Skip to main content

Diagnostic Flow Cytometry and Immunophenotypic Classification

  • Chapter
  • First Online:
Childhood Acute Lymphoblastic Leukemia

Abstract

Haemopoiesis begins with a quiescent stem cell that gives rise to daughter cells capable of differentiation along multiple lineages. Differentiation progresses in a series of stages to produce functional, mature cells of all lineages and is orchestrated by sequential gene expression [1]. CD antigens are cell surface proteins which have diverse functional roles in haemopoiesis including signal transduction, enzymes, growth factor receptors and adhesion molecules and can be widely expressed or restricted to a specific stage of maturation/activation of a defined lineage. Thus, patterns of CD antigen expression can identify the lineage, maturation and functional stages of cells and are invaluable for evaluating normal haemopoiesis and the malignant state, including ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Payne KJ, Crooks GM. Human hematopoietic lineage commitment. Immunol Rev. 2002;187:48–64.

    Article  PubMed  Google Scholar 

  2. Campana D and Pui C. Diagnosis and treatment of childhood acute lymphoblastic leukemia. In: Wiernik PH, et al., editors. Neoplastic diseases of the blood. New York, Springer; 2013.

    Google Scholar 

  3. Campana D, Thompson JS, Amlot P, Brown S, Janossy G. The cytoplasmic expression of CD3 antigens in normal and malignant cells of the T lymphoid lineage. J Immunol. 1987;138(2):648–55.

    CAS  PubMed  Google Scholar 

  4. Campana D, van Dongen JJ, Mehta A, Coustan-Smith E, Wolvers-Tettero IL, Ganeshaguru K, et al. Stages of T-cell receptor protein expression in T-cell acute lymphoblastic leukemia. Blood. 1991;77(7):1546–54.

    CAS  PubMed  Google Scholar 

  5. Campana D, Behm FG. Immunophenotyping of leukemia. J Immunol Methods. 2000;243(1–2):59–75.

    Article  CAS  PubMed  Google Scholar 

  6. Weiss LM, Bindl JM, Picozzi VJ, Link MP, Warnke RA. Lymphoblastic lymphoma: an immunophenotype study of 26 cases with comparison to T cell acute lymphoblastic leukemia. Blood. 1986;67(2):474–8.

    CAS  PubMed  Google Scholar 

  7. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma M, Wang X, Tang J, Xue H, Chen J, Pan C, et al. Early T-cell precursor leukemia: a subtype of high risk childhood acute lymphoblastic leukemia. Front Med. 2012;6(4):416–20.

    Article  PubMed  Google Scholar 

  10. Inukai T, Kiyokawa N, Campana D, Coustan-Smith E, Kikuchi A, Kobayashi M, et al. Clinical significance of early T-cell precursor acute lymphoblastic leukaemia: results of the Tokyo Children’s Cancer Study Group Study L99–15. Br J Haematol. 2012;156(3):358–65.

    Article  CAS  PubMed  Google Scholar 

  11. Jain N, Lamb AV, O’Brien S, Ravandi F, Konopleva M, Jabbour E, et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood. 2016;127(15):1863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patrick K, Wade R, Goulden N, Mitchell C, Moorman AV, Rowntree C, et al. Outcome for children and young people with early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol. 2014;166(3):421–4.

    Article  CAS  PubMed  Google Scholar 

  13. Wood BL, Winter SS, Dunsmore KP, Devidas M, Chen S, Asselin B, et al. T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the early thymic precursor (ETP) immunophenotype, and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children’s Oncology Group (COG). Blood. 2014;124(21):1.

    Google Scholar 

  14. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  15. Jeha S, Behm F, Pei D, Sandlund JT, Ribeiro RC, Razzouk BI, et al. Prognostic significance of CD20 expression in childhood B-cell precursor acute lymphoblastic leukemia. Blood. 2006;108(10):3302–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Irving J, Jesson J, Virgo P, Case M, Minto L, Eyre L, et al. Establishment and validation of a standard protocol for the detection of minimal residual disease in B lineage childhood acute lymphoblastic leukemia by flow cytometry in a multi-center setting. Haematologica. 2009;94(6):870–4.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6.

    CAS  PubMed  Google Scholar 

  18. Bene MC, Bernier M, Casasnovas RO, Castoldi G, Knapp W, Lanza F, et al. The reliability and specificity of c-kit for the diagnosis of acute myeloid leukemias and undifferentiated leukemias. The European Group for the Immunological Classification of Leukemias (EGIL). Blood. 1998;92(2):596–9.

    CAS  PubMed  Google Scholar 

  19. Borowitz MJ, Bene M, Harris NL, Porwit A, Matutes E. Acute leukaemias of ambiguous lineage. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC Press; 2008. p. 150–5.

    Google Scholar 

  20. Matutes E, Pickl WF, Van’t Veer M, Morilla R, Swansbury J, Strobl H, et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood. 2011;117(11):3163–71.

    Article  CAS  PubMed  Google Scholar 

  21. Yan L, Ping N, Zhu M, Sun A, Xue Y, Ruan C, et al. Clinical, immunophenotypic, cytogenetic, and molecular genetic features in 117 adult patients with mixed-phenotype acute leukemia defined by WHO-2008 classification. Haematologica. 2012;97(11):1708–12.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Weinberg OK, Arber DA. Mixed-phenotype acute leukemia: historical overview and a new definition. Leukemia. 2010;24(11):1844–51.

    Article  CAS  PubMed  Google Scholar 

  23. van den Ancker W, Terwijn M, Westers TM, Merle PA, van Beckhoven E, Drager AM, et al. Acute leukemias of ambiguous lineage: diagnostic consequences of the WHO 2008 classification. Leukemia. 2010;24(7):1392–6.

    Article  PubMed  Google Scholar 

  24. Weinberg OK, Seetharam M, Ren L, Alizadeh A, Arber DA. Mixed phenotype acute leukemia: a study of 61 cases using World Health Organization and European Group for the Immunological Classification of Leukaemias criteria. Am J Clin Pathol. 2014;142(6):803–8.

    Article  PubMed  Google Scholar 

  25. Mejstrikova E, Volejnikova J, Fronkova E, Zdrahalova K, Kalina T, Sterba J, et al. Prognosis of children with mixed phenotype acute leukemia treated on the basis of consistent immunophenotypic criteria. Haematologica. 2010;95(6):928–35.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hrusak O, Luks A, Janotova I, Mejstrikova E, Vaskova M, Bleckmann K, et al. Acute leukemias of ambiguous lineage; study on 247 pediatric patients. Blood. 2015;126(23):252.

    Google Scholar 

  27. Borowitz MJ, Shuster J, Carroll AJ, Nash M, Look AT, Camitta B, et al. Prognostic significance of fluorescence intensity of surface marker expression in childhood B-precursor acute lymphoblastic leukemia. A Pediatric Oncology Group Study. Blood. 1997;89(11):3960–6.

    CAS  PubMed  Google Scholar 

  28. Cario G, Rhein P, Mitlohner R, Zimmermann M, Bandapalli OR, Romey R, et al. High CD45 surface expression determines relapse risk in children with precursor B-cell and T-cell acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica. 2014;99(1):103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Porcu M, Kleppe M, Gianfelici V, Geerdens E, De Keersmaecker K, Tartaglia M, et al. Mutation of the receptor tyrosine phosphatase PTPRC (CD45) in T-cell acute lymphoblastic leukemia. Blood. 2012;119(19):4476–9.

    Article  CAS  PubMed  Google Scholar 

  30. Mannelli F, Gianfaldoni G, Intermesoli T, Cattaneo C, Borlenghi E, Cortelazzo S, et al. CD20 expression has no prognostic role in Philadelphia-negative B-precursor acute lymphoblastic leukemia: new insights from the molecular study of minimal residual disease. Haematologica. 2012;97(4):568–71.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wilson K, Case M, Minto L, Bailey S, Bown N, Jesson J, et al. Flow minimal residual disease monitoring of candidate leukemic stem cells defined by the immunophenotype, CD34+CD38lowCD19+ in B-lineage childhood acute lymphoblastic leukemia. Haematologica. 2010;95(4):679–83.

    Article  PubMed  Google Scholar 

  32. Hrusak O, Porwit-MacDonald A. Antigen expression patterns reflecting genotype of acute leukemias. Leukemia. 2002;16(7):1233–58.

    Article  CAS  PubMed  Google Scholar 

  33. Wuchter C, Harbott J, Schoch C, Schnittger S, Borkhardt A, Karawajew L, et al. Detection of acute leukemia cells with mixed lineage leukemia (MLL) gene rearrangements by flow cytometry using monoclonal antibody 7.1. Leukemia. 2000;14(7):1232–8.

    Article  CAS  PubMed  Google Scholar 

  34. Harewood L, Robinson H, Harris R, Al-Obaidi MJ, Jalali GR, Martineau M, et al. Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia. 2003;17(3):547–53.

    Article  CAS  PubMed  Google Scholar 

  35. Gerr H, Zimmermann M, Schrappe M, Dworzak M, Ludwig WD, Bradtke J, et al. Acute leukaemias of ambiguous lineage in children: characterization, prognosis and therapy recommendations. Br J Haematol. 2010;149(1):84–92.

    Article  PubMed  Google Scholar 

  36. Campana D. Minimal residual disease monitoring in childhood acute lymphoblastic leukemia. Curr Opin Hematol. 2012;19(4):313–8.

    Article  CAS  PubMed  Google Scholar 

  37. Dekking E, van der Velden VH, Bottcher S, Bruggemann M, Sonneveld E, Koning-Goedheer A, et al. Detection of fusion genes at the protein level in leukemia patients via the flow cytometric immunobead assay. Best Pract Res Clin Haematol. 2010;23(3):333–45.

    Article  CAS  PubMed  Google Scholar 

  38. Weerkamp F, Dekking E, Ng YY, van der Velden VH, Wai H, Bottcher S, et al. Flow cytometric immunobead assay for the detection of BCR-ABL fusion proteins in leukemia patients. Leukemia. 2009;23(6):1106–17.

    Article  CAS  PubMed  Google Scholar 

  39. Hoffman LM, Gore L. Blinatumomab, a bi-specific anti-CD19/CD3 BiTE((R)) antibody for the treatment of acute lymphoblastic leukemia: perspectives and current pediatric applications. Front Oncol. 2014;4:63.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28.

    Article  CAS  PubMed  Google Scholar 

  41. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. IntReALL. http://www.intreall-fp7.eu/ [25/3/2015]. Available from: http://www.intreall-fp7.eu/.

  43. Raetz EA, Cairo MS, Borowitz MJ, Blaney SM, Krailo MD, Leil TA, et al. Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: a Children’s Oncology Group Pilot Study. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(22):3756–62.

    Article  CAS  Google Scholar 

  44. Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(31):5175–81.

    Article  CAS  Google Scholar 

  45. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005–15.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Irving J, Matheson E, Minto L, Blair H, Case M, Halsey C, et al. Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood. 2014;124(23):3420–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Irving .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Irving, J. (2017). Diagnostic Flow Cytometry and Immunophenotypic Classification. In: Vora, A. (eds) Childhood Acute Lymphoblastic Leukemia. Springer, Cham. https://doi.org/10.1007/978-3-319-39708-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39708-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39707-8

  • Online ISBN: 978-3-319-39708-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics