Skip to main content

Epidemiology and Etiology of Childhood ALL

  • Chapter
  • First Online:
Book cover Childhood Acute Lymphoblastic Leukemia

Abstract

Despite extensive research, the etiology of childhood acute lymphoblastic leukemia (ALL) remains largely unknown. There is growing evidence that childhood ALL arises from in utero chromosomal abnormalities that can lead to clonal expansion of pre-leukemic precursor cells. The risk factors for ALL in children are multiple, most notably common germline polymorphisms and rare genetic syndromes that directly influence hematopoiesis and cell cycling, as well as infection-related aberrant DNA editing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SEER Cancer Statistics review 1975–2012 [Internet]. National Cancer Institute; [cited 2016 Feb 29]. Available from: http://seer.cancer.gov/csr/1975_2012/browse_csr.php.

  2. Hjalgrim LL, Rostgaard K, Schmiegelow K, Soderhall S, Kolmannskog S, Vettenranta K, et al. Age- and sex-specific incidence of childhood leukemia by immunophenotype in the nordic countries. JNCI J Natl Cancer Inst. 2003;95(20):1539–44.

    Article  PubMed  Google Scholar 

  3. Linabery AM, Ross JA. Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer. 2008;112(2):416–32.

    Article  PubMed  Google Scholar 

  4. Parkin DM, Kramárová E, Draper GJ, Masuyer E, et al. International incidence of childhood cancer. Lyon: IARC Scientific Publications; 1998.

    Google Scholar 

  5. Stiller CA, Parkin DM. Geographic and ethnic variations in the incidence of childhood cancer. Br Med Bull. 1996;52(4):682–703.

    Article  CAS  PubMed  Google Scholar 

  6. Schmiegelow K, Vestergaard T, Nielsen SM, Hjalgrim H. Etiology of common childhood acute lymphoblastic leukemia: the adrenal hypothesis. Leukemia. 2008;22(12):2137–41.

    Article  CAS  PubMed  Google Scholar 

  7. Greaves MF, Colman SM, Beard ME, Bradstock K, Cabrera ME, Chen PM, et al. Geographical distribution of acute lymphoblastic leukaemia subtypes: second report of the collaborative group study. Leukemia. 1993;7(1):27–34.

    CAS  PubMed  Google Scholar 

  8. Biondi A, Cimino G, Pieters R, Pui CH. Biological and therapeutic aspects of infant leukemia. Blood. 2000;96(1):24–33.

    CAS  PubMed  Google Scholar 

  9. Pieters R, Schrappe M, De Paola L, Hann I, De Giulio R, Felice M, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukemia (Interfant-99): an observational study and a multicenter randomized trial. Lancet. 2007;370(9583):240–50.

    Article  CAS  PubMed  Google Scholar 

  10. Szczepanski T, Harrison CJ, van Dongen JJM. Genetic aberrations in paediatric acute leukaemias and implications for management of patients. Lancet Oncol Elsevier Ltd. 2010;11(9):880–889.

    Google Scholar 

  11. Forestier E, Schmiegelow K. The incidence peaks of the childhood acute leukemias reflect specific cytogenetic aberrations. J Pediatr Hematol Oncol. 2006;28(8):486–95.

    Article  CAS  PubMed  Google Scholar 

  12. Rajalekshmy KR, Abitha AR, Pramila R, Gnanasagar T, Shanta V. Immunophenotypic analysis of T-cell acute lymphoblastic leukaemia in Madras, India. Leuk Res. 1997;21(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  13. Gmidène A, Sennana H, Elghezal H, Ziraoui S, Youssef YB, Elloumi M, Issaoui L, Harrabi I, Raynaud SSA. Cytogenetic analysis of 298 newly diagnosed cases of acute lymphoblastic leukaemia in Tunisia. Hematol Oncol. 2008;26:91–7.

    Article  PubMed  Google Scholar 

  14. Williams CK. Childhood leukemia and lymphoma: African experience supports a role for environmental factors. Cancer Res. 2012;72(8 Suppl):5484.

    Article  Google Scholar 

  15. Liang D-C, Shih L-Y, Yang C-P, Hung I-J, Liu H-C, Jaing T-H, et al. Frequencies of ETV6–RUNX1 fusion and hyperdiploidy in pediatric acute lymphoblastic leukemia are lower in far East than West. Pediatr Blood Cancer. 2010;55:430–3.

    Article  PubMed  Google Scholar 

  16. McNally RJQ, Birch JM, Taylor GM, Eden OB. Incidence of childhood precursor B-cell acute lymphoblastic leukaemia in north-west England. Lancet. 2000;356:484–5.

    Article  Google Scholar 

  17. Hrusak O, Trka J, Zuna J, Polouckova A, Kalina T, Stary J. Acute lymphoblastic leukemia incidence during socioeconomic transition: selective increase in children from 1 to 4 years. Leukemia. 2002;16:720–5.

    Article  CAS  PubMed  Google Scholar 

  18. Fraumeni JF, Miller RW. Epidemiology of human leukemia. J Natl Cancer Inst. 1967;38(4):593–603.

    PubMed  Google Scholar 

  19. Spix C, Eletr D, Blettner M, Kaatsch P. Temporal trends in the incidence rate of childhood cancer in Germany 1987–2004. Int J Cancer. 2008;122(8):1859–67.

    Article  CAS  PubMed  Google Scholar 

  20. Greaves MF, Maia AT, Wiemels JL, Ford AM. Leukemia in twins: lessons in natural history. Blood. 2013;102(7):2321–33.

    Article  CAS  Google Scholar 

  21. Ford AM, Ridge SA, Cabrera ME, Mahmoud H, Steel CM, Chan LC, et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature. 1993;363(6427):358–60.

    Article  CAS  PubMed  Google Scholar 

  22. Gill Super HJ, Rothberg PG, Kobayashi H, Freeman AI, Diaz MO, Rowley JD. Clonal, nonconstitutional rearrangements of the MLL gene in infant twins with acute lymphoblastic leukemia: in utero chromosome rearrangement of 11q23. Blood. 1994;83(3):641–4.

    CAS  PubMed  Google Scholar 

  23. Maia AT, van der Velden VHJ, Harrison CJ, Szczepanski T, Williams MD, Griffiths MJ, et al. Prenatal origin of hyperdiploid acute lymphoblastic leukemia in identical twins. Leukemia. 2003;17(11):2202–6.

    Article  CAS  PubMed  Google Scholar 

  24. Kadan-Lottick NS, Kawashima T, Tomlinson G, Friedman DL, Yasui Y, Mertens AC, et al. The risk of cancer in twins: a report from the childhood cancer survivor study. Pediatr Blood Cancer. 2006;46(5):476–81.

    Article  PubMed  Google Scholar 

  25. Ford AM, Pombo-de-Oliveira MS, McCarthy KP, MacLean JM, Carrico KC, Vincent RF, et al. Monoclonal origin of concordant T-cell malignancy in identical twins. Blood. 1997;89(1):281–5.

    CAS  PubMed  Google Scholar 

  26. Gale KB, Ford AM, Repp R, Borkhardt A, Keller C, Eden OB, et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci U S A. 1997;94(25):13950–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G, et al. Prenatal origin of acute lymphoblastic leukemia in children. Lancet. 1999;354(9189):1499–503.

    Article  CAS  PubMed  Google Scholar 

  28. Fasching K, Panzer S, Haas OA, Marschalek R, Gadner H, Panzer-Grümayer ER. Presence of clone-specific antigen receptor gene rearrangements at birth indicates an in utero origin of diverse types of early childhood acute lymphoblastic leukemia. Blood. 2000;95(8):2722–4.

    CAS  PubMed  Google Scholar 

  29. Yagi T, Hibi S, Tabata Y, Kuriyama K, Teramura T, Hashida T, et al. Detection of clonotypic IGH and TCR rearrangements in the neonatal blood spots of infants and children with B-cell precursor acute lymphoblastic leukemia. Blood. 2000;96(1):264–8.

    CAS  PubMed  Google Scholar 

  30. Maia AT, Ford AM, Reza Jalali G, Harrison CJ, Malcolm Taylor G, Eden OB, et al. Molecular tracking of leukemogenesis in a triplet pregnancy. Blood. 2001;98(2):478–82.

    Article  CAS  PubMed  Google Scholar 

  31. Renate Panzer-Grümayer E, Fasching K, Panzer S, Hettinger K, Schmitt K, Stöckler-lpsiroglu S, et al. Nondisjunction of chromosomes leading to hyperdiploid childhood B-cell precursor acute lymphoblastic leukemia is an early event during leukemogenesis. Blood. 2002;100(1):347–9.

    Article  PubMed  CAS  Google Scholar 

  32. Taub JW, Konrad MA, Ge Y, Naber JM, Scott JS, Matherly LH, et al. High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood. 2002;99(8):2992–6.

    Article  CAS  PubMed  Google Scholar 

  33. Hjalgrim LL, Madsen HO, Melbye M, Jørgensen P, Christiansen M, Andersen MT, et al. Presence of clone-specific markers at birth in children with acute lymphoblastic leukaemia. Br J Cancer. 2002;87(9):994–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wiemels JL, Leonard BC, Wang Y, Segal MR, Hunger SP, Smith MT, et al. Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2002;99(23):15101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McHale CM, Wiemels JL, Zhang L, Ma X, Buffler PA, Guo W, et al. Prenatal origin of TEL-AML1-positive acute lymphoblastic leukemia in children born in California. Genes Chromosom Cancer. 2003;37(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  36. Teuffel O, Betts DR, Dettling M, Schaub R, Schäfer BW, Niggli FK. Prenatal origin of separate evolution of leukemia in identical twins. Leukemia. 2004;18(10):1624–9.

    Article  CAS  PubMed  Google Scholar 

  37. Maia AT, Koechling J, Corbett R, Metzler M, Wiemels JL, Greaves M. Protracted postnatal natural histories in childhood leukemia. Genes Chromosom Cancer. 2004;39(4):335–40.

    Article  CAS  PubMed  Google Scholar 

  38. Maia AT, Tussiwand R, Cazzaniga G, Rebulla P, Colman S, Biondi A, et al. Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood. Genes Chromosom Cancer. 2004;40(1):38–43.

    Article  PubMed  Google Scholar 

  39. Fischer S, Mann G, Konrad M, Metzler M, Ebetsberger G, Jones N, et al. Screening for leukemia- and clone-specific markers at birth in children with T-cell precursor ALL suggests a predominantly postnatal origin. Blood. 2007;110(8):3036–8.

    Article  CAS  PubMed  Google Scholar 

  40. Gruhn B, Taub JW, Ge Y, Beck JF, Zell R, Häfer R, et al. Prenatal origin of childhood acute lymphoblastic leukemia, association with birth weight and hyperdiploidy. Leukemia. 2008;22(9):1692–7.

    Article  CAS  PubMed  Google Scholar 

  41. Wiemels JL, Kang M, Chang JS, Zheng L, Kouyoumji C, Zhang L, et al. Backtracking RAS mutations in high hyperdiploid childhood acute lymphoblastic leukemia. Blood Cells Mol Dis. 2010;45(3):186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eguchi-ishimae M, Eguchi M, Kempski H, Greaves M, Dc W. NOTCH 1 mutation can be an early, prenatal genetic event in T-ALL brief report NOTCH1 mutation can be an early, prenatal genetic event in T-ALL. Blood. 2011;111(1):376–8.

    Article  CAS  Google Scholar 

  43. Mansur MB, van Delft FW, Colman SM, Furness CL, Gibson J, Emerenciano M, et al. Distinctive genotypes in infants with T-cell acute lymphoblastic leukaemia. Br J Haematol. 2015;171(4):574–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S, Green J, Colman S, Piacibello W, Buckle V, Tsuzuki S, Mel Greaves TE. Initiating and cancer-propagating cells in TEL-AML1–associated childhood leukemia. Science (80-). 2008;339:1095–9.

    Google Scholar 

  45. Tsuzuki S, Seto M, Greaves M, Enver T. Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proc Natl Acad Sci U S A. 2004;101(22):8443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fischer M, Schwieger M, Horn S, Niebuhr B, Ford A, Roscher S, et al. Defining the oncogenic function of the TEL/AML1 (ETV6/RUNX1) fusion protein in a mouse model. Oncogene. 2005;24(51):7579–91.

    Article  CAS  PubMed  Google Scholar 

  47. Wiemels JL, Ford AM, Van Wering ER, Postma A, Greaves M. Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood. 1999;94(3):1057–62.

    CAS  PubMed  Google Scholar 

  48. Lilljebjorn H, Heidenblad M, Nilsson B, Lassen C, Horvat A, Heldrup J, et al. Combined high-resolution array-based comparative genomic hybridization and expression profiling of ETV6/RUNX1-positive acute lymphoblastic leukemias reveal a high incidence of cryptic Xq duplications and identify several putative target genes within the c. Leukemia. 2007;21(10):2137–44.

    Article  CAS  PubMed  Google Scholar 

  49. Tsuzuki S, Karnan S, Horibe K, Matsumoto K, Kato K, Inukai T, et al. Genetic abnormalities involved in t(12;21) TEL-AML1 acute lymphoblastic leukemia: analysis by means of array-based comparative genomic hybridization. Cancer Sci. 2007;98(5):698–706.

    Article  CAS  PubMed  Google Scholar 

  50. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758–64.

    Article  CAS  PubMed  Google Scholar 

  51. Bateman CM, Colman SM, Chaplin T, Young BD, Eden TO, Bhakta M, et al. Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Leukemia. 2010;115(17):3553–8.

    CAS  Google Scholar 

  52. Ma Y, Dobbins SE, Sherborne AL, Chubb D, Galbiati M, Cazzaniga G, et al. Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2013;110(18):7429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mori H, Colman SM, Xiao Z, Ford AM, Healy LE, Donaldson C, et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci U S A. 2002;99(12):8242–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Greaves M, Colman SM, Kearney LFA. To the editor: fusion genes in cord blood. Blood. 2011;117(1):369–70.

    Article  CAS  PubMed  Google Scholar 

  55. Schmiegelow K, Lausten-Thomsen U, Madsen HO, Nersting J, Hjalgrim H. Challenges and pitfalls in the mapping of the natural history of t(12;21)–positive childhood ALL. Blood. 2011;117(1):370–2.

    Article  CAS  Google Scholar 

  56. Kusk MS, Lausten-Thomsen U, Andersen MK, Olsen M, Hjalgrim H, Schmiegelow K. False positivity of ETV6/RUNX1 detected by FISH in healthy newborns and adults. Pediatr Blood Cancer. 2014;61:1704–6.

    Article  PubMed  Google Scholar 

  57. Lausten-thomsen U, Madsen HO, Vestergaard TR, Hjalgrim H, Dc W, Nersting J. Prevalence of t(12;21)[ETV6-RUNX1]-positive cells in healthy neonates. Blood. 2012;117(1):186–9.

    Article  CAS  Google Scholar 

  58. Zuna J, Madzo J, Krejci O, Zemanova Z, Kalinova M, Muzikova K, Zapotocky M, Starkova J, Hrusak O, Horak J, Trka J. ETV6/RUNX1 (TEL/AML1) is a frequent prenatal first hit in childhood leukemia. Blood. 2011;117(1):369–70.

    Article  Google Scholar 

  59. Bateman CM, Alpar D, Ford AM, Colman SM, Wren D, Morgan M, et al. Evolutionary trajectories of hyperdiploid ALL in monozygotic twins. Leukemia. Nature Publishing Group. 2014;29(1):58–65.

    Google Scholar 

  60. Paulsson K, Lilljebjörn H, Biloglav A, Olsson L, Rissler M, Castor A, et al. The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat Genet Nature Publishing Group. 2015;47(6):672–677.

    Google Scholar 

  61. Kinlen L. Evidence for an infective cause of childhood leukaemia: comparison of a Scottish new town with nuclear reprocessing sites in Britain. Lancet. 1988;332(8624):1323–7.

    Article  Google Scholar 

  62. Kreis C, Grotzer M, Hengartner H, Spycher BD, Spycher BD. Space-time clustering of childhood cancers in Switzerland: a nationwide study. Int J Cancer. 2016;2135:2127.

    Article  CAS  Google Scholar 

  63. Greaves MF. Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia. 1988;2(2):120–5.

    CAS  PubMed  Google Scholar 

  64. Greaves M. Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer. 2006;6(3):193–203.

    Article  CAS  PubMed  Google Scholar 

  65. Wiemels J. Perspectives on the causes of childhood leukemia. Chem Biol Interact. Elsevier Ireland Ltd. 2012;196(3):59–67.

    Google Scholar 

  66. Strachan DP. Hay fever, hygiene, and household size. Br Med J. 1989;299(November):1259–60.

    Article  CAS  Google Scholar 

  67. Greaves M. The “delayed infection” (aka “hygiene”) hypothesis for childhood leukaemia. In: The hygiene hypothesis and darwinian medicine. Birkhauser Verlag Basel, Switzerland. 2009. p. 239–55.

    Google Scholar 

  68. Osterholm MT. Infectious disease in child day care: an overview. Pediatrics. 1994;94:987–90.

    CAS  PubMed  Google Scholar 

  69. Urayama KY, Buffler PA, Gallagher ER, Ayoob JM, Ma X. A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. Int J Epidemiol. 2010;39(3):718–32.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rudant J, Lightfoot T, Urayama KY, Petridou E, Dockerty JD, Magnani C, et al. Childhood acute lymphoblastic leukemia and indicators of early immune stimulation: a childhood leukemia international consortium study. Am J Epidemiol. 2015;181(8):549–62.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kwan ML, Buffler PA, Abrams B, Kiley VA. Breastfeeding and the risk of childhood leukemia: a meta-analysis. Public Health Rep. 2004;119(6):521–35.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Martin RM, Gunnell D, Owen CG, Smith GD. Breast-feeding and childhood cancer: a systematic review with metaanalysis. Int J Cancer. 2005;117(6):1020–31.

    Article  CAS  PubMed  Google Scholar 

  73. Altieri A, Castro F, Bermejo JL, Hemminki K. Number of siblings and the risk of lymphoma, leukemia, and myeloma by histopathology. Cancer Epidemiol Biomark Prev. 2006;15(7):1281–6.

    Article  Google Scholar 

  74. Von Behren J, Spector LG, Mueller BA, Carozza SE, Chow EJ, Fox EE, et al. Birth order and risk of childhood cancer: a pooled analysis from five US States. Int J Cancer. 2011;128(11):2709–16.

    Article  CAS  PubMed  Google Scholar 

  75. Ma X, Does MB, Metayer C, Russo C, Wong A, Buffler PA. Vaccination history and risk of childhood leukaemia. Int J Epidemiol. 2005;34(5):1100–9.

    Article  PubMed  Google Scholar 

  76. Auvinen A, Hakulinen T, Groves F. Haemophilus influenzae type B vaccination and risk of childhood leukaemia in a vaccine trial in Finland. Br J Cancer. 2000;83(7):956–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Groves FD, Gridley G, Wacholder S, Shu XO, Robison LL, Neglia JP, et al. Infant vaccinations and risk of childhood acute lymphoblastic leukaemia in the USA. Br J Cancer. 1999;81(1):175–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. MacArthur AC, McBride ML, Spinelli JJ, Tamaro S, Gallagher RP, Theriault GP. Risk of childhood leukemia associated with vaccination, infection, and medication use in childhood: the Cross-Canada childhood leukemia study. Am J Epidemiol. 2008;167(5):598–606.

    Article  PubMed  Google Scholar 

  79. Mallol-Mesnard N, Menegaux F, Auvrignon A, Auclerc MF, Bertrand Y, Nelken B, et al. Vaccination and the risk of childhood acute leukaemia: the ESCALE study (SFCE). Int J Epidemiol. 2007;36(1):110–6.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chang JS, Tsai CR, Tsai YW, Wiemels JL. Medically diagnosed infections and risk of childhood leukaemia: a population-based case-control study. Int J Epidemiol. 2012;41(4):1050–9.

    Article  PubMed  Google Scholar 

  81. Cardwell CR, McKinney PA, Patterson CC, Murray LJ. Infections in early life and childhood leukaemia risk: a UK case-control study of general practitioner records. Br J Cancer. 2008;99(9):1529–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Roman E, Simpson J, Ansell P, Kinsey S, Mitchell CD, McKinney PA, et al. Childhood acute lymphoblastic leukemia and infections in the first year of life: a report from the United Kingdom Childhood Cancer Study. Am J Epidemiol. 2007;165(5):496–504.

    Article  CAS  PubMed  Google Scholar 

  83. Vestergaard T, Rostgaard K, Grau K, Schmiegelow K, Hjalgrim H. Hospitalisation for infection prior to diagnosis of acute lymphoblastic leukaemia in children. Pediatr Blood Cancer. 2013;60:428–32.

    Article  PubMed  Google Scholar 

  84. Crouch S, Lightfoot T, Simpson J, Smith A, Ansell P, Roman E. Infectious illness in children subsequently diagnosed with acute lymphoblastic leukemia: modeling the trends from birth to diagnosis. Am J Epidemiol. 2012;176(5):402–8.

    Article  PubMed  Google Scholar 

  85. Jourdan-Da Silva N, Perel Y, Méchinaud F, Plouvier E, Gandemer V, Lutz P, et al. Infectious diseases in the first year of life, perinatal characteristics and childhood acute leukaemia. Br J Cancer. 2004;90(1):139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rosenbaum PF, Buck GM, Brecher ML. Allergy and infectious disease histories and the risk of childhood acute lymphoblastic leukaemia. Paediatr Perinat Epidemiol. 2005;19(2):152–64.

    Article  PubMed  Google Scholar 

  87. Neglia JP, Linet MS, Shu XO, Severson RK, Potter JD, Mertens AC, et al. Patterns of infection and day care utilization and risk of childhood acute lymphoblastic leukaemia. Br J Cancer. 2000;82(1):234–40.

    Article  CAS  PubMed  Google Scholar 

  88. Perrillat F, Clavel J, Auclerc MF, Baruchel A, Leverger G, Nelken B, Philippe N, Schaison G, Sommelet D, Vilmer EHD. Day-care, early common infections and childhood acute leukaemia: a multicentre French case-control study. Br J Cancer. 2002;86(7):1064–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Urayama KY, Ma X, Selvin S, Metayer C, Chokkalingam AP, Wiemels JL, et al. Early life exposure to infections and risk of childhood acute lymphoblastic leukemia. Int J Cancer. 2011;128(7):1632–43.

    Article  CAS  PubMed  Google Scholar 

  90. Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, Tubio J, et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet Nature Publishing Group. 2014;46(2):116–125.

    Google Scholar 

  91. Swaminathan S, Klemm L, Park E, Papaemmanuil E, Ford A, Kweon S-M, et al. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nat Immunol. 2015;16(7):766–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Martin-Lorenzo A, Hauer J, Vicente-Duenas C, Auer F, Gonzalez-Herrero I, Garcia-Ramirez I, et al. Infection exposure is a causal factor in B-precursor acute lymphoblastic leukemia as a result of Pax5 inherited susceptibility. Cancer Discov. 2015;5:1328–43.

    Article  CAS  PubMed  Google Scholar 

  93. Hjalgrim LL, Westergaard T, Rostgaard K, Schmiegelow K, Melbye M, Hjalgrim H, et al. Birth weight as a risk factor for childhood leukemia: a meta-analysis of 18 epidemiologic studies. Am J Epidemiol. 2003;158(8):724–35.

    Article  PubMed  Google Scholar 

  94. Doll R, Wakeford R. Risk of childhood cancer from fetal irradiation. Br J Radiol. The British Institute of Radiology. 1997;70(830):130–139.

    Google Scholar 

  95. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wakeford R. The cancer epidemiology of radiation. Oncogene. 2004;23(38):6404–28.

    Article  CAS  PubMed  Google Scholar 

  97. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci U S A. 2003;100(24):13761–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wakeford R, Kendall GM, Little MP. The proportion of childhood leukaemia incidence in Great Britain that may be caused by natural background ionizing radiation. Leukemia Nature Publishing Group. 2009;23(4):770–776.

    Google Scholar 

  99. Raaschou-Nielsen O, Andersen CE, Andersen HP, Gravesen P. Domestic radon and childhood cancer in Denmark. Epidemiology. 2008;19(4):536–43.

    PubMed  Google Scholar 

  100. Tong J, Qin L, Cao Y, Li J, Zhang J, Nie J, et al. Environmental radon exposure and childhood leukemia. J Toxic Environ Health B. 2012;15(5):332–47.

    Article  CAS  Google Scholar 

  101. Hauri D, Spycher B, Huss A, Zimmermann F, Grotzer M, von der Weid N, Weber D, Spoerri A, Kuehni CRM. Domestic radon exposure and risk of childhood cancer: a prospective census-based cohort study. Environ Health Perspect. 2013;121(10):1239–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Schüz J, Ahlbom A. Exposure to electromagnetic fields and the risk of childhood leukaemia: a review. Radiat Prot Dosim. 2008;132(2):202–11.

    Article  Google Scholar 

  103. Schüz J. Exposure to extremely low-frequency magnetic fields and the risk of childhood cancer: update of the epidemiological evidence. Prog Biophys Mol Biol. 2011;107(3):339–42.

    Article  PubMed  Google Scholar 

  104. Schüz J, Dasenbrock C, Ravazzani P, Röösli M, Schär P, Bounds P, et al. Extremely low-frequency magnetic fields and the risk of childhood leukemia: a risk assessment by the ARIMMORA consortium. Environ Health Perspect. 2015;37:1–7.

    Google Scholar 

  105. Merzenich H, Schmiedel S, Bennack S, Brüggemeyer H, Philipp J, Blettner M, et al. Childhood leukemia in relation to radio frequency electromagnetic fields in the vicinity of TV and radio broadcast transmitters. Am J Epidemiol. 2008;168(10):1169–78.

    Article  PubMed  Google Scholar 

  106. Elliott P, Toledano MB, Bennett J, Beale L, de Hoogh K, Best N, et al. Mobile phone base stations and early childhood cancers: case-control study. BMJ. 2010;340:c3077.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sergentanis TN, Thomopoulos TP, Gialamas SP, Karalexi MA, Biniaris-Georgallis SI, Kontogeorgi E, et al. Risk for childhood leukemia associated with maternal and paternal age. Eur J Epidemiol. Springer Netherlands. 2015;30(12):1229–1261.

    Google Scholar 

  108. Yan K, Xu X, Xu X, Liu X, Wang X, Hua S, et al. The associations between maternal factors during pregnancy and the risk of childhood acute lymphoblastic leukemia: a, meta-analysis. Pediatr Blood Cancer. 2015;14(5):1526–31.

    Google Scholar 

  109. Orsi L, Rudant J, Ajrouche R, Leverger G, Baruchel A, Nelken B, et al. Parental smoking, maternal alcohol, coffee and tea consumption during pregnancy, and childhood acute leukemia: the ESTELLE study. Cancer Causes Control Springer International Publishing. 2015;26(7):1003–1017.

    Google Scholar 

  110. Ferreira JD, Couto AC, Emerenciano M, Pombo-de-Oliveira MS, Koifman S. Maternal alcohol consumption during pregnancy and early age leukemia risk in Brazil. Biomed Res Int. 2015;2015:732495.

    PubMed  PubMed Central  Google Scholar 

  111. Milne E, Greenop KR, Scott RJ, de Klerk NH, Bower C, Ashton LJ, et al. Parental alcohol consumption and risk of childhood acute lymphoblastic leukemia and brain tumors. Cancer Causes Control. 2013;24(2):391–402.

    Article  PubMed  Google Scholar 

  112. Liu R, Zhang L, McHale CM, Hammond SK. Paternal smoking and risk of childhood acute lymphoblastic leukemia: systematic review and meta-analysis. J Oncol. 2011;2011:16.

    Article  Google Scholar 

  113. Dockerty JD, Herbison P, Skegg DCG, Elwood M. Vitamin and mineral supplements in pregnancy and the risk of childhood acute lymphoblastic leukaemia: a case-control study. BMC Public Health. 2007;7:136.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Milne E, Royle JA, Miller M, Bower C, De Klerk NH, Bailey HD, et al. Maternal folate and other vitamin supplementation during pregnancy and risk of acute lymphoblastic leukemia in the offspring. Int J Cancer. 2010;126(11):2690–9.

    CAS  PubMed  Google Scholar 

  115. Goh YI, Bollano E, Einarson TR, Koren G. Prenatal multivitamin supplementation and rates of pediatric cancers: a meta-analysis. Clin Pharmacol Ther. 2007;81(5):685–91.

    Article  CAS  PubMed  Google Scholar 

  116. Fear NT, Roman E, Ansell P, Simpson J, Day N, Eden OB. Vitamin K and childhood cancer: a report from the United Kingdom Childhood Cancer Study. Br J Cancer. 2003;89:1228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Parker L, Cole M, Craft AW, Hey EN. Neonatal vitamin K administration and childhood cancer in the north of England: retrospective case-control study. BMJ. 1998;316:189–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Infante-Rivard C, Weichenthal S. Pesticides and childhood cancer: an update of Zahm and Ward’s 1998 review. J Toxic Environ Health B. 2007;10(1–2):81–99.

    Article  CAS  Google Scholar 

  119. Nasterlack M. Pesticides and childhood cancer: An update. Int J Hyg Environ Health. 2007;210(5):645–57.

    Article  CAS  PubMed  Google Scholar 

  120. Bailey HD, Infante-Rivard C, Metayer C, Clavel J, Lightfoot T, Kaatsch P, et al. Home pesticide exposures and risk of childhood leukemia: findings from the childhood leukemia international consortium. Int J Cancer. 2015;137(11):2644–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Alexander FE, Patheal SL, Biondi A, Fusion MLLG, Brandalise S, Cabrera M, et al. Transplacental chemical exposure and risk of infant leukemia with MLL gene. Fusion. 2001;61:2542–6.

    Google Scholar 

  122. Spector LG, Xie Y, Robison LL, Spector LG, Xie Y, Robison LL, et al. Maternal diet and infant leukemia: the DNA topoisomerase II inhibitor hypothesis: a report from the children ’ s oncology group. Cancer Epidemiol Biomark Prev. 2005;14:651–5.

    Article  CAS  Google Scholar 

  123. Sankila R, Olsen JH, Anderson H, Garwicz S, Glattre E, Hertz H, Langmark F, Lanning M, Møller T, Hraf P. Risk of cancer among offspring of childhood-cancer survivors. N Engl J Med. 1998:1339–44.

    Google Scholar 

  124. Hawkins MM, Draper GJ, Winter DL. Cancer in the offspring of survivors of childhood leukaemia and non-Hodgkin lymphomas. Br J Cancer. 1995;71(6):1335–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mulvihill JJ, Connelly RR, Austin DF, Cook JW, Holmes FF, Krauss MR, et al. Cancer in offspring of long-term survivors of childhood and adolescent cancer. Lancet. 1987;2283:813–7.

    Article  Google Scholar 

  126. Hawkins M, Draper G, Smith R. Cancer among 1,348 offspring of survivors of childhood cancer. Int J Cancer. 1989;43:975–8.

    Article  CAS  PubMed  Google Scholar 

  127. Kharazmi E, da Silva Filho MI, Pukkala E, Sundquist K, Thomsen H, Hemminki K. Familial risks for childhood acute lymphocytic leukaemia in Sweden and Finland: far exceeding the effects of known germline variants. Br J Haematol. 2012;159:585–8.

    PubMed  Google Scholar 

  128. Schmiegelow K, Lausten Thomsen U, Baruchel A, Pacheco CE, Pieters R, Pombo-de-Oliveira MS, et al. High concordance of subtypes of childhood acute lymphoblastic leukemia within families: a from sibships with multiple cases of leukemia. Leukemia. 2012;26(4):675–81.

    Article  CAS  PubMed  Google Scholar 

  129. Enciso-Mora V, Hosking FJ, Sheridan E, Kinsey SE, Lightfoot T, Roman E, et al. Common genetic variation contributes significantly to the risk of childhood B-cell precursor acute lymphoblastic leukemia. Leukemia. Nature Publishing Group. 2012;26(10):2212–2215.

    Google Scholar 

  130. Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505(7483):302–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kratz CP, Stanulla M, Cavé H. Genetic predisposition to acute lymphoblastic leukemia: overview on behalf of the I-BFM ALL Host Genetic Variation Working Group. Eur J Med Genet. 2015;59:1–5.

    Google Scholar 

  132. Morrell D, Cromartie E, Swift M. Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J Natl Cancer Inst. 1986;77(1):89–92.

    CAS  PubMed  Google Scholar 

  133. Liberzon E, Avigad S, Stark B, Zilberstein J, Freedman L, Gorfine M, et al. Germ-line ATM gene alterations are associated with susceptibility to sporadic T-cell acute lymphoblastic leukemia in children. Genes Chromosom Cancer. 2004;39(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  134. Gatti R. Ataxia-Telangiectasia. 1999 Mar 19 [Updated 2010 Mar 11]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993–2016.

    Google Scholar 

  135. Sanz MM, German J. Bloom’s syndrome. 2006 Mar 22 [Updated 2013 Mar 28]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993–2016.

    Google Scholar 

  136. Wimmer K, Kratz CP, Vasen HFA, Caron O, Colas C, Entz-Werle N, et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium “care for CMMRD” (C4CMMRD). J Med Genet. 2014;51(6):355–65.

    Article  CAS  PubMed  Google Scholar 

  137. Malkin D, Nichols KE, Zelley K, Schiffman JD. Predisposition to pediatric and hematologic cancers: a moving target. Am Soc Clin Oncol Educ Book. 2014;34:e44–55.

    Google Scholar 

  138. Li Y, Schwab C, Ryan SL, Papaemmanuil E, Robinson HM, Jacobs P, et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature. 2014;508(7494):98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Harrison CJ, Schwab C. Constitutional abnormalities of chromosome 21 predispose to iAMP21-acute lymphoblastic leukaemia. Eur J Med Genet. Elsevier Masson SAS. 2016;59(3):162–165.

    Google Scholar 

  140. Hickey F, Hickey E, Summar KL. Medical update for children with down syndrome for the pediatrician and family practitioner. Adv Pediatr Elsevier Inc. 2012;59(1):137–157.

    Google Scholar 

  141. Santoro SL, Martin LJ, Hopkin RJ. Screening for hematological disorders in mosaic down syndrome: parent report of experiences. Clin Pediatr (Phila). 2016;55(5):421–7.

    Article  Google Scholar 

  142. Hasle H, Clemmensen IH, Mikkelsen M. Risks of leukaemia and solid tumours in individuals with down’s syndrome. Lancet. 2000;355(9199):165–9.

    Article  CAS  PubMed  Google Scholar 

  143. Topka S, Vijai J, Walsh MF, Jacobs L, Maria A, Villano D, et al. Germline ETV6 mutations confer susceptibility to acute lymphoblastic leukemia and thrombocytopenia. PLoS Genet. 2015;11(6):e1005262.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Moriyama T, Metzger ML, Wu G, Nishii R, Qian M, Devidas M, et al. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncol Elsevier Ltd. 2015;16(16):1659–1666.

    Google Scholar 

  145. Zhang MY, Churpek JE, Keel SB, Walsh T, Lee MK, Loeb KR, et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet. 2015;47(2):180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Noetzli L, Lo RW, Lee-Sherick AB, Callaghan M, Noris P, Savoia A, et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet Nature Publishing Group. 2015;47(5):535–538.

    Google Scholar 

  147. Shimamura A, Alter BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev. 2010;24:101–22.

    Google Scholar 

  148. Alter BP. Cancer in Fanconi anemia, 1927–2001. Cancer. 2003;97(2):425–40.

    Article  PubMed  Google Scholar 

  149. Alter BP, Kupfer G. Fanconi Anemia. 2002 Feb 14 [Updated 2013 Feb 7]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993–2016.

    Google Scholar 

  150. Swift M. Fanconi’s anaemia in the genetics of neoplasia. Nature. 1971;230(5293):370–3.

    Article  CAS  PubMed  Google Scholar 

  151. Bougeard G, Renaux-Petel M, Flaman JM, Charbonnier C, Fermey P, Belotti M, et al. Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncologia. 2015;33(21):2345–52.

    Article  CAS  Google Scholar 

  152. Lalloo F, Varley J, Ellis D, Moran A, O’Dair L, Pharoah P, et al. Prediction of pathogenic mutations in patients with early-onset breast cancer by family history. Lancet. 2003;361(9363):1101–2.

    Article  CAS  PubMed  Google Scholar 

  153. Gonzalez KD, Noltner KA, Buzin CH, Gu D, Wen-Fong CY, Nguyen VQ, et al. Beyond li fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol. 2009;27(8):1250–6.

    Article  CAS  PubMed  Google Scholar 

  154. Stiller CA, Chessells JM, Fitchett M. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer. 1994;70(5):969–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Evans DG, Howard E, Giblin C, Clancy T, Spencer H, Huson SM, et al. Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am J Med Genet Part A. 2010;152(2):327–32.

    Article  Google Scholar 

  156. Lammert M, Friedman JM, Kluwe L, Mautner VF. Prevalence of neurofibromatosis 1 in German children at elementary school enrollment. Arch Dermatol. 2005;141(1):71–4.

    Article  PubMed  Google Scholar 

  157. Pastorczak A, Górniak P, Sherborne A, Hosking F, Trelińska J, Lejman M, et al. Role of 657del5 NBN mutation and 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B) and 14q11.2 (CEBPE) variation and risk of childhood ALL in the Polish population. Leuk Res. 2011;35(11):1534–6.

    Article  CAS  PubMed  Google Scholar 

  158. Ochs H, Smith E, Puck J. Primary immunodeficiency diseases: a molecular and cellular approach. New York: Oxford University Press; 2013. 911 p.

    Book  Google Scholar 

  159. Shah S, Schrader KA, Waanders E, Timms AE, Vijai J, Miething C, et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat Genet. 2013;45(10):1226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Auer F, Rüschendorf F, Gombert M, Husemann P, Ginzel S, Izraeli S, et al. Inherited susceptibility to pre B-ALL caused by germline transmission of PAX5 c.547G>A. Leukemia. 2014;28(5):1136–8.

    Article  CAS  PubMed  Google Scholar 

  161. Schütte P, Möricke A, Zimmermann M, Bleckmann K, Reismüller B, Attarbaschi A, et al. Preexisting conditions in pediatric ALL patients: spectrum, frequency and clinical impact. Eur J Med Genet. 2016;59(3):143–51.

    Article  PubMed  Google Scholar 

  162. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373(24):2336–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE, Neveux LM, Ehrich M, et al. DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genet Med. 2011;13(11):913–20.

    Article  CAS  PubMed  Google Scholar 

  164. Tabarés-Seisdedos R, Dumont N, Baudot A, Valderas JM, Climent J, Valencia A, et al. No paradox, no progress: Inverse cancer comorbidity in people with other complex diseases. Lancet Oncol Elsevier Ltd. 2011;12(6):604–608.

    Google Scholar 

  165. Lundin C, Forestier E, Klarskov Andersen M, Autio K, Barbany G, Cavelier L, et al. Clinical and genetic features of pediatric acute lymphoblastic leukemia in down syndrome in the Nordic countries. J Hematol Oncol. 2014;7(1):32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Kuiper RP, Schoenmakers EFPM, van Reijmersdal SV, Hehir-Kwa JY, van Kessel AG, van Leeuwen FN, et al. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia. 2007;21(6):1258–66.

    Article  CAS  PubMed  Google Scholar 

  167. Van Vlierberghe P, Ambesi-Impiombato A, Perez-Garcia A, Haydu JE, Rigo I, Hadler M, et al. ETV6 mutations in early immature human T cell leukemias. J Exp Med. 2011;208(13):2571–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45(3):242–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Adams M, Jenney M, Lazarou L, White R, Birdsall S. Europe PMC funders Group Acute myeloid leukaemia after treatment for acute lymphoblastic leukaemia in girl with Bloom syndrome. J Genet Syndr Gene Ther. 2014;4(8).

    Google Scholar 

  170. Werner-Favre C, Wyss M, Cabrol C, Felix F, Guenin R, Laufer D, et al. Cytogenetic study in a mentally retarded child with bloom syndrome and acute lymphoblastic leukemia. Am J Med Genet. 1984;18(2):215–21.

    Article  CAS  PubMed  Google Scholar 

  171. Pasic S, Vujic D, Fiorini M, Notarangelo LD. T-cell lymphoblastic leukemia/lymphoma in Nijmegen breakage syndrome. Haematologica. 2004;89(8):91–2.

    Google Scholar 

  172. Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell. 1998;93(3):467–76.

    Article  CAS  PubMed  Google Scholar 

  173. The International NBS Study Group. Nijmegen breakage syndrome. Arch Dis Child. 2000;82(5):400–6.

    Article  Google Scholar 

  174. Rosenberg PS, Greene MH, Alter BP. Cancer incidence in persons with Fanconi anemia. Blood. 2003;101(3):822–6.

    Article  CAS  PubMed  Google Scholar 

  175. Spinella J-F, Healy J, Saillour V, Richer C, Cassart P, Ouimet M, et al. Whole-exome sequencing of a rare case of familial childhood acute lymphoblastic leukemia reveals putative predisposing mutations in Fanconi anemia genes. BMC Cancer. 2015;15:539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Mushtaq N, Wali R, Fadoo Z, Saleem AF. Acute lymphoblastic leukemia in a child with fanconi’s anaemia. J Coll Physicians Surg Pakistan. 2012;22(7):458–60.

    Google Scholar 

  177. Kratz CP, Rapisuwon S, Reed H, Hasle H, Rosenberg PS. Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. Am J Med Genet Part C Semin Med Genet. 2011;157(2):83–9.

    Article  PubMed Central  Google Scholar 

  178. Kratz CP, Franke L, Peters H, Kohlschmidt N, Kazmierczak B, Finckh U, Bier A, Eichhorn B, Blank C, Kraus C, Kohlhase J, Pauli S, Wildhardt G, Kutsche K, Auber B, Christmann A, Bachmann N, Mitter D, Cremer FW, Mayer K, Duamer-Haas A, Zenker M. Cancer spectrum and frequency among children with Noonan, Costello, and cardio-facio-cutaneous syndromes. Br J Cancer. 2015;Apr 14;112:1392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Smpokou P, Zand DJ, Rosenbaum KN, Summar ML. Malignancy in Noonan syndrome and related disorders. Clin Genet. 2015;88(6):516–22.

    Article  CAS  PubMed  Google Scholar 

  180. Cavé H, Caye A, Strullu M, Aladjidi N, Vignal C, Ferster A, et al. Acute lymphoblastic leukemia in the context of RASopathies. Eur J Med Genet. 2016;59(3):173–8.

    Article  PubMed  Google Scholar 

  181. Hoshino A, Okuno Y, Migita M, Ban H, Yang X, Kiyokawa N, et al. X-Linked agammaglobulinemia associated with B-precursor acute lymphoblastic leukemia. J Clin Immunol. 2015;35(2):108–11.

    Article  CAS  PubMed  Google Scholar 

  182. Prebet T, Carbuccia N, Raslova H, Favier R, Rey J, Arnoulet C, et al. Concomitant germ-line RUNX1 and acquired ASXL1 mutations in a T-cell acute lymphoblastic leukemia. Eur J Haematol. 2013;91(3):277–9.

    Article  PubMed  Google Scholar 

  183. Linden T, Schnittger S, Groll AH, Juergens H, Rossig C. Childhood B-cell precursor acute lymphoblastic leukaemia in a patient with familial thrombocytopenia and RUNX1 mutation. Br J Haematol. 2010;151(5):528–30.

    Article  CAS  PubMed  Google Scholar 

  184. Basel-Vanagaite L. Acute lymphoblastic leukemia in weaver syndrome. Am J Med Genet A. 2010;152(2):383–6.

    Article  Google Scholar 

  185. Tatton-Brown K, Rahman N. The NSD1 and EZH2 overgrowth genes, similarities and differences. Am J Med Genet Part C Semin Med Genet. 2013;163(2):86–91.

    Article  CAS  Google Scholar 

  186. Report C. Rubinstein- Taybi syndrome and acute leukemia Pseudohernaturia in neonates. J Pediatr. 1978;92(5):8–9.

    Google Scholar 

  187. Chao MM, Todd MA, Kontny U, Neas K, Sullivan MJ, Hunter AG, et al. T-cell acute lymphoblastic leukemia in association with Borjeson-Forssman-Lehmann syndrome due to a mutation in PHF6. Pediatr Blood Cancer. 2010;55(4):722–4.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Perez-Garcia A, Ambesi-Impiombato A, Hadler M, Rigo I, LeDuc CA, Kelly K, et al. Genetic loss of SH2B3 in acute lymphoblastic leukemia. Blood. 2013;122(14):2425–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lander ES. The new genomics: global views of biology. Science. 1996;274(5287):536–9.

    Article  CAS  PubMed  Google Scholar 

  190. Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet Nature Publishing Group. 2012;13(2):135–145.

    Google Scholar 

  191. Vijayakrishnan J, Houlston RS. Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Haematologica. 2010;95(8):1405–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Urayama KY, Thompson PD, Taylor M, Trachtenberg EA, Chokkalingam AP. Genetic variation in the extended major histocompatibility complex and susceptibility to childhood acute lymphoblastic leukemia: a review of the evidence. Front Oncol. 2013;3:300.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Urayama KY, Chokkalingam AP, Metayer C, Ma X, Selvin S, Barcellos LF, et al. HLA-DP genetic variation, proxies for early life immune modulation and childhood acute lymphoblastic leukemia risk. Blood. 2012;120(15):3039–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Hosking FJ, Leslie S, Dilthey A, Moutsianas L, Wang Y, Sara E, et al. MHC variation and risk of childhood B-cell precursor acute lymphoblastic leukemia. Blood. 2012;117(5):1633–40.

    Article  CAS  Google Scholar 

  195. Papaemmanuil E, Hosking FJ, Vijayakrishnan J, Price A, Olver B, Sheridan E, et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1006–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Treviño LR, Yang W, French D, Hunger SP, Carroll WL, Devidas M, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1001–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Xu H, Yang W, Perez-Andreu V, Devidas M, Fan Y, Cheng C, et al. Novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J Natl Cancer Inst. 2013;105(10):733–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Migliorini G, Fiege B, Hosking FJ, Ma Y, Kumar R, Sherborne AL, et al. Variation at 10p12. 2 and 10p14 in fl uences risk of childhood B-cell acute lymphoblastic leukemia and phenotype. Blood. 2013;122(19):3298–307.

    Article  CAS  PubMed  Google Scholar 

  199. Perez-Andreu V, Roberts KG, Harvey RC, Yang W, Cheng C, Pei D, et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat Genet. 2013;45(12):1494–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Xu H, Zhang H, Yang W, Yadav R, Morrison AC, Qian M, et al. Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukaemia in children. Nat Commun. Nat Publ Group. 2015;6:7553.

    CAS  Google Scholar 

  201. Ellinghaus E, Stanulla M, Richter G, Ellinghaus D, te Kronnie G, Cario G, et al. Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic. Leukemia. 2012;26(5):902–9.

    Article  CAS  PubMed  Google Scholar 

  202. Prasad RB, Hosking FJ, Vijayakrishnan J, Papaemmanuil E, Koehler R, Greaves M, et al. Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood. 2010;115(9):1765–7.

    Article  CAS  PubMed  Google Scholar 

  203. Sherborne AL, Hosking FJ, Prasad RB, Kumar R, Koehler R, Vijayakrishnan J, et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat Genet. 2010;42(6):492–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Walsh KM, de Smith AJ, Hansen HM, Smirnov IV, Gonseth S, Endicott AA, et al. A heritable missense polymorphism in CDKN2A confers strong risk of childhood acute lymphoblastic leukemia and is preferentially selected during clonal evolution. Cancer Res. 2015;75(22):4884–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Moriyama T, Relling MV, Yang JJ. Inherited genetic variation in childhood acute lymphoblastic. Leukemia. 2015;125(26):3988–96.

    CAS  Google Scholar 

  206. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LAA, Miller CB, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. New England Journal of Medicine. 2009;360:470–80.

    Google Scholar 

  207. Hsu L-I, Briggs F, Shao X, Metayer C, Wiemels JL, Chokkalingam AP, et al. Pathway analysis of genome-wide association study in childhood leukemia among Hispanics. Cancer Epidemiol Biomark Prev [Internet]. 2016; Available from: http://cebp.aacrjournals.org/cgi/doi/10.1158/1055-9965.EPI-15-0528.

  208. Evans TJ, Milne E, Anderson D, De Klerk NH, Jamieson SE, Talseth-Palmer BA, et al. Confirmation of childhood acute lymphoblastic leukemia Variants, ARID5B and IKZF1, and interaction with parental environmental exposures. PLoS One. 2014;9(10):e110255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Hsu LI, Chokkalingam AP, Briggs FBS, Walsh K, Crouse V, Fu C, et al. Association of genetic variation in IKZF1, ARID5B, and CEBPE and surrogates for early-life infections with the risk of acute lymphoblastic leukemia in Hispanic children. Cancer Causes Control. 2015;26(4):609–19.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Linabery AM, Blommer CN, Spector LG, Davies SM, Robison LL, Ross JA. ARID5B and IKZF1 variants, selected demographic factors, and childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leuk Res. Elsevier Ltd. 2013;37(8):936–942.

    Google Scholar 

  211. Rudant J, Orsi L, Bonaventure A, Goujon-Bellec S, Baruchel A, Petit A, et al. ARID5B, IKZF1 and non-genetic factors in the etiology of childhood acute lymphoblastic leukemia: the ESCALE study. PLoS One. 2015;10(3):1–16.

    Article  CAS  Google Scholar 

  212. Baker JM, To T, Beyene J, Zagorski B, Greenberg ML, Sung L. Influence of length of time to diagnosis and treatment on the survival of children with acute lymphoblastic leukemia: a population-based study. Leuk Res. Elsevier Ltd. 2014;38(2):204–209.

    Google Scholar 

  213. Strahm B, Malkin D. Hereditary cancer predisposition in children: genetic basis and clinical implications. Int J Cancer. 2006;119(9):2001.

    Article  CAS  PubMed  Google Scholar 

  214. Villani A, Tabori U, Schiffman J, Shlien A, Beyene J, Druker H, et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol. 2011;12(6):559–67.

    Article  CAS  PubMed  Google Scholar 

  215. Knapke BS, Zelley K, Nichols KE, Kohlmann W, Schiffman JD. Identification, management, and evaluation of children with cancer-predisposition syndromes. Am Soc Clin Oncol Educ Book 2012:576–84.

    Google Scholar 

  216. Durno CA, Aronson M, Tabori U, Malkin D, Gallinger S, Chan HSL. Oncologic surveillance for subjects with biallelic mismatch repair gene mutations: 10 year follow-up of a kindred. Pediatr Blood Cancer. 2012;59(4):652–6.

    Article  PubMed  Google Scholar 

  217. Pastorczak A, Stolarska M, Trelińska J, Zawitkowska J, Kowalczyk J, Mlynarski W. Nijmegen breakage syndrome (NBS) as a risk factor for CNS involvement in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;57(1):160–2.

    Article  PubMed  Google Scholar 

  218. Pastorczak A, Szczepanski T, Mlynarski W. Clinical course and therapeutic implications for lymphoid malignancies in Nijmegen breakage syndrome. Eur J Med Genet. Elsevier Masson SAS. 2016;59(3):126–132.

    Google Scholar 

  219. Hersby DS, Sehested A, Kristensen K, Schmiegelow K. T-cell ALL in ataxia telangiectasia cured with only 7 weeks of anti-leukemic therapy. J Pediatr Hematol Oncol. 2014;37(2):154–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun J. Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tulstrup, M., Stoltze, U.K., Schmiegelow, K., Yang, J.J. (2017). Epidemiology and Etiology of Childhood ALL. In: Vora, A. (eds) Childhood Acute Lymphoblastic Leukemia. Springer, Cham. https://doi.org/10.1007/978-3-319-39708-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39708-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39707-8

  • Online ISBN: 978-3-319-39708-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics