Skip to main content

Nano-sized Polymer Structures via Self-assembly and Co-assembly Approaches

  • Chapter
  • First Online:
Nano-size Polymers

Abstract

The amphiphilic copolymers in selective solvents self-associate into a variety of nano-sized structures due to differences in the physicochemical characteristics of the constituent moieties. The properties of the nanoassemblies can be influenced and modified by co-assembly thus forming hybrid nanostructures with tunable morphology and significantly altered aggregate characteristics. The polymerization-induced self-assembly is described as a facile, efficient, and reproducible strategy for preparation of families of polymeric nanoparticles having various morphologies via a one-pot process. In this chapter, the fundamental principles behind those approaches are briefly outlined. Various nanostructures, prepared from stimuli-responsive copolymers, nanoparticles of non-common morphologies, hybrid nanostructures, nanostructures, prepared via electrostatic interactions, hierarchical self-assembly, nanostructures formed on a surface are described by giving examples from the recent literature. The nanoassemblies exhibit tremendous potential for delivery of, e.g., antitumor agents, genetic material, proteins, and other biologically active substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macrom Rapid Commun 30:267–277

    Article  Google Scholar 

  2. Rangelov S, Pispas S (2014) Polymer and polymer-hybrid nanoparticles: from synthesis to biomedical applications. Taylor and Francis Group, Boca Raton

    Google Scholar 

  3. Smart T, Lomas H, Massignani M, Flores-Merino MV, Perez LM, Battaglia G (2008) Block copolymer nanostructures. Nanotoday 3:38–46

    Article  Google Scholar 

  4. Paschalis A, Bjorn L (2000) Amphiphilic block copolymers: self-assembly and applications. Elsevier, Amsterdam

    Google Scholar 

  5. Szwarc M, Levy M, Milkovich R (1956) Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers. J Am Chem Soc 78:2656–2657

    Article  Google Scholar 

  6. Yang YQ, Zheng LSh, Guo XD, Qian Y, Zhang LJ (2011) pH-Sensitive micelles self-assembled from amphiphilic copolymer brush for delivery of poorly water-soluble drugs. Biomacromolecules 12:116–122

    Article  Google Scholar 

  7. Pearson RT, Warren NJ, Lewis AL, Armes SP, Battaglia G (2013) Effect of pH and temperature on PMPC-PDPA copolymer self-assembly. Macromolecules 46:1400–1407

    Article  Google Scholar 

  8. Smith AE, Xu X, Kirkland-York SE, Savin DA, McCormick CL (2010) “Schizophrenic” self-assembly of block copolymers synthesized via aqueous RAFT polymerization: from micelles to vesicles. Macromolecules 43:1210–1217

    Article  Google Scholar 

  9. Liu B, Zhou H, Zhou S, Zhang H, Feng AC, Jian C, Hu J, Gao W, Yuan J (2014) Synthesis and self-assembly of CO2-temperature dual stimuli-responsive triblock copolymers. Macromolecules 47:2938–2946

    Article  Google Scholar 

  10. Wang W, Liu H, Mu M, Yin H, Feng Y (2015) Co2-induced reversible morphology transition from giant worms to polymersomes assembled from a block-random segmented copolymer. Polym Chem 6:2900–2908

    Article  Google Scholar 

  11. Bianchi A, Mauri M, Koynov K, Kappl M, Lieberwirth I, Butt HJ, Simonutti R (2014) Hierarchical self-assembly of PDMA-b-PS chains into granular nanoparticles: genesis and fate. Macromol Rapid Commun 35:1994–1999

    Article  Google Scholar 

  12. Li Zh, Hillmyer MA, Lodge TP (2006) Laterally nanostructured vesicles, polygonal bilayer sheets, and segmented wormlike micelles. Nano Lett 6:1245–1249

    Article  Google Scholar 

  13. Hu H, Liu G (2014) Miktoarm star copolymer capsules bearing pH-responsive nanochannels. Macromolecules 47:5096–5103

    Article  Google Scholar 

  14. Zhang Y, Zhao C, Liu L, Zhao H (2013) Polymeric micelles with mesoporous cores. ACS Macro Lett 2:891–895

    Article  Google Scholar 

  15. Wu S, Kuang H, Meng F, Wu Y, Li X, Jing X, Huang Y (2012) Facile preparation of core cross-linked micelles from catechol-containing amphiphilic triblock copolymer. J Mater Chem 22:15348–15356

    Article  Google Scholar 

  16. Niu G, Djaoui AB, Cohn D (2011) Crosslinkable PEO-PPO-PEO triblocks as building blocks of thermo-responsive nanoshells. Polymer 52:2524–2530

    Article  Google Scholar 

  17. Karagoz B, Esser L, Duong HT, Basuki JS, Boyer C, Davis TP (2014) Polymerization-induced self-assembly—Control over the morphology of nanoparticles for drug delivery applications. Polym Chem 5:350–355

    Article  Google Scholar 

  18. Wang W, Zhang J, Li Ch, Huang P, Gao S, Han S, Dong A, Kong D (2014) Facile access to cytocompatible multicompartment micelles with adjustable Janus-cores from A-block-B-graft-C terpolymers prepared by combination ROP and ATRP. Colloids Surf B 115:302–309

    Article  Google Scholar 

  19. Uchman M, Stepanek M, Prochazka K, Mountrichas G, Pispas S (2009) Multicompartment nanoparticles formed by a heparin-mimicking block terpolymer in aqueous solutions. Macromolecules 42:5605–5613

    Article  Google Scholar 

  20. Huo F, Li Sh, Li Q, Qu Y, Zhang W (2014) In-situ synthesis of multicompartment nanoparticles of linear BAC triblock terpolymer by seeded RAFT polymerization. Macromolecules 47:2340–2349

    Article  Google Scholar 

  21. Shi Y, Zhu W, Yao D, Long M, Peng B, Zhang K, Chen Y (2014) Disk-like micelles with a highly ordered pattern from molecular bottlebrushes. ACS Macro Lett 3:70–73

    Article  Google Scholar 

  22. He X, Li Q, Shi P, Cui Y, Li S, Zhang W (2014) A new strategy to prepare thermo-responsive multicompartment nanoparticles constructed with two diblock copolymers. Polym Chem 5:7090–7099

    Article  Google Scholar 

  23. Rizis G, vande Ven TGM, Eisenberg A (2014) “Raft” formation by two-dimensional self-assembly of block copolymer rod micelles in aqueous solution. Angew Chem Int Ed 53:9000–9003

    Article  Google Scholar 

  24. Betthausen E, Hanske Ch, Muller M, Fery A, Schacher FH, Muller AHE, Pochan D (2014) Self-assembly of amphiphilic triblock terpolymers mediated by multifunctional organic acids: vesicles, toroids, and (undulated) ribbons. Macromolecules 47:1672–1683

    Article  Google Scholar 

  25. Zhu J, Zhang S, Zhang K, Wang X, Mays JW, Wooley KL (2013) Disk-cylinder and disk-sphere nanoparticles via a block copolymer blend solution construction. Nat Commun 4:2297

    Google Scholar 

  26. Synatschke CV, Lobling TL, Fortsch M, Hanisch A, Schacher FH, Muller AHE (2013) Micellar interpolyelectrolyte complexes with a compartmentalized shell. Macromolecules 46:6466–6474

    Article  Google Scholar 

  27. Xu L, Jiang L, Drechsler M, Sun Y, Liu Z, Huang J, Tang BZ, Li Z, Cohen Stuart MA, Yan Y (2014) Self-assembly of ultralong polyion nanoladders facilitated by ionic recognition and molecular stiffness. J Am Chem Soc 136:1942–1947

    Article  Google Scholar 

  28. Iatridi Z, Tsitsilianis C (2011) pH-responsive self-assemblies from An-core-(B-b-C)n heteroarm star block terpolymer bearing oppositely charged segments. Chem Commun 47:5560–5562

    Article  Google Scholar 

  29. Cui H, Chen Z, Zhong S, Wooley KL, Pochan DJ (2007) Block copolymer assembly via kinetic control. Science 317(5838):647–650

    Google Scholar 

  30. Lee I-H, Amaladass P, Yoon K-Y, Shin S, Kim Y-J, Kim I, Lee E, Choi T-L (2013) Nanostar and nanonetwork crystals fabricated by in situ nanoparticlization of fully conjugated polythiophene diblock copolymers. J Am Chem Soc 135:17695–17698

    Article  Google Scholar 

  31. Gröschel AH, Schacher FH, Schmalz H, Borisov OV, Zhulina EB, Walther A, Müller AHE (2012) Precise hierarchical self-assembly of multicompartment micelles. Nat Commun 3:710

    Article  Google Scholar 

  32. Deng J, Cai Y (2013) Botryoid-shaped reactive nanoparticles through spontaneous structural reorganization of terpolymer micelles. Macromol Rapid Commun 34:1459–1463

    Article  Google Scholar 

  33. Liu Y, Abetz V, Mueller AHE (2003) Janus cylinders. Macromolecules 36:7894–7898

    Article  Google Scholar 

  34. Wolf A, Walther A, Mueller AHE (2011) Janus triad: three types of nospherical, nanoscale Janus particles from one single triblock terpolymer. Macromolecules 44:9221–9229

    Article  Google Scholar 

  35. Petzetakis N, Robin MP, Patterson JP, Kelley EG, Cotanda P, Bomans PHH, Sommerdijk NAJM, Dove A, Epps TH III, O’Reilly RK (2013) Hollow block copolymer nanoparticles through spontaneous one-step structural reorganization. ACS Nano 7:1120–1128

    Article  Google Scholar 

  36. Sun J-T, Hong C-Y, Pan C-Y (2012) Formation of the block copolymer aggregates via polymerization-induced self-assembly and reorganization. Soft Matter 8:7753–7767

    Article  Google Scholar 

  37. Charleux B, Delaittre G, Rieger J, D’Agosto F (2012) Polymerization-induced self-assembly: from soluble macromolecules to block copolymer nano-objects in one step. Macromolecules 45:6753–6765

    Article  Google Scholar 

  38. Warren NJ, Armes SP (2014) Polymerization-induced self-assembly of block copolymers nano-objects via RAFT aqueous dispersion polymerization. J Am Chem Soc 136:10174–10185

    Article  Google Scholar 

  39. Ferguson CJ, Hughes RJ, Pham BTT, Hawkett BS, Gilbert RG, Serelis AK, Such CH (2002) Effective ab ignition emulsion polymerization under RAFT control. Macromolecules 25:9243–9245

    Article  Google Scholar 

  40. Ferguson CJ, Hughes RJ, Nguyen D, Pham BTT, Gilbert RG, Serelis AK, Such CH, Hawkett BS (2005) Ab ignition emulsion polymerization by RAFT-controlled self-assembly. Macromolecules 38:2191–2204

    Article  Google Scholar 

  41. Rieger J, Stoffelbach F, Bui C, Alaimo D, Jérôme C, Charleux B (2008) Amphiphilic poly(ethylene oxide) macromolecular RAFT agent as a stabilizer and control agent in ab initio batch emulsion polymerization. Macromolecules 41:4065–4068

    Article  Google Scholar 

  42. Rieger J, Osterwinter G, Bui C, Stoffelbach F, Charleux B (2009) Surfactant-free controlled/living radical emulsion (co)polymerization of n-butyl acrylate and methyl methacrylate via RAFT using amphiphilic poly(ethylene oxide)-based trithiocarbonate chain transfer agents. Macromolecules 42:5518–5525

    Article  Google Scholar 

  43. Rieger J, Zhang W, Stoffelbach F, Charleux B (2010) Surfactant-free RAFT emulsion polymerization using poly(N, N-dimethylacrylamide trithiocarbonate macromolecular chain transfer agents. Macromolecules 43:6302–6310

    Article  Google Scholar 

  44. An Z, Shi Q, Tang W, Tsung C-K, Hawker CJ, Stucky GD (2007) Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined, double hydrophilic block copolymers and nanostructured hydrogels. J Am Chem Soc 129:14493–14499

    Article  Google Scholar 

  45. Delaittre G, Save M, Charleux B (2007) Nitroxide-mediated aqueous dispersion polymerization: from water-soluble macroalkoxyamine to thermosensitive nanogels. Macromol Rapid Commun 28:1528–1533

    Article  Google Scholar 

  46. Li Y, Armes SP (2010) RAFT synthesis of sterically stabilized methacrylic nanolatexes and vesicles by aqueous dispersion polymerization. Angew Chem Int Ed 49:4042–4046

    Article  Google Scholar 

  47. Blanazs A, Madsen J, Battaglia G, Ryan AJ, Armes SP (2011) Mechanistic insights for block copolymer morphologies: how do worms from vesicles? J Am Chem Soc 133:16581–16587

    Article  Google Scholar 

  48. Wan W-M, Pan C-Y (2010) One-pot synthesis of polymeric nanomaterials via RAFT dispersion polymerization induced self-assembly and re-organization. Polym Chem 1:1475–1484

    Article  Google Scholar 

  49. Wan W-M, Sun X-L, Pan C-Y (2010) Formation of vesicular morphologies via polymerization induced self-asembly and reorhanization. Macromol Rapid Commun 31:399–404

    Article  Google Scholar 

  50. Wan W-M, Hong C-Y, Pan C-Y (2009) One-pot synthesis of nanomaterials via RAFT polymerization induced self-assembly and morphology transition. Chem Commun 5883–5885

    Google Scholar 

  51. Cai W, Wan W, Hong C, Huang C, Pan C (2010) Morphology transitions in RAFT polymerization. Soft Matter 6:5554–5561

    Article  Google Scholar 

  52. Li Y, Ikeda S, Nakashima K, Nakamura H (2003) Nanoaggregate formation of poly(ethylene oxide)-b-polymethacrylate copolymer induced by cationic anesthetics binding. Colloid Polym Sci 281:562–568

    Article  Google Scholar 

  53. Bastakoti BP, Guragain S, Yoneda A, Yokoyama Y, Yusab S, Nakashima K (2010) Micelle formation of poly(ethylene oxide-b-sodium 2-(acrylamido)-2-methyl-1-propane sulfonate-b-styrene) and its interaction with dodecyl trimethyl ammonium chloride and dibucaine. Polym Chem 1:347–353

    Article  Google Scholar 

  54. Soliman GM, Winnik FM (2008) Enhancement of hydrophilic drug loading and release characteristics through micellization with new carboxymethyldextran-PEG block copolymers of tunable charge density. Int J Pharm 356:248–258

    Article  Google Scholar 

  55. Xu H, Meng F, Zhong Z (2009) Reversibly crosslinked temperature-responsive nano-sized polymersomes: synthesis and triggered drug release. J Mater Chem 19:4183–4190

    Article  Google Scholar 

  56. Wang YC, Li Y, Sun TM, Xiong MH, Wu J, Yang YY, Wang J (2010) Core-shell-corona micelle stabilized by reversible cross-linkage for intracellular drug delivery. Macromol Rapid Commun 31:1201–1206

    Article  Google Scholar 

  57. Tan JPK, Kim SH, Nederberg F, Appel EA, Waymouth RM, Zhang Y, Hedrick JL, Yang YY (2009) Hierarchical supermolecular structures for sustained drug release. Small 5:1504–1507

    Article  Google Scholar 

  58. Varkouhi AK, Mountrichas G, Schiffelers RM, Lammers T, Storm G, Pispas S, Hennink WE (2012) Polyplexes based on cationic polymers with strong nucleic acid binding properties. Eur J Pharm Sci 45:459–466

    Article  Google Scholar 

  59. Cheng C, Convertine AJ, Stayton PS, Bryers JD (2012) Multifunctional triblock copolymers for intracellular messenger RNA delivery. Biomaterials 33(28):6868–6876

    Article  Google Scholar 

  60. Osada K, Shiotani T, Tockary TA, Kobayashi D, Oshima H, Ikeda S, Christie RJ, Itaka K, Kataoka K (2012) Enhanced gene expression promoted by the quantized folding of pDNA within polyplex micelles. Biomaterials 33(1):325–332

    Article  Google Scholar 

  61. Pang ZQ, Lu W, Gao HL, Hu KL, Chen J, Zhang CL, Gao XL, Jiang XG, Zhu CQ (2008) Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J Controlled Release 128:120–128

    Article  Google Scholar 

  62. Cabane E, Malinova V, Menon S, Palivan CG, Meier W (2011) Photoresponsive polymersomes as smart, triggerable nanocarriers. Soft Matter 7:9167–9176

    Article  Google Scholar 

Download references

Acknowledgments

The authors express gratitude to the EC project POLINNOVA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Rangelov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mountrichas, G., Petrov, P., Pispas, S., Rangelov, S. (2016). Nano-sized Polymer Structures via Self-assembly and Co-assembly Approaches. In: Fakirov, S. (eds) Nano-size Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-39715-3_2

Download citation

Publish with us

Policies and ethics