Mendes E, Byelov D, Fu Q, Li ZM (2006) Suppression of skin-core structure in injection-molded polymer parts by in-situ incorporation of a microfibrillar network. Macromolecules 39(19):6771–6775

    Google Scholar 

  37. Zhong GJ, Li ZM, Li LB, Shen KZ (2008) Crystallization of oriented isotactic polypropylene (iPP) in the presence of in situ poly(ethylene terephthalate) (PET) microfibrils. Polymer 49(19):4271–4278

    Article  Google Scholar 

  38. Yi X, Xu LK, Wang YL, Zhong GJ, Ji X, Li ZM (2010) Morphology and properties of isotactic polypropylene/poly(ethylene terephthalate) in situ microfibrillar reinforced blends: influence of viscosity ratio. Eur Polym J 46(4):719–730

    Article  Google Scholar 

  39. Yi X, Chen C, Zhong GJ, Xu L, Tang JH, Ji X, Li ZM (2011) Suppressing the skin–core structure of injection-molded isotactic polypropylene via combination of an in situ microfibrillar network and an interfacial compatibilizer. J Phys Chem B 115(23):7497–7504

    Article  Google Scholar 

  40. Fakirov S (2006) Modified Soxhlet apparatus for high-temperature extraction. J Appl Polym Sci 102(2):2013–2014

    Article  Google Scholar 

  41. Panamoottil SM, Bhattacharyya D, Fakirov S (2013) Nanofibrillar polymer–polymer and single polymer composite involving poly(butylene terephthalate): preparation and mechanical properties. Polym Plast Technol Eng 52(11):1106–1112

    Article  Google Scholar 

  42. Kim NK, Bhattacharyya D, Fakirov S (2014) Polymer–polymer and single polymer composites involving nanofibrillar poly(vinylidene fluoride): manufacturing and mechanical properties. J Macromol Sci Phys B53(7):1168–1181

    Google Scholar 

  43. Kotek R, Tonelli A, Vasanthan N (2003) Lewis acid-base complexation of polyamides and the effect of hydrogen bonding on structure development, M01-NS03, NTC Project

    Google Scholar 

  44. Kotek R, Jung D, Tonelli A, Vasanthan N (2005) Novel methods for obtaining high modulus aliphatic polyamide fibers. J Macromol Sci Polym Rev C45(3):201–230

    Article  Google Scholar 

  45. Kotek R, Pang K, Schmidt B, Tonelli A (2004) Synthesis and gas barrier characterization of poly(ethylene isophthalate). J Polym Sci Part B Polym Phys 42(23):4247–4254

    Article  Google Scholar 

  46. Jung DW, Kotek R, Vasanthan N, Tonelli A (2004) High modulus nylon 66 fibers through Lewis acid-base complexation to control hydrogen bonding and enhance drawing behavior. 228th ACS National Meeting, Philadelphia, PA

    Google Scholar 

  47. Vasanthan N, Kotek R, Jung DW, Shin D, Tonelli AE, Salem DR (2004) Lewis acid-base complexation of polyamide 66 to control hydrogen bonding, extensibility and crystallinity. Polymer 45(12):4077–4085

    Article  Google Scholar 

  48. Vasanthan N, Kotek R, Jung DW, Salem DR, Tonelli AE (2004) Lewis acid-base complexation of polyamide 66 as a means to control hydrogen bonding to form high strength fibers and films. 227th ACS National Meeting, Anaheim, CA

    Google Scholar 

  49. Kuo SW (2008) Hydrogen-bonding in polymer blends. J Polym Res 15(6):459–486

    Article  Google Scholar 

  50. Fakirov S, Bhattacharyya D, Hutmacher D (2008) Applications of microfibrillar polymer–polymer composites concept for biomedical purposes. In: Bhatnagar N, Srivatsan TS (eds) Processing and fabrication of advanced materials—XVII, vol 2. IIIK International, New Delhi, pp 794–803

    Google Scholar 

  51. Shuai X, He Y, Asakawa N, Inoue YJ (2001) Miscibility and phase structure of binary blends of poly(L-lactide) and poly(vinyl alcohol). J Appl Polym Sci 81(3):762–772

    Article  Google Scholar 

  52. Bini T, Gao S, Wang S, Ramakrishna S (2006) Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: an in vitro study. J Mater Sci 41(19):6453–6459

    Article  Google Scholar 

  53. Park JW, Im SS (2003) Miscibility and morphology in blends of poly(L-lactic acid) and poly(vinyl acetate-co-vinyl alcohol). Polymer 44(15):4341–4354

    Article  Google Scholar 

  54. Chiu JB, Luu YK, Fang D, Hsiao BS, Chu B, Hadjiargyrou M (2005) Electrospun nanofibrous scaffolds for biomedical applications. J Biomed Nanotechnol 1(2):115–132

    Article  Google Scholar 

  55. Fakirov S, Bhattacharya D, Lin R, Fuchs C, Friedrich K (2007) Contribution of coalescence to microfibrils formation in polymer blends during cold drawing. J Macromol Sci Phys B46(1):183–194

    Article  Google Scholar 

  56. Denchev Z, Dencheva N (2012) Preparation, mechanical properties and structural characterization of microfibrillar composites based on polyethylene/polyamide blends. In: Bhattacharyya D, Fakirov S (eds) Synthetic polymer–polymer composites. Hanser Publisher, Munich, pp 465–524

    Google Scholar 

  57. Bhattacharyya D, Fakirov S, Organoclay (2009) Particulate and nanofibril reinforced polymer-polymer composites: manufacturing, modeling and applications. In: Karger-Kocsis, Fakirov S (eds) Nano- and micro-mechanics of polymer blends and composites. Hanser, Munich, pp 167–208

    Google Scholar 

  58. Shields R, Bhattacharyya D, Fakirov S (2008) Fibrillar polymer-polymer composites: morphology, properties and applications. J Mater Sci 43(20):6758–6770

    Article  Google Scholar 

  59. Shields RJ, Bhattacharyya D, Fakirov S (2012) Application opportunities of the microfibril reinforced composite concept. In: Bhattacharyya D, Fakirov S (eds) Synthetic polymer–polymer composites. Hanser, Munich, pp 589–626

    Google Scholar 

  60. Evstatiev M, Fakirov S, Friedrich K (2000) Microfibrillar reinforced composite: another approach to polymer blends processing. In: Fakirov S (ed) Structure development during polymer processing. Kluwer Academic, Dordrecht, The Netherlands, pp 311–325

    Google Scholar 

  61. Evstatiev M, Fakirov S, Friedrich K (2005) Manufacturing and characterization of microfibrillar reinforced composites from polymer blends. In: Friedrich K, Fakirov S, Zhang Z (eds) Polymer composites: from nano- to macro-scale. Springer, Boston, pp 149–167

    Google Scholar 

  62. Fakirov S (2015) Is the use of correct terms and definitions important in creation of new materials? Expr Polym Lett 9(8):671

    Google Scholar 

  63. Fakirov S (2015) Composite materials—is the use of proper definitions important? Mater Today 18(10):529

    Google Scholar 

  64. Fakirov S (2013) Nano-/microfibrillar polymer-polymer and single polymer composites: the converting instead of adding concept. Comp Sci Technol 89:211–225

    Article  Google Scholar 

  65. Matabola K, De Vries A, Moolman F, Luyt A (2009) Single polymer composites: a review. J Mater Sci 44(23):6213–6222

    Article  Google Scholar 

  66. Duhovic M, Fakirov S, Holschuh R, Mitschang P, Bhattacharyya D (2012) Micro- and nanofibrillar single polymer composites. In: Bhattacharyya D, Fakirov S (eds) Synthetic polymer–polymer composites. Hanser, Munich, pp 643–672

    Google Scholar 

  67. Karger-Kocsis J, Fakirov S (2012) Polymorphism- and stereoregularity-based single polymer composites. In: Bhattacharyya D, Fakirov S (eds) Synthetic polymer–polymer composites. Hanser, Munich, pp 673–698

    Google Scholar 

  68. Fakirov S (2013) Nano- and microfibrillar single-polymer composites: a review. Macromol Mater Eng 298(1):9–32

    Article  Google Scholar 

  69. Duhovic M, Maitrot P, Fakirov S (2009) Polyamide 66 polymorphic single polymer composites. Open Macromol J 3:37–40

    Article  Google Scholar 

  70. Duhovic M, Bhattacharyya D, Fakirov S (2010) Nanofibrillar single polymer composites of poly(ethylene terephthalate). Macromol Mater Eng 295(2):95–99

    Google Scholar 

  71. Fakirov S, Duhovic M, Maitrot P, Bhattacharyya D (2010) From PET nanofibrils to nanofibrillar single-polymer composites. Macromol Mater Eng 295(6):515–518

    Article  Google Scholar 

  72. Capiati NJ, Porter RS (1975) Concept of one polymer composites modeled with high-density polyethylene. J Mater Sci 10(10):1671–1677

    Article  Google Scholar 

  73. Hine P, Ward I, Olley R, Bassett D (1993) The hot compaction of high modulus melt-spun polyethylene fibers. J Mater Sci 28(2):316–324

    Article  Google Scholar 

  74. Hine P, Olley R, Ward I (2008) The use of interleaved films for optimising the production and properties of hot compacted, self-reinforced polymer composites. Comp Sci Technol 68(6):1413–1421

    Article  Google Scholar 

  75. Cabrera NO, Alcock B, Klompen BET, Peijs T (2008) Filament winding of co-extruded polypropylene tapes for fully recyclable all-polypropylene composite products. Appl Compos Mater 15(1):27–45

    Article  Google Scholar 

  76. Li R, Yao D (2008) Preparation of single poly(lactic acid) composites. J Appl Polym Sci 10:2909–2916

    Article  Google Scholar 

  77. Barkoula NM, Alcock B, Cabrera NO, Peijs T (2008) Fatigue properties of highly oriented polypropylene tapes and all-polypropylene composites. Polym Polym Compos 16(2):101–113

    Google Scholar 

  78. Lin STC, Bhattacharyya D, Fakirov S, Cornish J (2014) Novel organic solvent free micro-/nano-fibrillar, nanoporous scaffolds for tissue engineering. Int J Polym Mater Polym Biomater 63(8):416–423

    Google Scholar 

  79. Lin STC, Bhattacharyya D, Fakirov S, Matthews BG, Cornish J (2014) A novel microfibrillar composite approach towards manufacturing nanoporous tissue scaffolds. Mech Adv Mater Struct 21(3):237–243

    Article  Google Scholar 

  80. Fakirov S, Bhattacharyya D, Panamoottil SM (2014) Converting of bulk polymers into nanosized materials with controlled nanomorphology. Int J Polym Mater Polym Biomater 63(15):777–793

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Foundation for Research Science and Technology of New Zealand for the financial support (Grant No. UOAX 0406). He acknowledges also the hospitality of the Centre for Advanced Composite Materials at the University of Auckland where this study was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stoyko Fakirov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fakirov, S. (2016). From Polymer Blends to Nano-size Materials with Controlled Nanomorphology. In: Fakirov, S. (eds) Nano-size Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-39715-3_6

Download citation

Publish with us

Policies and ethics