Skip to main content

Monoclonal Antibodies in Pediatric Acute Lymphoblastic Leukemia

  • Chapter
  • First Online:
Childhood Acute Lymphoblastic Leukemia
  • 1571 Accesses

Abstract

In 1975 Köhler and Milstein developed the first monoclonal antibody (moAb) by fusion of murine myeloma cells with B cells. Over the past decades several moAbs for different indications have been approved including those for solid tumors as well as hematological malignancies. They are effective directly, via antibody-dependent cell cytotoxicity or via complement-mediated cytolysis. In addition to naked monoclonal antibodies targeting tumor antigens several strategies have been developed to improve efficacy of the moAbs including moAb-drug conjugates, moAb-radioisotope conjugates and moAb-T cell conjugates with varying results. Recently moAbs targeting checkpoint inhibitors have been developed and have shown promising results in solid tumors as well as haematological malignancies. These immunotherapies e.g. in combination with standard of care might lead to better and more sustained remission rates. Furthermore the timing of administration of antibodies with or without standard of care might be a useful strategy for the therapy of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.

    Article  CAS  PubMed  Google Scholar 

  2. Beck A et al. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol. 2010;10(5):345–52.

    Article  CAS  PubMed  Google Scholar 

  3. Beck A, Wurch T, Corvaia N. Therapeutic antibodies and derivatives: from the bench to the clinic. Curr Pharm Biotechnol. 2008;9(6):421–2.

    Article  CAS  PubMed  Google Scholar 

  4. Reichert JM. Antibodies to watch in 2010. MAbs. 2010;2(1):84–100.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Reichert JM. Marketed therapeutic antibodies compendium. MAbs. 2012;4(3):413–5.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments. Nat Biotechnol. 2009;27(4):331–7.

    Article  CAS  PubMed  Google Scholar 

  7. Storey S. Respiratory syncytial virus market. Nat Rev Drug Discov. 2010;9(1):15–6.

    Article  CAS  PubMed  Google Scholar 

  8. Higel F et al. N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm. 2016;100:94–100.

    Article  CAS  PubMed  Google Scholar 

  9. Matsuda F et al. The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J Exp Med. 1998;188(11):2151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vlasak J et al. Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal Biochem. 2009;392(2):145–54.

    Article  CAS  PubMed  Google Scholar 

  11. Bowles JA et al. Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood. 2006;108(8):2648–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Junutula JR et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26(8):925–32.

    Article  CAS  PubMed  Google Scholar 

  13. Chames P, Baty D. Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs. 2009;1(6):539–47.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rasmussen SK et al. Manufacture of recombinant polyclonal antibodies. Biotechnol Lett. 2007;29(6):845–52.

    Article  CAS  PubMed  Google Scholar 

  15. Pedersen MW et al. Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res. 2010;70(2):588–97.

    Article  CAS  PubMed  Google Scholar 

  16. Wurch T et al. Development of novel protein scaffolds as alternatives to whole antibodies for imaging and therapy: status on discovery research and clinical validation. Curr Pharm Biotechnol. 2008;9(6):502–9.

    Article  CAS  PubMed  Google Scholar 

  17. Gebauer M, Skerra A. Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol. 2009;13(3):245–55.

    Article  CAS  PubMed  Google Scholar 

  18. Hochberg J, El-Mallawany NK, Cairo MS. Humoral and cellular immunotherapy in ALLin children, adolescents, and young adults. Clin Lymphoma Myeloma Leuk. 2014;14 Suppl:S6–13.

    Google Scholar 

  19. Dalle S et al. Preclinical studies on the mechanism of action and the anti-lymphoma activity of the novel anti-CD20 antibody GA101. Mol Cancer Ther. 2011;10(1):178–85.

    Article  CAS  PubMed  Google Scholar 

  20. Robert C et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

    Article  CAS  PubMed  Google Scholar 

  21. Pfreundschuh M et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7(5):379–91.

    Article  CAS  PubMed  Google Scholar 

  22. Feldman AM, Lorell BH, Reis SE. Trastuzumab in the treatment of metastatic breast cancer : anticancer therapy versus cardiotoxicity. Circulation. 2000;102(3):272–4.

    Article  CAS  PubMed  Google Scholar 

  23. Nadler LM et al. Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res. 1980;40(9):3147–54.

    CAS  PubMed  Google Scholar 

  24. Weiner GJ. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer. 2015;15(6):361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dao T, Liu C, Scheinberg DA. Approaching untargetable tumor-associated antigens with antibodies. Oncoimmunology. 2013;2(7):e24678.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tutt AL et al. Monoclonal antibody therapy of B cell lymphoma: signaling activity on tumor cells appears more important than recruitment of effectors. J Immunol. 1998;161(6):3176–85.

    CAS  PubMed  Google Scholar 

  27. Taylor RP. Of mice and mechanisms: identifying the role of complement in monoclonal antibody-based immunotherapy. Haematologica. 2006;91(2):146a.

    PubMed  Google Scholar 

  28. Wang SY, Weiner G. Complement and cellular cytotoxicity in antibody therapy of cancer. Expert Opin Biol Ther. 2008;8(6):759–68.

    Article  CAS  PubMed  Google Scholar 

  29. Clynes R et al. Fc receptors are required in passive and active immunity to melanoma. Proc Natl Acad Sci U S A. 1998;95(2):652–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pawluczkowycz AW et al. Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX. J Immunol. 2009;183(1):749–58.

    Article  CAS  PubMed  Google Scholar 

  31. Beum PV et al. Loss of CD20 and bound CD20 antibody from opsonized B cells occurs more rapidly because of trogocytosis mediated by Fc receptor-expressing effector cells than direct internalization by the B cells. J Immunol. 2011;187(6):3438–47.

    Article  CAS  PubMed  Google Scholar 

  32. Wang SY et al. Depletion of the C3 component of complement enhances the ability of rituximab-coated target cells to activate human NK cells and improves the efficacy of monoclonal antibody therapy in an in vivo model. Blood. 2009;114(26):5322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pedersen IM et al. The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinasedependent mechanism. Blood. 2002;99(4):1314–9.

    Article  CAS  PubMed  Google Scholar 

  34. Beers SA, Glennie MJ. Neutrophils: “neu players” in antibody therapy? Blood. 2013;122(18):3093–4.

    Article  CAS  PubMed  Google Scholar 

  35. Hernandez-Ilizaliturri FJ et al. Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin's lymphoma severe combined immunodeficiency mouse model. Clin Cancer Res. 2003;9(16 Pt 1):5866–73.

    CAS  PubMed  Google Scholar 

  36. Ai J, Advani A. Current status of antibody therapy in ALL. Br J Haematol. 2015;168(4):471–80.

    Article  CAS  PubMed  Google Scholar 

  37. Goebeler ME, Bargou R. Blinatumomab: a CD19/CD3 bispecific T cell engager (BiTE) with unique anti-tumor efficacy. Leuk Lymphoma. 2016;57(5):1021–32.

    Article  CAS  PubMed  Google Scholar 

  38. Raponi S et al. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: analysis of 552 cases. Leuk Lymphoma. 2011;52(6):1098–107.

    Article  CAS  PubMed  Google Scholar 

  39. Morris JC, Waldmann TA. Antibody-based therapy of leukaemia. Expert Rev Mol Med. 2009;11:e29.

    Article  PubMed  Google Scholar 

  40. Tedder TF, Poe JC, Haas KM. CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Adv Immunol. 2005;88:1–50.

    Article  CAS  PubMed  Google Scholar 

  41. Lejeune FJ. The conquest of melanoma by immunotherapy. Melanoma Res. 2015;25(5):373–5.

    Article  PubMed  Google Scholar 

  42. Kantarjian H et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 2012;13(4):403–11.

    Article  CAS  PubMed  Google Scholar 

  43. Kato J et al. Efficacy and toxicity of a CD22-targeted antibody-saporin conjugate in a xenograft model of non-Hodgkin’s lymphoma. Oncoimmunology. 2012;1(9):1469–75.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dahl J, Marx K, Jabbour E. Inotuzumab ozogamicin in the treatment of acute lymphoblastic leukemia. Expert Rev Hematol. 2016;9(4):329–34.

    Article  CAS  PubMed  Google Scholar 

  45. Jazirehi AR, Vega MI, Bonavida B. Development of rituximab-resistant lymphoma clones with altered cell signaling and cross-resistance to chemotherapy. Cancer Res. 2007;67(3):1270–81.

    Article  CAS  PubMed  Google Scholar 

  46. Safdari Y, Ahmadzadeh V, Farajnia S. CD20-targeting in B-cell malignancies: novel prospects for antibodies and combination therapies. Invest New Drugs. 2016;34(4):497–512.

    Google Scholar 

  47. Thomas DA et al. Prognostic significance of CD20 expression in adults with de novo precursor B-lineage acute lymphoblastic leukemia. Blood. 2009;113(25):6330–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dworzak MN et al. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy. Blood. 2008;112(10):3982–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jeha S et al. Prognostic significance of CD20 expression in childhood B-cell precursor acute lymphoblastic leukemia. Blood. 2006;108(10):3302–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Borowitz MJ et al. Prognostic significance of fluorescence intensity of surface marker expression in childhood B-precursor acute lymphoblastic leukemia. A Pediatric Oncology Group Study. Blood. 1997;89(11):3960–6.

    CAS  PubMed  Google Scholar 

  51. Naithani R et al. CD20 has no prognostic significance in children with precursor B-cell acute lymphoblastic leukemia. Haematologica. 2012;97(9):e31–2.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ou DY, Luo JM, Ou DL. CD20 and outcome of childhood precursor B-cell acute lymphoblastic leukemia: a meta-analysis. J Pediatr Hematol Oncol. 2015;37(3):e138–42.

    Article  CAS  PubMed  Google Scholar 

  53. Watanabe T et al. CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin Immunol. 2006;120(3):247–59.

    Article  CAS  PubMed  Google Scholar 

  54. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sondak VK et al. Ipilimumab. Nat Rev Drug Discov. 2011;10(6):411–2.

    Article  CAS  PubMed  Google Scholar 

  56. Kantarjian H et al. Monoclonal antibody-based therapies: a new dawn in the treatment of acute lymphoblastic leukemia. J Clin Oncol. 2012;30(31):3876–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu Y et al. Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology. 2009;128(2):260–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tibes R et al. Activity of alemtuzumab in patients with CD52-positive acute leukemia. Cancer. 2006;106(12):2645–51.

    Article  CAS  PubMed  Google Scholar 

  59. Angiolillo AL et al. A phase II study of Campath-1H in children with relapsed or refractory acute lymphoblastic leukemia: a Children's Oncology Group report. Pediatr Blood Cancer. 2009;53(6):978–83.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Piccaluga PP et al. Anti-leukemic and anti-GVHD effects of campath-1H in acute lymphoblastic leukemia relapsed after stem-cell transplantation. Leuk Lymphoma. 2004;45(4):731–3.

    Article  CAS  PubMed  Google Scholar 

  61. Stock W, O’Brien S, Lozanski G, Vij R, Byrd JC, Powell BL, Wetzler M, Sher D, Edwards C, Kelly M, Richards S, Sung C, Malnassy G, Hoke E, Bloomfield CD, Larson RA. Alemtuzumab can be incorporated into front-line therapy of adult acute lymphoblastic leukemia (ALL): final phase I 25 results of a Cancer and Leukemia Group B study (CALGB 10102). Blood. 2009;114(22):838.

    Google Scholar 

  62. Stockmeyer B et al. Mechanisms of G-CSF- or GM-CSF-stimulated tumor cell killing by Fc receptor-directed bispecific antibodies. J Immunol Methods. 2001;248(1–2):103–11.

    Article  CAS  PubMed  Google Scholar 

  63. Gorin NC et al. Administration of alemtuzumab and G-CSF to adults with relapsed or refractory acute lymphoblastic leukemia: results of a phase II study. Eur J Haematol. 2013;91(4):315–21.

    CAS  PubMed  Google Scholar 

  64. Nijmeijer BA et al. A mechanistic rationale for combining alemtuzumab and rituximab in the treatment of ALL. Blood. 2010;116(26):5930–40.

    Article  CAS  PubMed  Google Scholar 

  65. Rossi EA et al. Novel designs of multivalent anti-CD20 humanized antibodies as improved lymphoma therapeutics. Cancer Res. 2008;68(20):8384–92.

    Article  CAS  PubMed  Google Scholar 

  66. McLaughlin P et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16(8):2825–33.

    Article  CAS  PubMed  Google Scholar 

  67. Cheson BD, Leonard JP. Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Engl J Med. 2008;359(6):613–26.

    Article  CAS  PubMed  Google Scholar 

  68. Maloney DG, Smith B, Rose A. Rituximab: mechanism of action and resistance. Semin Oncol. 2002;29(1 Suppl 2):2–9.

    Article  CAS  Google Scholar 

  69. Czuczman MS et al. Acquirement of rituximab resistance in lymphoma cell lines is associated with both global CD20 gene and protein down-regulation regulated at the pretranscriptional and posttranscriptional levels. Clin Cancer Res. 2008;14(5):1561–70.

    Article  CAS  PubMed  Google Scholar 

  70. Hoelzer D, Huttmann A., Kaul F, Irmer S, Jaekel N, Mohren M, Lipp T, Wedelin K, de Valle F, Schmid M, Thiel E, Brueggemann M, Kneba M, Goekbuget N. Immunochemotherapy with rituximab improves molecular CR rate and outcome in CD20+ B-lineage standard and high risk patients; results of 263 CD20+ patients studied prospectively in GMALL study 07/2003. Blood, 2010;116(117).

    Google Scholar 

  71. Thomas DA et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor Blineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28(24):3880–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jaime-Perez JC et al. Effectiveness of intrathecal rituximab in patients with acute lymphoblastic leukaemia relapsed to the CNS and resistant to conventional therapy. Br J Haematol. 2009;144(5):794–5.

    Article  PubMed  Google Scholar 

  73. Ceppi F et al. Safety and efficacy of intrathecal rituximab in children with B cell lymphoid CD20+ malignancies: an international retrospective study. Am J Hematol. 2016;91(5):486–91.

    Article  CAS  PubMed  Google Scholar 

  74. Schulz H et al. Intraventricular treatment of relapsed central nervous system lymphoma with the anti-CD20 antibody rituximab. Haematologica. 2004;89(6):753–4.

    CAS  PubMed  Google Scholar 

  75. Rubenstein JL et al. Multicenter phase 1 trial of intraventricular immunochemotherapy in recurrent CNS lymphoma. Blood. 2013;121(5):745–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kadoch C et al. Complement activation and intraventricular rituximab distribution in recurrent central nervous system lymphoma. Clin Cancer Res. 2014;20(4):1029–41.

    Article  CAS  PubMed  Google Scholar 

  77. Lim SH et al. Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica. 2010;95(1):135–43.

    Article  CAS  PubMed  Google Scholar 

  78. Teeling JL et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol. 2006;177(1):362–71.

    Article  CAS  PubMed  Google Scholar 

  79. Li B et al. Characterization of a rituximab variant with potent antitumor activity against rituximab-resistant B-cell lymphoma. Blood. 2009;114(24):5007–15.

    Article  CAS  PubMed  Google Scholar 

  80. Jabbour E et al. Monoclonal antibodies in acute lymphoblastic leukemia. Blood. 2015;125(26):4010–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Radford J et al. Obinutuzumab (GA101) plus CHOP or FC in relapsed/refractory follicular lymphoma: results of the GAUDI study (BO21000). Blood. 2013;122(7):1137–43.

    Article  CAS  PubMed  Google Scholar 

  82. Awasthi A et al. Obinutuzumab (GA101) compared to rituximab significantly enhances cell death and antibody-dependent cytotoxicity and improves overall survival against CD20(+) rituximab-sensitive/−resistant Burkitt lymphoma (BL) and precursor B-acute lymphoblastic leukaemia (pre-B-ALL): potential targeted therapy in patients with poor risk CD20(+) BL and pre-B-ALL. Br J Haematol. 2015;171(5):763–75.

    Article  CAS  PubMed  Google Scholar 

  83. Niederfellner G et al. Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type I/II distinction of CD20 antibodies. Blood. 2011;118(2):358–67.

    Article  CAS  PubMed  Google Scholar 

  84. Bologna L et al. Mechanism of action of type II, glycoengineered, anti-CD20 monoclonal antibody GA101 in B-chronic lymphocytic leukemia whole blood assays in comparison with rituximab and alemtuzumab. J Immunol. 2011;186(6):3762–9.

    Article  CAS  PubMed  Google Scholar 

  85. Salles G, Morschhauser F., Lamy T, Milpied N, Thieblemont C, Tilly H, Bieska G, Carlile D, Cartron G. Phase I study of RO5072759 (GA101) in patients with relapsed/refractory CD20+ Non-Hodgkin Lymphoma (NHL). Blood. 2009;114(1704).

    Google Scholar 

  86. Radford J, Davies A, Cartron G, Morschhauser F, Salles GA, Marcus RE, Wenger MK, Asikanius EL, Wassner-Fritsch EL, Vitolo U. Obinutuzumab (GA101) in combination with FC or CHOP in patients with relapsed or refractory follicular lymphomab: final results of the phase I GAUDI study (BO201000). Blood. 2011;118(21):270.

    Google Scholar 

  87. Golay J et al. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood. 2013;122(20):3482–91.

    Article  CAS  PubMed  Google Scholar 

  88. Heinrich DA et al. Differential regulation patterns of the anti-CD20 antibodies obinutuzumab and rituximab in mantle cell lymphoma. Br J Haematol. 2015;168(4):606–10.

    Article  CAS  PubMed  Google Scholar 

  89. Mossner E et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010;115(22):4393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cartron G et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99(3):754–8.

    Article  CAS  PubMed  Google Scholar 

  91. Negrea GO et al. Subcutaneous injections of low-dose veltuzumab (humanized anti-CD20 antibody) are safe and active in patients with indolent non-Hodgkin’s lymphoma. Haematologica. 2011;96(4):567–73.

    Article  CAS  PubMed  Google Scholar 

  92. Christian BA et al. The combination of milatuzumab, a humanized anti-CD74 antibody, and veltuzumab, a humanized anti-CD20 antibody, demonstrates activity in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Br J Haematol. 2015;169(5):701–10.

    Article  CAS  PubMed  Google Scholar 

  93. Nitschke L. CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol Rev. 2009;230(1):128–43.

    Article  CAS  PubMed  Google Scholar 

  94. Wayne AS et al. Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: preclinical studies and phase I clinical trial. Clin Cancer Res. 2010;16(6):1894–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Carnahan J et al. Epratuzumab, a CD22-targeting recombinant humanized antibody with a different mode of action from rituximab. Mol Immunol. 2007;44(6):1331–41.

    Article  CAS  PubMed  Google Scholar 

  96. Advani AS. New immune strategies for the treatment of acute lymphoblastic leukemia: antibodies and chimeric antigen receptors. Hematol Am Soc Hematol Educ Program. 2013;2013:131–7.

    Google Scholar 

  97. Raetz EA et al. Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: a Children’s Oncology Group Pilot Study. J Clin Oncol. 2008;26(22):3756–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Raetz EA, Bhatla T. Where do we stand in the treatment of relapsed acute lymphoblastic leukemia? Hematol Am Soc Hematol Educ Program. 2012;2012:129–36.

    Google Scholar 

  99. Advani A, Gundacker HL, Sala-Torra OL, Radich J, Lai R, Slovak ML, Lancet JE, Coutre S, Stuart KR, Mims MP, Stiff P, Appelbaum FR. Southwest Oncology Group Study S0530: a phase 2 trial of clofarabine/cytarabine for relapsed/refractory acute lymphoblastic leukemia. Blood. 2009;114(22):3094.

    Google Scholar 

  100. Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8(6):473–80.

    Article  CAS  PubMed  Google Scholar 

  101. Feld J et al. Linked-in: design and efficacy of antibody drug conjugates in oncology. Oncotarget. 2013;4(3):397–412.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ghetie V, Vitetta E. Immunotoxins in the therapy of cancer: from bench to clinic. Pharmacol Ther. 1994;63(3):209–34.

    Article  CAS  PubMed  Google Scholar 

  103. Kupchan SM et al. Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus. J Am Chem Soc. 1972;94(4):1354–6.

    Article  CAS  PubMed  Google Scholar 

  104. Hinman LM et al. Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res. 1993;53(14):3336–42.

    CAS  PubMed  Google Scholar 

  105. Mathur R, Weiner GJ. Picking the optimal target for antibody-drug conjugates. Am Soc Clin Oncol Educ Book. 2013. doi:10.1200/EdBook_AM.2013.33.e103.

  106. Shen BQ et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol. 2012;30(2):184–9.

    Article  CAS  PubMed  Google Scholar 

  107. Kreitman RJ, Pastan I. Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res. 2011;17(20):6398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mussai F et al. Cytotoxicity of the anti-CD22 immunotoxin HA22 (CAT-8015) against paediatric acute lymphoblastic leukaemia. Br J Haematol. 2010;150(3):352–8.

    Article  CAS  PubMed  Google Scholar 

  109. Wei H et al. Immunotoxin resistance via reversible methylation of the DPH4 promoter is a unique survival strategy. Proc Natl Acad Sci U S A. 2012;109(18):6898–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. DiJoseph JF et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004;103(5):1807–14.

    Article  CAS  PubMed  Google Scholar 

  111. Shor B, Gerber HP, Sapra P. Preclinical and clinical development of inotuzumabozogamicin in hematological malignancies. Mol Immunol. 2015;67(2 Pt A):107–16.

    Article  CAS  PubMed  Google Scholar 

  112. Portell CA, Advani AS. Novel targeted therapies in acute lymphoblastic leukemia. Leuk Lymphoma. 2014;55(4):737–48.

    Article  CAS  PubMed  Google Scholar 

  113. de Vries JF et al. The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills primary pediatric acute lymphoblastic leukemia cells. Leukemia. 2012;26(2):255–64.

    Article  PubMed  CAS  Google Scholar 

  114. Dijoseph JF et al. Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia. 2007;21(11):2240–5.

    Article  CAS  PubMed  Google Scholar 

  115. DiJoseph JF et al. Potent and specific antitumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma. Clin Cancer Res. 2004;10(24):8620–9.

    Article  CAS  PubMed  Google Scholar 

  116. Takeshita A et al. CMC-544 (inotuzumab ozogamicin), an anti-CD22 immuno-conjugate of calicheamicin, alters the levels of target molecules of malignant B-cells. Leukemia. 2009;23(7):1329–36.

    Article  CAS  PubMed  Google Scholar 

  117. Advani A et al. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin's lymphoma: results of a phase I study. J Clin Oncol. 2010;28(12):2085–93.

    Article  CAS  PubMed  Google Scholar 

  118. Kantarjian H et al. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer. 2013;119(15):2728–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Morley NJ, Marks DI. Inotuzumab ozogamicin in the management of acute lymphoblastic leukaemia. Expert Rev Anticancer Ther. 2016;16(2):159–64.

    Article  CAS  PubMed  Google Scholar 

  120. Fayad L et al. Safety and clinical activity of a combination therapy comprising two antibody-based targeting agents for the treatment of non-Hodgkin lymphoma: results of a phase I/II study evaluating the immunoconjugate inotuzumab ozogamicin with rituximab. J Clin Oncol. 2013;31(5):573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jabbour E, O'Brien S, Sasaki K, Thomas DA, Garcia-Manero G, Ravandi F, Borthakur G, Jain N, Konopleva M, Jacob J, Garris R, Cortes JE, Kantarjian H. Frontline Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-hyper-CVD) for older patients with acute lymphoblastic leukemia (ALL). Blood. 2015;126(23):83.

    Google Scholar 

  122. Sasaki K, Kantarjian HM, O'Brien S, Thomas DA, Ravandi F, Garcia-Manero G, Kadia T, Jain N, Konopleva M, Estrov Z, Takahashi K, Khouri MR, Jacob J, Garris R, Cortes JE, Jabbour E. Salvage chemotherapy with Inotuzumab ozogamicin (INO) combined with min-hyper-CVD for adult patients with relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL). Blood. 2015;126(23):3721.

    Google Scholar 

  123. DeAngelo A, Stelljes M, Martinelli G, et al. Efficacy and safety of inotuzumab ozogamizin (INO) vs. standard of care (SOC) in salvage 1 or 2 in patients with acute lymphoblastic leukemia (ALL): an ongoing global phase 3 study. Haematologica. 2015;100(S1). Abstract #LB2073.

    Google Scholar 

  124. Advani A, Stein AS, Kantarjian HM, Shustov AR, DeAngelo DJ, Ananthakrishnan R, Liau K, Vandendries E, Stock W. A phase II study of weekly inotuzumab ozogamicin (InO) in adult patients with CD22-positive acute lyhpmoblastic leukemia (ALL) in second or later salvage. Blood. 2014;124(21):2255.

    Google Scholar 

  125. Yilmaz M, Richard S, Jabbour E. The clinical potential of inotuzumab ozogamicin in relapsed and refractory acute lymphocytic leukemia. Ther Adv Hematol. 2015;6(5):253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Obrien S, Thomas D, Jorgensen J, Kebriaei P, Ravandi F, Kwari M, Faderl S, Cortes J, Jabbour E, York S, Garris R, Kantarjian H. Experience with 2 dose schedules of inotuzumab ozogamicin, single dose, and weekly, in refractory-relapsed acute lymphocytic leukemia (ALL). Blood. 2012;120:671.

    Article  CAS  Google Scholar 

  127. Blanc V et al. SAR3419: an anti-CD19-Maytansinoid Immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res. 2011;17(20):6448–58.

    Article  CAS  PubMed  Google Scholar 

  128. Carol H et al. The anti-CD19 antibody-drug conjugate SAR3419 prevents hematolymphoid relapse postinduction therapy in preclinical models of pediatric acute lymphoblastic leukemia. Clin Cancer Res. 2013;19(7):1795–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ribrag V et al. A dose-escalation study of SAR3419, an anti-CD19 antibody maytansinoid conjugate, administered by intravenous infusion once weekly in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2014;20(1):213–20.

    Article  CAS  PubMed  Google Scholar 

  130. Kantarjian HM et al. A phase II study of coltuximab ravtansine (SAR3419) monotherapy in patients with relapsed or refractory acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2016;16(3):139–45.

    Article  PubMed  Google Scholar 

  131. Schindler J et al. A phase I study of a combination of anti-CD19 and anti-CD22 immunotoxins (Combotox) in adult patients with refractory B-lineage acute lymphoblastic leukaemia. Br J Haematol. 2011;154(4):471–6.

    Article  CAS  PubMed  Google Scholar 

  132. Barta SK et al. Synergy of sequential administration of a deglycosylated ricin A chaincontaining combined anti-CD19 and anti-CD22 immunotoxin (Combotox) and cytarabine in a murine model of advanced acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53(10):1999–2003.

    Article  CAS  PubMed  Google Scholar 

  133. Herrera L et al. Treatment of SCID/human B cell precursor ALL with anti-CD19 and anti- CD22 immunotoxins. Leukemia. 2003;17(2):334–8.

    Article  CAS  PubMed  Google Scholar 

  134. Liu XY et al. Immunotoxins constructed with chimeric, short-lived anti-CD22 monoclonal antibodies induce less vascular leak without loss of cytotoxicity. MAbs. 2012;4(1):57–68.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bachanova V et al. Phase I study of a bispecific ligand-directed toxin targeting CD22 and CD19 (DT2219) for refractory B-cell malignancies. Clin Cancer Res. 2015;21(6):1267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Buser A et al. Impaired B-cell reconstitution in lymphoma patients undergoing allogeneic HSCT: an effect of pretreatment with rituximab? Bone Marrow Transplant. 2008;42(7):483–7.

    Article  CAS  PubMed  Google Scholar 

  137. Pouget JP et al. Clinical radioimmunotherapy – the role of radiobiology. Nat Rev Clin Oncol. 2011;8(12):720–34.

    Article  CAS  PubMed  Google Scholar 

  138. Gorin JB et al. Antitumor immunity induced after alpha irradiation. Neoplasia. 2014;16(4):319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kraeber-Bodere F et al. Radioimmunoconjugates for the treatment of cancer. Semin Oncol. 2014;41(5):613–22.

    Article  CAS  PubMed  Google Scholar 

  140. Morschhauser F et al. High rates of durable responses with anti-CD22 fractionated radioimmunotherapy: results of a multicenter, phase I/II study in non-Hodgkin's lymphoma. J Clin Oncol. 2010;28(23):3709–16.

    Article  CAS  PubMed  Google Scholar 

  141. Bodet-Milin C et al. Radioimmunotherapy of B-cell non-Hodgkin’s lymphoma. Front Oncol. 2013;3:177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Barbet J, Cherel M, Chatal JF. Alpha particles more promising than toxins? Eur J Nucl Med Mol Imaging. 2010;37(5):849–50.

    Article  PubMed  Google Scholar 

  143. Chatal JF et al. Different ways to improve the clinical effectiveness of radioimmunotherapy in solid tumors. J Cancer Res Ther. 2009;5(Suppl 1):S36–40.

    Article  CAS  PubMed  Google Scholar 

  144. Allen BJ. Can alpha-radioimmunotherapy increase efficacy for the systemic control of cancer? Immunotherapy. 2011;3(4):455–8.

    Article  PubMed  Google Scholar 

  145. Zalutsky MR et al. Radioimmunotargeting of malignant glioma by monoclonal antibody D2C7 reactive against both wild-type and variant III mutant epidermal growth factor receptors. Nucl Med Biol. 2012;39(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  146. Chevallier P et al. BCR-ABL1 molecular remission after 90Y-epratuzumab tetraxetan radioimmunotherapy in CD22+ Ph+ B-ALL: proof of principle. Eur J Haematol. 2013;91(6):552–6.

    Article  CAS  PubMed  Google Scholar 

  147. Chevallier P et al. (90)Y-labelled anti-CD22 epratuzumab tetraxetan in adults with refractory or relapsed CD22-positive B-cell acute lymphoblastic leukaemia: a phase 1 doseescalation study. Lancet Haematol. 2015;2(3):e108–17.

    Article  PubMed  Google Scholar 

  148. Bodet-Milin C et al. Radioimmunotherapy for treatment of acute leukemia. Semin Nucl Med. 2016;46(2):135–46.

    Article  PubMed  Google Scholar 

  149. Staerz UD, Kanagawa O, Bevan MJ. Hybrid antibodies can target sites for attack by T cells. Nature. 1985;314(6012):628–31.

    Article  CAS  PubMed  Google Scholar 

  150. Nagorsen D, Baeuerle PA. Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab. Exp Cell Res. 2011;317(9):1255–60.

    Article  CAS  PubMed  Google Scholar 

  151. Segal DM, Weiner GJ, Weiner LM. Bispecific antibodies in cancer therapy. Curr Opin Immunol. 1999;11(5):558–62.

    Article  CAS  PubMed  Google Scholar 

  152. Klinger M et al. Harnessing T cells to fight cancer with BiTE((R)) antibody constructs – past developments and future directions. Immunol Rev. 2016;270(1):193–208.

    Article  CAS  PubMed  Google Scholar 

  153. Loffler A et al. A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 2000;95(6):2098–103.

    CAS  PubMed  Google Scholar 

  154. Haas C et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology. 2009;214(6):441–53.

    Article  CAS  PubMed  Google Scholar 

  155. Brischwein K et al. Strictly target cell-dependent activation of T cells by bispecific singlechain antibody constructs of the BiTE class. J Immunother. 2007;30(8):798–807.

    Article  CAS  PubMed  Google Scholar 

  156. Dreier T et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer. 2002;100(6):690–7.

    Article  CAS  PubMed  Google Scholar 

  157. Brandl C et al. The effect of dexamethasone on polyclonal T cell activation and redirected target cell lysis as induced by a CD19/CD3-bispecific single-chain antibody construct. Cancer Immunol Immunother. 2007;56(10):1551–63.

    Article  CAS  PubMed  Google Scholar 

  158. Kischel R, Hausmann B, Baeuerle P, Kufer P. Effector memory T cells make a ajor contribution to redirected target cell lysis by T cell-engaging BiTE antibody MT110. Cancer Res. 2009;69:3252.

    Google Scholar 

  159. Maude SL et al. Managing cytokine release syndrome associated with novel T cellengaging therapies. Cancer J. 2014;20(2):119–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Glorius P et al. The novel tribody (CD20)(2)xCD16) efficiently triggers effector clel-mediated lysis of malignant B cells. Leukemia. 2013;27(1):190–201.

    Google Scholar 

  161. Holliger P, Prospero T, Winter G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci U S A. 1993;90(14):6444–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Moore PA et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. 2011;117(17):4542–51.

    Article  CAS  PubMed  Google Scholar 

  163. Kipriyanov SM et al. Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J Mol Biol. 1999;293(1):41–56.

    Article  CAS  PubMed  Google Scholar 

  164. Batlevi CL et al. Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol. 2016;13(1):25–40.

    Article  CAS  PubMed  Google Scholar 

  165. Reusch U et al. A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19(+) tumor cells. MAbs. 2015;7(3):584–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rothe A et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(26):4024–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mack M, Riethmuller G, Kufer P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc Natl Acad Sci U S A. 1995;92(15):7021–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Portell CA, Wenzell CM, Advani AS. Clinical and pharmacologic aspects of blinatumomab in the treatment of B-cell acute lymphoblastic leukemia. Clin Pharmacol. 2013;5(Suppl 1):5–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Offner S et al. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol. 2006;43(6):763–71.

    Article  CAS  PubMed  Google Scholar 

  170. Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2009;69(12):4941–4.

    Article  CAS  PubMed  Google Scholar 

  171. Topp MS et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012;120(26):5185–7.

    Article  CAS  PubMed  Google Scholar 

  172. Nagorsen D et al. Immunotherapy of lymphoma and leukemia with T-cell engaging BiTE antibody blinatumomab. Leuk Lymphoma. 2009;50(6):886–91.

    Article  CAS  PubMed  Google Scholar 

  173. Klinger M et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood. 2012;119(26):6226–33.

    Article  CAS  PubMed  Google Scholar 

  174. Topp MS et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29(18):2493–8.

    Article  CAS  PubMed  Google Scholar 

  175. Dreier T et al. T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3- bispecific single-chain antibody construct. J Immunol. 2003;170(8):4397–402.

    Article  CAS  PubMed  Google Scholar 

  176. Wu B, Hijazi Y, Wolf A, Brandl C, Sun Y-N, Yhu M. Pharmacokinetics (PK) of blinatumomab and its clinical implications. J Clin Oncol. 2013;31(15 suppl):3048. 31

    Google Scholar 

  177. Nagorsen D et al. Blinatumomab: a historical perspective. Pharmacol Ther. 2012;136(3):334–42.

    Article  CAS  PubMed  Google Scholar 

  178. Bargou R et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321(5891):974–7.

    Article  CAS  PubMed  Google Scholar 

  179. Goekbuget N, Dombret H, Bonifacio M, Reichle A, Graux C, Havelange V, Buss EC, Faul C, Bruggemann M, Ganser A, Stieglmaier J, Wessels H, Haddad V, Zugmaier G, Nagorsen D, Bargou RC. BLAST: a confirmatory, single-arm, phase 2 study of blinatumomab, a bispecific T-cell engager (BiTE) antibody construct, in patients with minimal residual disease B-precursor acute lymphoblastic leukemia (ALL). Blood. 2014;124(21):379.

    Google Scholar 

  180. Topp MS et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory Bprecursor acute lymphoblastic leukemia. J Clin Oncol. 2014;32(36):4134–40.

    Article  CAS  PubMed  Google Scholar 

  181. Zugmaier G et al. Long-term survival and T-cell kinetics in relapsed/refractory ALL patients who achieved MRD response after blinatumomab treatment. Blood. 2015;126(24):2578–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Handgretinger R et al. Complete remission after blinatumomab-induced donor T-cell activation in three pediatric patients with post-transplant relapsed acute lymphoblastic leukemia. Leukemia. 2011;25(1):181–4.

    Article  CAS  PubMed  Google Scholar 

  183. Topp MS et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  184. Buie LW et al. Blinatumomab: a first-in-class bispecific T-cell engager for precursor B-cell acute lymphoblastic leukemia. Ann Pharmacother. 2015;49(9):1057–67.

    Article  CAS  PubMed  Google Scholar 

  185. Schlegel P et al. Pediatric posttransplant relapsed/refractory B-precursor acute lymphoblastic leukemia shows durable remission by therapy with the T-cell engaging bispecific antibody blinatumomab. Haematologica. 2014;99(7):1212–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. von Stackelberg A, Zugmaier G, Handgretinger R, Locatelli F, Rizzari C, Trippett TM, Borkhardt A, Rheingold SR, Bader P, Bhojwani D, Cooper TM, DuBois SG, O'Brien MM, Zwaan CM, Holland C, Mergen N, Fischer A, Zhu M, Hijazi Y, Whitlock J, Gore L. A phase 1/2 study of blinatumomab in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Blood. 2013;122(21):70.

    Google Scholar 

  187. Kaplan JB, Grischenko M, Giles FJ. Blinatumomab for the treatment of acute lymphoblastic leukemia. Investig New Drugs. 2015;33(6):1271–9.

    Article  CAS  Google Scholar 

  188. Barrett DM, Teachey DT, Grupp SA. Toxicity management for patients receiving novel T-cell engaging therapies. Curr Opin Pediatr. 2014;26(1):43–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lee DW et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28.

    Article  CAS  PubMed  Google Scholar 

  190. Hijazi Y, Klinger M, Schub A, Wu B, Zhu M, Kufer P, Wolf A, Nagorsen D. Blinatumomab exposure and pharmacodynamic response in patients with non-Hodgkin lymphoma (NHL). J Clin Oncol. 2013;31(15 suppl):3051.

    Google Scholar 

  191. Zugmaier G et al. Long-term follow-up of serum immunoglobulin levels in blinatumomabtreated patients with minimal residual disease-positive B-precursor acute lymphoblastic leukemia. Blood Cancer J. 2014;4:244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Duell J, Dittrich M, Bedke T, Mueller T, Rasche L, Dandekar T, Einsele H, Topp MS. Crucial role of regulatory T cells in predicting the outcome of the T cell engaging antibody blinatumomab in relapsed and refractory B precursor ALL patients. Blood. 2014;124(21):2291.

    Google Scholar 

  193. d’Argouges S et al. Combination of rituximab with blinatumomab (MT103/MEDI-538), a T cell-engaging CD19-/CD3-bispecific antibody, for highly efficient lysis of human B lymphoma cells. Leuk Res. 2009;33(3):465–73.

    Article  PubMed  CAS  Google Scholar 

  194. Sun LL et al. Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies. Sci Transl Med. 2015;7(287):287ra70.

    Article  PubMed  Google Scholar 

  195. Tuscano JM et al. The Bs20x22 anti-CD20-CD22 bispecific antibody has more lymphomacidal activity than do the parent antibodies alone. Cancer Immunol Immunother. 2011;60(6):771–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Schuster FR et al. Immunotherapy with the trifunctional anti-CD20 x anti-CD3 antibody FBTA05 (Lymphomun) in paediatric high-risk patients with recurrent CD20-positive B cell malignancies. Br J Haematol. 2015;169(1):90–102.

    Article  CAS  PubMed  Google Scholar 

  197. Harjunpaa A et al. Complement activation in circulation and central nervous system after rituximab (anti-CD20) treatment of B-cell lymphoma. Leuk Lymphoma. 2001;42(4):731–8.

    Article  CAS  PubMed  Google Scholar 

  198. Iwamoto S et al. Flow cytometric analysis of de novo acute lymphoblastic leukemia in childhood: report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Int J Hematol. 2011;94(2):185–92.

    Article  PubMed  Google Scholar 

  199. Coustan-Smith E et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Aruffo A, Seed B. Molecular cloning of two CD7 (T-cell leukemia antigen) cDNAs by a COS cell expression system. EMBO J. 1987;6(11):3313–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Sempowski GD et al. Structure and function of the CD7 molecule. Crit Rev Immunol. 1999;19(4):331–48.

    CAS  PubMed  Google Scholar 

  202. Chabannon C, Wood P, Torok-Storb B. Expression of CD7 on normal human myeloid progenitors. J Immunol. 1992;149(6):2110–3.

    CAS  PubMed  Google Scholar 

  203. Rabinowich H et al. Expression and function of CD7 molecule on human natural killer cells. J Immunol. 1994;152(2):517–26.

    CAS  PubMed  Google Scholar 

  204. Foon KA, Todd 3rd RF. Immunologic classification of leukemia and lymphoma. Blood. 1986;68(1):1–31.

    CAS  PubMed  Google Scholar 

  205. Miwa H, Nakase K, Kita K. Biological characteristics of CD7(+) acute leukemia. Leuk Lymphoma. 1996;21(3–4):239–44.

    CAS  PubMed  Google Scholar 

  206. Reinhold U et al. CD7-negative T cells represent a separate differentiation pathway in a subset of post-thymic helper T cells. Immunology. 1996;89(3):391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Liu TY et al. Loss of CD7, independent of galectin-3 expression, implies a worse prognosis in adult T-cell leukaemia/lymphoma. Histopathology. 2009;54(2):214–20.

    Article  PubMed  Google Scholar 

  208. Fukumori T et al. CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res. 2003;63(23):8302–11.

    CAS  PubMed  Google Scholar 

  209. Hoyer KK et al. An anti-apoptotic role for galectin-3 in diffuse large B-cell lymphomas. Am J Pathol. 2004;164(3):893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Yang RY, Hsu DK, Liu FT. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A. 1996;93(13):6737–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Fishwild DM et al. Efficacy of an anti-CD7-ricin A chain immunoconjugate in a novel murine model of human T-cell leukemia. Cancer Res. 1992;52(11):3056–62.

    CAS  PubMed  Google Scholar 

  212. Flavell DJ et al. Comparison of the potency and therapeutic efficacy of the anti-CD7 immunotoxin HB2-saporin constructed with one or two saporin moieties per immunotoxin molecule. Br J Cancer. 1997;75(7):1035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Frankel AE et al. Therapy of patients with T-cell lymphomas and leukemias using an anti- CD7 monoclonal antibody-ricin A chain immunotoxin. Leuk Lymphoma. 1997;26(3–4):287–98.

    Article  CAS  PubMed  Google Scholar 

  214. Soler-Rodriguez AM et al. Ricin A-chain and ricin A-chain immunotoxins rapidly damage human endothelial cells: implications for vascular leak syndrome. Exp Cell Res. 1993;206(2):227–34.

    Article  CAS  PubMed  Google Scholar 

  215. Hamers-Casterman C et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8.

    Article  CAS  PubMed  Google Scholar 

  216. Cortez-Retamozo V et al. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. 2004;64(8):2853–7.

    Article  CAS  PubMed  Google Scholar 

  217. Heukers R et al. Targeting hepatocyte growth factor receptor (Met) positive tumor cells using internalizing nanobody-decorated albumin nanoparticles. Biomaterials. 2014;35(1):601–10.

    Article  CAS  PubMed  Google Scholar 

  218. Tang J, et al. Novel CD7-specific nanobody-based immunotoxins potently enhanced apoptosis of CD7-positive malignant cells. Oncotarget. 2016;7(23):34070–83.

    Google Scholar 

  219. Kipps TJ. The CD5 B cell. Adv Immunol. 1989;47:117–85.

    Article  CAS  PubMed  Google Scholar 

  220. Subira D et al. Brief report. CD19/CD5 acute lymphoblastic leukemia. Med Pediatr Oncol. 1998;31(6):551–2.

    Article  CAS  PubMed  Google Scholar 

  221. Van Vlierberghe P et al. ETV6 mutations in early immature human T cell leukemias. J Exp Med. 2011;208(13):2571–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Chopra A et al. Immunophenotypic analysis of T-acute lymphoblastic leukemia. A CD5- based ETP-ALL perspective of non-ETP T-ALL. Eur J Haematol. 2014;92(3):211–8.

    Article  CAS  PubMed  Google Scholar 

  223. Zhu DM et al. Mechanisms of cellular avidity regulation in CD2-CD58-mediated T cell adhesion. ACS Chem Biol. 2006;1(10):649–58.

    Article  CAS  PubMed  Google Scholar 

  224. Kozarsky KF et al. An anti-CD2 monoclonal antibody that both inhibits and stimulates T cell activation recognizes a subregion of CD2 distinct from known ligand-binding sites. Cell Immunol. 1993;150(2):235–46.

    Article  CAS  PubMed  Google Scholar 

  225. Ding Y et al. A novel murine model for the assessment of human CD2-related reagents in vivo. J Immunol. 1996;157(5):1863–9.

    CAS  PubMed  Google Scholar 

  226. Teh SJ et al. CD2 regulates the positive selection and function of antigen-specific CD4- CD8+ T cells. Blood. 1997;89(4):1308–18.

    CAS  PubMed  Google Scholar 

  227. Zhang Z et al. Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD2 monoclonal antibody, MEDI-507. Blood. 2003;102(1):284–8.

    Article  CAS  PubMed  Google Scholar 

  228. O'Mahony D et al. EBV-related lymphoproliferative disease complicating therapy with the anti-CD2 monoclonal antibody, siplizumab, in patients with T-cell malignancies. Clin Cancer Res. 2009;15(7):2514–22.

    Article  PubMed  CAS  Google Scholar 

  229. Shields DJ et al. Detection of Epstein-Barr virus in transformations of low-grade B-cell lymphomas after fludarabine treatment. Mod Pathol. 1997;10(11):1151–9.

    CAS  PubMed  Google Scholar 

  230. Brochstein JA et al. Phase-1 study of siplizumab in the treatment of pediatric patients with at least grade II newly diagnosed acute graft-versus-host disease. Pediatr Transplant. 2010;14(2):233–41.

    Article  CAS  PubMed  Google Scholar 

  231. Parish CR. Cancer immunotherapy: the past, the present and the future. Immunol Cell Biol. 2003;81(2):106–13.

    Article  CAS  PubMed  Google Scholar 

  232. Andersen MH. The targeting of immunosuppressive mechanisms in hematological malignancies. Leukemia. 2014;28(9):1784–92.

    Article  CAS  PubMed  Google Scholar 

  233. Khalil DN et al. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13(6):394.

    Article  CAS  PubMed  Google Scholar 

  234. Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev. 2008;224:166–82.

    Article  CAS  PubMed  Google Scholar 

  235. Bonifaz L et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med. 2002;196(12):1627–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol. 2002;3(7):611–8.

    Article  CAS  PubMed  Google Scholar 

  237. Ostrov DA et al. Structure of murine CTLA-4 and its role in modulating T cell responsiveness. Science. 2000;290(5492):816–9.

    Article  CAS  PubMed  Google Scholar 

  238. Quandt D et al. A new role of CTLA-4 on B cells in thymus-dependent immune responses in vivo. J Immunol. 2007;179(11):7316–24.

    Article  CAS  PubMed  Google Scholar 

  239. Walunas TL et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1(5):405–13.

    Article  CAS  PubMed  Google Scholar 

  240. Takahashi T et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192(2):303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Matheu MP et al. Imaging regulatory T cell dynamics and CTLA4-mediated suppression of T cell priming. Nat Commun. 2015;6:6219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Wing K et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322(5899):271–5.

    Article  CAS  PubMed  Google Scholar 

  243. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192(2):295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Perkins D et al. Regulation of CTLA-4 expression during T cell activation. J Immunol. 1996;156(11):4154–9.

    CAS  PubMed  Google Scholar 

  245. Chan DV et al. Differential CTLA-4 expression in human CD4+ versus CD8+ T cells is associated with increased NFAT1 and inhibition of CD4+ proliferation. Genes Immun. 2014;15(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  246. Greene JL et al. Covalent dimerization of CD28/CTLA-4 and oligomerization of CD80/CD86 regulate T cell costimulatory interactions. J Biol Chem. 1996;271(43):26762–71.

    Article  CAS  PubMed  Google Scholar 

  247. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.

    Article  CAS  PubMed  Google Scholar 

  248. Kwon ED et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci U S A. 1997;94(15):8099–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Shrikant P, Khoruts A, Mescher MF. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity. 1999;11(4):483–93.

    Article  CAS  PubMed  Google Scholar 

  250. Sledzinska A et al. Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy. Mol Oncol. 2015;9(10):1936–65.

    Article  CAS  PubMed  Google Scholar 

  251. Keir ME et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.

    Article  CAS  PubMed  Google Scholar 

  252. Freeman GJ et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Blank C et al. Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro. Int J Cancer. 2006;119(2):317–27.

    Article  CAS  PubMed  Google Scholar 

  254. Bryan LJ, Gordon LI. Blocking tumor escape in hematologic malignancies: the anti-PD- 1 strategy. Blood Rev. 2015;29(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  255. Inman BA et al. PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCGinduced granulomata: associations with localized stage progression. Cancer. 2007;109(8):1499–505.

    Article  CAS  PubMed  Google Scholar 

  256. Zhang L et al. Programmed death-ligand 1 (PD-L1) may play a role in malignant glioma infiltration. Med Hypotheses. 2015;85(2):127–9.

    Article  CAS  PubMed  Google Scholar 

  257. Hamanishi J et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A. 2007;104(9):3360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Dong H et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5(12):1365–9.

    Article  CAS  PubMed  Google Scholar 

  259. Kozako T et al. PD-1/PD-L1 expression in human T-cell leukemia virus type 1 carriers and adult T-cell leukemia/lymphoma patients. Leukemia. 2009;23(2):375–82.

    Article  CAS  PubMed  Google Scholar 

  260. Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy. Blood. 2013;121(5):734–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Tamura H et al. Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia. 2013;27(2):464–72.

    Article  CAS  PubMed  Google Scholar 

  262. Christiansson L et al. Increased level of myeloid-derived suppressor cells, programmed death receptor ligand 1/programmed death receptor 1, and soluble CD25 in Sokal high risk chronic myeloid leukemia. PLoS ONE. 2013;8(1):e55818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Hatta Y, Koeffler HP. Role of tumor suppressor genes in the development of adult T cell leukemia/lymphoma (ATLL). Leukemia. 2002;16(6):1069–85.

    Article  CAS  PubMed  Google Scholar 

  264. Brahmer JR et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Topalian SL et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Berger R et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14(10):3044–51.

    Article  CAS  PubMed  Google Scholar 

  267. Kwon BS, Weissman SM. cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci U S A. 1989;86(6):1963–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Wolfl M et al. Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood. 2007;110(1):201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Schmied S et al. Analysis of the functional WT1-specific T-cell repertoire in healthy donors reveals a discrepancy between CD4(+) and CD8(+) memory formation. Immunology. 2015;145(4):558–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Shuford WW et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med. 1997;186(1):47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Kim DH et al. 4-1BB engagement costimulates NKT cell activation and exacerbates NKT cell ligand-induced airway hyperresponsiveness and inflammation. J Immunol. 2008;180(4):2062–8.

    Article  CAS  PubMed  Google Scholar 

  272. So T, Lee SW, Croft M. Immune regulation and control of regulatory T cells by OX40 and 4-1BB. Cytokine Growth Factor Rev. 2008;19(3–4):253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Palma C et al. CD137 and CD137 ligand constitutively coexpressed on human T and B leukemia cells signal proliferation and survival. Int J Cancer. 2004;108(3):390–8.

    Article  CAS  PubMed  Google Scholar 

  274. Snell LM et al. T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy. Immunol Rev. 2011;244(1):197–217.

    Article  CAS  PubMed  Google Scholar 

  275. Wang C et al. Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev. 2009;229(1):192–215.

    Article  CAS  PubMed  Google Scholar 

  276. Zheng G, Wang B, Chen A. The 4-1BB costimulation augments the proliferation of CD4+CD25+ regulatory T cells. J Immunol. 2004;173(4):2428–34.

    Article  CAS  PubMed  Google Scholar 

  277. Elpek KG et al. Ex vivo expansion of CD4+CD25+FoxP3+ T regulatory cells based on synergy between IL-2 and 4-1BB signaling. J Immunol. 2007;179(11):7295–304.

    Article  CAS  PubMed  Google Scholar 

  278. Phan GQ et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyteassociated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A. 2003;100(14):8372–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Zhong RK et al. CTLA-4 blockade by a human MAb enhances the capacity of AML-derived DC to induce T-cell responses against AML cells in an autologous culture system. Cytotherapy. 2006;8(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  280. Ansell SM et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2009;15(20):6446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Bashey A et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113(7):1581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Wolchok JD et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 2010;11(2):155–64.

    Article  CAS  PubMed  Google Scholar 

  283. Powles T et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558–62.

    Article  CAS  PubMed  Google Scholar 

  284. Vick E, Mahadevan D. Programming the immune checkpoint to treat hematologic malignancies. Expert Opin Investig Drugs. 2016;25(7):755–70.

    Google Scholar 

  285. Ohaegbulam KC et al. Human cancer immunotherapy with antibodies to the PD-1 and PDL1 pathway. Trends Mol Med. 2015;21(1):24–33.

    Article  CAS  PubMed  Google Scholar 

  286. Shin DS, Ribas A. The evolution of checkpoint blockade as a cancer therapy: what’s here, what’s next? Curr Opin Immunol. 2015;33:23–35.

    Article  CAS  PubMed  Google Scholar 

  287. Shu CA, Rizvi NA. Into the clinic with Nivolumab and Pembrolizumab. Oncologist. 2016;21(5):527–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Farooqui MZ et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 2015;16(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  289. Larkin J et al. Combined Nivolumab and ipilimumab or monotherapy in untreated Melanoma. N Engl J Med. 2015;373(1):23–34.

    Article  PubMed  CAS  Google Scholar 

  290. Green MR et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Yamamoto R et al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood. 2008;111(6):3220–4.

    Article  CAS  PubMed  Google Scholar 

  292. Wilcox RA et al. B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders. Blood. 2009;114(10):2149–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Andorsky DJ et al. Programmed death ligand 1 is expressed by non-hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res. 2011;17(13):4232–44.

    Article  CAS  PubMed  Google Scholar 

  294. Dorfman DM et al. Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. Am J Surg Pathol. 2006;30(7):802–10.

    Article  PubMed  PubMed Central  Google Scholar 

  295. Chemnitz JM et al. RNA fingerprints provide direct evidence for the inhibitory role of TGFbeta and PD-1 on CD4+ T cells in Hodgkin lymphoma. Blood. 2007;110(9):3226–33.

    Article  CAS  PubMed  Google Scholar 

  296. Moskowitz C, Ribrag V, Michot J-M, Martinelli G, Zinzani PL, Gutierrez M, De Maeyer G, Jacob AG, Giallella K, Weimer Anderson J, Derosier M, Wang J, Yang Z, Rubin E, Rose S, Shipp MA, Armand P. PD-1 blockade with the monoclonal antibody pembrolizumab (MK-3475) in patients with classical Hodgkin lymphoma after brentuxiimab vedotin failure: preliminary results from a phase 1b study (keynote-013). Blood. 2014;124(21):290.

    Google Scholar 

  297. Lesokhin AM, ANsell SM, Armand P, Scott EC, Halwani A, Gutierrez M, Millenson MM, Cohen AD, Schuster SJ, Lebovic D, Dhodapkar MV, Avigan D, Chapuy B, Ligon AH, Rodig SJ, Cattry D, Zhu L, Grosso JF, Kim SY, Shipp MA, Borrello I, Timmerman J. Preliminary results of a phase I study of nivolumab (BMS-936558) in patients with relapsed or refractory lymphoid malignancies. Blood. 2014;124(21):291.

    Google Scholar 

  298. Brahmer JR et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Selby M, Engelhardt J, Lu L-S, Quigley M, Wang C, Chen B, Korman AJ. Antitumor activity of concurrent blockade of immune checkpoint molecules CTLA-4 and PD-1 in preclinical models. J Clin Oncol. 2013;31(15 suppl):3061.

    Google Scholar 

  300. Hamid O et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Hardy B et al. A monoclonal antibody against a human B lymphoblastoid cell line induces tumor regression in mice. Cancer Res. 1994;54(22):5793–6.

    CAS  PubMed  Google Scholar 

  302. Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012;24(2):207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Infante JR, Powderly JD, Burris HA, Kittaneh M, Houston Grice J, Smothers JF, Brett S, Fleming ME, May R, Marshall S, Devenport M, Pilemer S, Pardoll DM, Chen L, Langermann S, LoRusso P. Clinical and pharmacodynamic (PD) results of a phase I trial with AMP-224 (B7-DC Fc) that binds to the PD-1 receptor. J Clin Oncol. 2013;31(15 suppl):3044.

    Google Scholar 

  304. Melero I et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med. 1997;3(6):682–5.

    Article  CAS  PubMed  Google Scholar 

  305. Wilcox RA et al. Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J Immunol. 2002;169(8):4230–6.

    Article  CAS  PubMed  Google Scholar 

  306. Shindo Y et al. Combination immunotherapy with 4-1BB activation and PD-1 blockade enhances antitumor efficacy in a mouse model of subcutaneous tumor. Anticancer Res. 2015;35(1):129–36.

    CAS  PubMed  Google Scholar 

  307. Chen S et al. Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res. 2015;3(2):149–60.

    Article  CAS  PubMed  Google Scholar 

  308. Jensen BA et al. The availability of a functional tumor targeting T-cell repertoire determines the anti-tumor efficiency of combination therapy with anti-CTLA-4 and anti-4- 1BB antibodies. PLoS ONE. 2013;8(6):e66081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Williams EL et al. Immunomodulatory monoclonal antibodies combined with peptide vaccination provide potent immunotherapy in an aggressive murine neuroblastoma model. Clin Cancer Res. 2013;19(13):3545–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Kohrt HE et al. CD137 stimulation enhances the antilymphoma activity of anti-CD20 antibodies. Blood. 2011;117(8):2423–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Kohrt HE et al. Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer. J Clin Invest. 2012;122(3):1066–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Chen SH et al. Rejection of disseminated metastases of colon carcinoma by synergism of IL-12 gene therapy and 4-1BB costimulation. Mol Ther. 2000;2(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  313. May Jr KF et al. Anti-4-1BB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T cells. Cancer Res. 2002;62(12):3459–65.

    CAS  PubMed  Google Scholar 

  314. Sznol M, Hodi FS, Margolin K, McDermott DF, Ernstoff MS, Kirkwood JM, Wojtaszek C, Feltquate D, Logan T, Phase I. study of BMS-663513, a fully human anti- CD137 agonist monoclonal antibody, n paitnets (pts) with advanced cancer (CA). J Clin Oncol. 2008;26(15 suppl):3007.

    Article  CAS  Google Scholar 

  315. Fisher TS et al. Targeting of 4-1BB by monoclonal antibody PF-05082566 enhances T-cell function and promotes anti-tumor activity. Cancer Immunol Immunother. 2012;61(10):1721–33.

    Article  CAS  PubMed  Google Scholar 

  316. Gopal AK, Bartlett NL, Levy R, Houot R, Smith SD, Segal NH, Thall AD, Mugundu G, Huang B, Davis C, Kohrt HE. A phase I study of PF-05082566 (anti-4-1BB) + rituximab in patients with CD20+ NHL. J Clin Oncol. 2015;33(15 suppl):3004.

    Google Scholar 

  317. Gros A et al. PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014;124(5):2246–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Kohrt HE et al. Combination strategies to enhance antitumor ADCC. Immunotherapy. 2012;4(5):511–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Dubrot J et al. Treatment with anti-CD137 mAbs causes intense accumulations of liver T cells without selective antitumor immunotherapeutic effects in this organ. Cancer Immunol Immunother. 2010;59(8):1223–33.

    Article  CAS  PubMed  Google Scholar 

  320. Ascierto PA et al. Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin Oncol. 2010;37(5):508–16.

    Article  CAS  PubMed  Google Scholar 

  321. Segal NH, Gopal AK, Bhatia S, Kohrt HE, Levy R, Pishvaian MJ, Houot R, Bartlett N, Nghiem P, Kronenberg SA, Thall AD, Mugundu G, Huang B, Davis C. A phase 1 study of PF-05082566 (anti-4-1BB) in patients with advanced cancer. J Clin Oncol. 2014;32(15 suppl):3007.

    Google Scholar 

  322. Ishida T et al. CXC chemokine receptor 3 and CC chemokine receptor 4 expression in T-cell and NK-cell lymphomas with special reference to clinicopathological significance for peripheral T-cell lymphoma, unspecified. Clin Cancer Res. 2004;10(16):5494–500.

    Article  CAS  PubMed  Google Scholar 

  323. Ishida T et al. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clin Cancer Res. 2003;9(10 Pt 1):3625–34.

    CAS  PubMed  Google Scholar 

  324. Ishida T et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol. 2012;30(8):837–42.

    Article  CAS  PubMed  Google Scholar 

  325. Yonekura K et al. Effect of anti-CCR4 monoclonal antibody (mogamulizumab) on adult Tcell leukemia-lymphoma: cutaneous adverse reactions may predict the prognosis. J Dermatol. 2014;41(3):239–44.

    Article  CAS  PubMed  Google Scholar 

  326. le Viseur C et al. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell. 2008;14(1):47–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Arend von Stackelberg, who introduced me to the exciting world of ALL, the ALL-REZ study center (C. van Schewick, F. Meyr, T. Groeneveld, A. Kretschmann and J. Dobke), Berlin, Germany, and Ansgar Santel for his continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Chen-Santel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen-Santel, C. (2017). Monoclonal Antibodies in Pediatric Acute Lymphoblastic Leukemia. In: Vora, A. (eds) Childhood Acute Lymphoblastic Leukemia. Springer, Cham. https://doi.org/10.1007/978-3-319-39708-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39708-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39707-8

  • Online ISBN: 978-3-319-39708-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics