Skip to main content

Isolation of Cellulose Nanowhiskers and Their Nanocomposites

  • Chapter
  • First Online:
Nano-size Polymers
  • 1525 Accesses

Abstract

Nanocellulose, as a natural polymeric nanomaterial, has been attractive due to its renewability, biodegradability, nontoxicity, high mechanical strength and surface reactivity. The chapter will focus on the isolation and characterization of cellulose nanowhiskers (CNWs). The manufacturing methods including solvent casting, electrospinning, melt blending, and in situ polymerization of cellulose nanowhiskers reinforced polymer nanocomposite will be also reviewed in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ioelovich M (2008) Cellulose as a nanostructured polymer: a review. Bioresources 3:1403–1418

    Google Scholar 

  2. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  Google Scholar 

  3. Thomas S, Paul SA, Pothan LA, Deepa B (2011) In: Kalia S, Kaith BS, Kaur I (eds) Natural fibres: structure, properties and applications in cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, pp 3–42

    Google Scholar 

  4. Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 1–35. doi:10.1155/2011/837875

    Google Scholar 

  5. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315

    Article  Google Scholar 

  6. Lu HJ, Gui Y, Zheng LH, Liu X (2013) Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res Int 50:121–128

    Article  Google Scholar 

  7. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  8. Chen W, Yu H, Liu Y (2011) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohd Polym 86:453–461

    Article  Google Scholar 

  9. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohd Polym 94:154–169

    Article  Google Scholar 

  10. Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Part B Polym Phys 33:1647–1651

    Article  Google Scholar 

  11. Geyer U, Heinze T, Stein A, Klemm D, Marschs S, Schumann D (1994) Formation, derivation and applications of bacterial cellulose. Int J Biol Macromol 16:343–347

    Article  Google Scholar 

  12. Mukherjee SM, Woods HJ (1953) X-ray and electron microscope studies of the degradation of cellulose by sulfuric acid. Biochim Biophys Acta 10:499–511

    Article  Google Scholar 

  13. Strømme M, Mihranyan A, Ek R (2012) What to do with all these algae? Mater Lett 57:569–572

    Article  Google Scholar 

  14. Nascimentoa JHO, Luz RF, Galvão FMF (2015) Extraction and characterization of cellulosic nanowhisker obtained from discarded cotton fibers. Mater Today Proc 2:1–7

    Article  Google Scholar 

  15. Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzdeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohd Polym 88:772–779

    Article  Google Scholar 

  16. Gelin K, Bodin A, Gatenholm P (2007) Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48:7623–7631

    Article  Google Scholar 

  17. Rusli R, Eichhorn SJ (2011) Interfacial energy dissipation in a cellulose nanowhisker composite. Nanotechnology 22:325706

    Article  Google Scholar 

  18. Bettaieb F, Khiari R, Hassan ML, Belgacem MN, Bras J, Dufresne A, Mhenni MF (2015) Preparation and characterization of new cellulose nanocrystals from marine biomass Posidoniaoceanica. Ind Crops Prod 72:175–182

    Article  Google Scholar 

  19. Zuluaga R, Putaux JL, Restrepo A, Mondragon I, Gañán P (2007) Cellulose microfibrils from banana farming resudues: isolation and characterization. Cellulose 14:585–592

    Article  Google Scholar 

  20. Hiasa S, Iwamoto S, Endo T, Edashige Y (2014) Isolation of cellulose nanofibrils from mandarin (Citrus unshiu) peel waste. Ind Crop Prod 62:280–285

    Article  Google Scholar 

  21. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  Google Scholar 

  22. Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohd Polym 87:564–573

    Article  Google Scholar 

  23. Moran JI, Alvarez VA, Cyras V, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  Google Scholar 

  24. Liu YY, Liu DY, Sui GX (2015) Effects of cellulose nano-whiskers on the properties of poly(vinyl alcohol)/graphene nanoplatelets nanocomposites. Polym Comp (under review)

    Google Scholar 

  25. Nascimento DM, Almeida JS, Dias AF, Figueirêdod MCB, Moraise JPS, Feitosa JPA, Rosa MF (2014) A novel green approach for the preparation of cellulose nanowhiskersfrom white coir. Carbohd Polym 110:456–463

    Article  Google Scholar 

  26. Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohyd Polym 76:94–99

    Article  Google Scholar 

  27. Teixeira EM, Bondancia TJ, Teodoro KBR, Corrêaa AC, José JM, Mattos LHC (2011) Sugarcane bagasse whiskers: extraction and characterization. Ind Crop Prod 33:63–66

    Article  Google Scholar 

  28. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohd Polym 86:1291–1299

    Article  Google Scholar 

  29. Sadeghifar H, Filpponen I, Clarke SP (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355

    Article  Google Scholar 

  30. Cherian BM, Pothan LA, Nguyen-Chung T, Mcnnig G, Samy K, Thomas S (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agr Food Chem 56:5617–5627

    Article  Google Scholar 

  31. Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93 % through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944

    Article  Google Scholar 

  32. Bradg PL, Bekkum HV, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27:49–66

    Article  Google Scholar 

  33. Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700

    Article  Google Scholar 

  34. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  Google Scholar 

  35. Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849

    Article  Google Scholar 

  36. Sun X, Wu Q, Ren S (2015) Lei T, Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose 22:1123–1133

    Article  Google Scholar 

  37. Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohd Polym 83:122–129

    Article  Google Scholar 

  38. Jiang F, Hsieh Y (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohd Polym 95:32–40

    Article  Google Scholar 

  39. Zhang J, Zhang B, Zhang J, Lin L, Liu S, Ouyang P (2010) Effect of phosphoric acid pretreatment on enzymatic hydrolysis of microcrystalline cellulose. Biotechnol Adv 28:613–619

    Article  Google Scholar 

  40. Segal S, Creely JJ, Martin AE, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res J 29:786–794

    Article  Google Scholar 

  41. Moon RJ, Martini A, Simonsen J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  Google Scholar 

  42. Liu DY, Yuan XW, Bhattacharyya D, Easteal AJ (2010) Characterisation of solution cast cellulose nanofiber—Reinforced poly (lactic acid). Express Polym Lett 4:26–31

    Article  Google Scholar 

  43. Mohamad Haafiz MK, Hassan A, Zakariac Z, Inuwa IM (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohd Polym 103:119–125

    Google Scholar 

  44. Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2011) Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from conconut husk. Cellulose 18:443–450

    Article  Google Scholar 

  45. Martins MA, Teixeira EM, Correa AC, Ferreika M, Mattoso LHC (2011) Extraction and characterization of cellulose whiskers from commercial cotton fibers. J Mater Sci 46:7858–7864

    Article  Google Scholar 

  46. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohd Polym 81:83–92

    Article  Google Scholar 

  47. Yoshiharu N, Paul L, Henri C (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  Google Scholar 

  48. Trachea D, Donnot A, Khimeche K, Benelmir R, Brosse N (2014) Physico-chemical properties and thermal stability of microcrystallinecellulose isolated from Alfa fibres. Carbohd Polym 104:223–230

    Article  Google Scholar 

  49. Pereira ALS, do Nacimento DM, Souza Filho MM, Morais JPS, Uasconcelos NF, Feitosa JPA, Brigida AI, Rosa MF (2014) Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohyd Polym 112:165–172

    Google Scholar 

  50. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  Google Scholar 

  51. Martins M, Teixeira E, Corrêa A, Ferreira M, Mattoso LHC (2011) Extraction and characterization of cellulose whiskers from commercial cotton fibers. J Mater Sci 46:7858–7864

    Article  Google Scholar 

  52. Roohani M, Habibi Y, Belgacem NM (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498

    Article  Google Scholar 

  53. Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353

    Google Scholar 

  54. Zhou YM, Fu SY, Zheng LM, Zhan HY (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly (vinyl alcohol) nanocomposite films. eXPRESS Polym Lett 6:794–80

    Google Scholar 

  55. Trache D, Donnot A, Khimeche K, Benelmir R, Brosee N (2014) Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohyd Polym 104:223–230

    Article  Google Scholar 

  56. Liu DY, Sui SX, Bhattacharyya D (2014) Synthesis and characterisation of nanocellulose-based polyaniline conducting films. Comp Sci Technol 99:31–36

    Article  Google Scholar 

  57. Yang H, Yan R, Chen H (2006) In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Energy Fuels 20:388–393

    Article  Google Scholar 

  58. Bourbigot S, Chlebicki S, Mamleev V (2002) Thermal degradation of cotton under linear heating. Polym Degrad Stabil 78:57–62

    Article  Google Scholar 

  59. Quievy N, Jacquet N, Sclavons M, Deroanne C, Paquot M, Devaux J (2010) Influence of homogenization and drying on thermal stability of microfibrillated cellulose. Polym Degrad Stabil 95:306–314

    Article  Google Scholar 

  60. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37:93–99

    Article  Google Scholar 

  61. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  Google Scholar 

  62. DES, Costa LA, Fonseca AF, Pereira FV, Druzian J (2015) Extraction and characterization of cellulose nanocrystals from corn stover. Cellulose Chem Technol 49:127–133

    Google Scholar 

  63. Martinez-Sanz M, Lopez-Rubio A, Lagron JM (2011) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohd Polym 85:228–236

    Google Scholar 

  64. Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660

    Article  Google Scholar 

  65. Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93:033111

    Article  Google Scholar 

  66. Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  Google Scholar 

  67. Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307

    Article  Google Scholar 

  68. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose whiskers from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576

    Google Scholar 

  69. Favier V, Chanzy H, Cavaille JY (1996) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  Google Scholar 

  70. Eichhorn SJ, Dufresne A, Aranguren M, Marcocich NE, Capadona JR, Rowan SJ (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  Google Scholar 

  71. Dufresne A (2010) Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Molecules 15:4111–4128

    Article  Google Scholar 

  72. Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13:1486–1494

    Article  Google Scholar 

  73. van den Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8:1353–1357

    Article  Google Scholar 

  74. Pei Aihua, Zhou Qi, Berglund Lars A (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(L-lactide) (PLLA)—Crystallization and mechanical property effects. Comp Sci Technol 70:815–821

    Article  Google Scholar 

  75. Wang D, Yu J, Zhang J, He J, Zhang J (2010) Transparent bionanocomposites with improved properties from poly (propylene carbonate)(PPC) and cellulose nanowhiskers (CNWs). Comp Sci Technol 85:83–89

    Article  Google Scholar 

  76. Gruner M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    Article  Google Scholar 

  77. Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2:502–510

    Article  Google Scholar 

  78. Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004

    Article  Google Scholar 

  79. Olsson RT, Fogelström L, Martínez-Sanz M, Henriksson M (2011) Cellulose nanofillers for food packaging. In: Lagaroân JM (ed) Multifunctional and nanoreinforced polymers for food packaging. Woodhead Publishing Limited, pp 86–107

    Google Scholar 

  80. Saxena A, Ragauskas AJ (2009) Water transmission barrier properties of biodegradable films based on cellulosic whiskers and xylan. Carbohyd Polym 78:357–360

    Article  Google Scholar 

  81. Schyrr B, Pasche S, Voirin G, Weder C, Simon YC, Foster EJ (2014) Biosensors based on porous cellulose nanocrystals–poly(vinyl alcohol) scaffolds. Appl Mater Interf 6:12674–12683

    Article  Google Scholar 

  82. Blaker JJ, Lee KY, Mantalaris A, Bismarck A (2010) Ice-microsphere templating to produce highly porous nanocomposite PLA matrix scaffolds with pores selectively lined by bacterial cellulose nano-whiskers. Comp Sci Technol 70:1879–1888

    Article  Google Scholar 

  83. He JH, Liu Y, Mo LF, Wan YQ, Xu L (2008) In: He JH, Liu Y, Mo LF, Wan YQ, Xu L (ed) Electrospun nanofibers and their applications. iSmithers, UK, pp 6–16

    Google Scholar 

  84. Ding B, Wang M, Yu J, Sun G (2009) Gas sensors based on electrospun nanofibers. Sensors 9:1609–1624

    Article  Google Scholar 

  85. Bhattarai SR, Bhattarai N, Yi HK, Hwang PH, Cha DI, Kim HY (2004) Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25:2595–2602

    Article  Google Scholar 

  86. Xu L, Wu Y, Liu Y (2010) Electrospun nanoporous materials: reality, potential, and challenges. Mater Sci Technol 26:1304–1308

    Article  Google Scholar 

  87. Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J, Teo WE (2010) Science and engineering of electrospun nanofibers for advances in clear energy, water filtration, and regenerative medicine. J Mater Sci 45:6283–6312

    Article  Google Scholar 

  88. Hou H, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A (2005) Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater 17:967–973

    Article  Google Scholar 

  89. Ji J, Sui G, Yu Y, Liu Y, Lin Y, Du Z (2009) Significant improvement of mechanical properties observed in highly aligned carbon-nanotube-reinforced nanofibers. J Phys Chem C 113:4779–4785

    Article  Google Scholar 

  90. Hong JH, Jeong EH, Lee HS, Baik DH, Seo SW, Youk JH (2005) Electrospinning of polyurethane-organically modified Montmorillonite nanocomposites. J Polym Sci Part B Polym Phys 43:3171–3177

    Article  Google Scholar 

  91. Peresin MS, Habibi Y, Zoppe JO (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681

    Article  Google Scholar 

  92. Park WI, Kang M, Kim HS (2007) Electrospinning of poly(ethylene oxide) with bacterial cellulose whiskers. Macromol Symp 249–250:289–294

    Article  Google Scholar 

  93. Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly (lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127:79–86

    Article  Google Scholar 

  94. Shi QF, Zhou C, Yue YY, Guo WH, Wu YQ, Wu QL (2012) Mechanical properties and in vitro degradation of elcetrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohyd Polym 90:301–308

    Article  Google Scholar 

  95. Zhou C, Shi Q, Guo W, Terrel L, Qureshi AT, Hayes DJ, Wu Q (2013) Electrospun bio-nanocomposites scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. Appl Mater Interf 5:3847–3854

    Article  Google Scholar 

  96. Liu DY, Yuan XW, Bhattacharyya D (2012) The effects of cellulose nanowhiskers on electrospun poly(lactic acid) nanofibers. J Mater Sci 47:3159–3165

    Article  Google Scholar 

  97. Shi QF, Zhou CJ, Yue YY, Guo W, Wu Y, Wu Q (2012) Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohyd Polym 90:301–308

    Article  Google Scholar 

  98. Dong H, Strawhecker KE, Snyder JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohyd Polym 2012:2488–2495

    Article  Google Scholar 

  99. Rojas OJ, Montero GA, Habibi Y (2009) Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. J Appl Polym Sci 113:927–935

    Article  Google Scholar 

  100. Zoppe JO, Peresin MS, Habibi Y, Venditti RA, Rojas OJ (2009) Reinforcing poly(ε-caprolactone) nanofibers with cellulose nanocrystals. Appl Mater Interf 9:1996–2004

    Article  Google Scholar 

  101. Lee J, Deng Y (2013) Nanoindentation study of individual cellulose nanowhisker-reinforced PVA electrospun fiber. Polym Bull 70:1205–1219

    Article  Google Scholar 

  102. Vallejos ME, Peresin M, Rojas OJ (2012) All-cellulose composite fibers obtained by electrospinning dispersions of cellulose acetate and cellulose nanocrystals. J Polym Environ 20:1075–1083

    Article  Google Scholar 

  103. de Menezes AJ, Siqueir G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose nanowhiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563

    Article  Google Scholar 

  104. Raquez JM, Murena Y, Goffin AL, Habibi Y, Ruelle B, DeBuyl F, Dubois P (2012) Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: a sustainably-integrated approach. Comp Sci Technol 72:544–549

    Article  Google Scholar 

  105. Blaker JJ, Lee KY, Walters M, Drouet M, Bismarck A (2014) Aligned unidirectional PLA/bacterial cellulose nanocomposite fibre reinforced PDLLA composites. React Funct Polym 85:185–192

    Article  Google Scholar 

  106. Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois Ph (2011) Poly(e-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: morphology, rheology, and thermo-mechanical properties. Polymer 52:1532–1538

    Article  Google Scholar 

  107. Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956

    Article  Google Scholar 

  108. Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Comp Sci Technol 70:1742–1747

    Article  Google Scholar 

  109. Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Comp Interf 14:617–630

    Article  Google Scholar 

  110. Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystals and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842

    Article  Google Scholar 

  111. Chen G, Dufresne A, Huang J, Chang PR (2009) A novel thermoformable bionanocomposite based cellulose nanocrystal-graft-poly(ε-caprolactone). Macromol Mater Eng 294:59–67

    Article  Google Scholar 

  112. Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417–3425

    Article  Google Scholar 

  113. Theng BKG (1979) In: Theng BKG (ed) Formation and properties of clay-polymer complexed. Elsevier, Amsterdam, pp 201–241

    Google Scholar 

  114. Rueda L, Saralegi A, Fernández-d’Arlas B, Zhou Q, Alonso-Varona A, Berglund LA, Mondragon I, Corcuera MA, Eceiza A (2013) In situ polymerization and characterization of elastomeric polyurethane-cellulose nanocrystal nanocomposites. Cell response evaluation. Cellulose 20:1819–1828

    Google Scholar 

  115. Maiti S, Sain S, Ray D, Mitr D (2013) Biodegradation behaviour of PMMA/cellulose nanocomposites prepared by in-situ polymerization and ex-situ dispersion methods. Polym Degrad Stabil 98:635–642

    Article  Google Scholar 

  116. Luong ND, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson LS, Seppälä J (2013) Processable polyaniline suspensions through in situ polymerization. Eur Polym J 49:335–344

    Article  Google Scholar 

  117. Zhang D, Zhang Q, Gao X, Piao G (2013) A nanocellulose polypyrrole composite based on tunicate cellulose. Int J Polym Sci 2013:175609

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxin Sui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, D., Dong, Y., Sui, G. (2016). Isolation of Cellulose Nanowhiskers and Their Nanocomposites. In: Fakirov, S. (eds) Nano-size Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-39715-3_5

Download citation

Publish with us

Policies and ethics