Skip to main content

Analyzing Environmental Conditions and Vital Signs to Increase Healthy Living

  • Conference paper
  • First Online:
Mobile Networks for Biometric Data Analysis

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 392))

  • 602 Accesses

Abstract

Present demographic change and a growing population of elderly people leads to new medical needs. Meeting these with state of the art technology is as a consequence a rapidly growing market. So this work is aimed at taking modern concepts of mobile and sensor technology and putting them in a medical context. By measuring a user’s vital signs on sensors which are processed on a Android smartphone, the target system is able to determine the current health state of the user and to visualize gathered information. The system also includes a weather forecasting functionality, which alerts the user on possibly dangerous future meteorological events. All information are collected centrally and distributed to users based on their location. Further, the system can correlate the client-side measurement of vital signs with a server-side weather history. This enables personalized forecasting for each user individually. Finally, a portable and affordable application was developed that continuously monitors the health status by many vital sensors, all united on a common smartphone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Captum Capital Ltd.: Sensors in Medicine 2014, (2014) http://www.sensor100.com/SensMed2014/Conference.html. Accessed 09 Aug 2014

  2. Heidelberg Private Clinic: Long-term ECG (long-term electrocardiogram), (2014) http://www.heidelberg-private-clinic.com/services/private-clinic/long-term-ecg/. Accessed 09 Aug 2014

  3. Gallegos D, Long KD, Yu H et al (2013) Label-free bio detection using a smartphone. Lab Chip 11:2124–2132

    Article  Google Scholar 

  4. Alahmadi A, Soh B, (2011) A smart approach towards a mobile e-health monitoring system architecture. Res Innovation in Inform Sys (ICRIIS), 1–5

    Google Scholar 

  5. Hnin Wint Khaing (2011) Data mining based fragmentation and prediction of medical data. Comput Res Dev (ICCRD) 2:480–485

    Google Scholar 

  6. Bucher K, Wanka E (2007) Das Problem der Wetterfühligkeit, promet, 33(3/4), 133139http://www.dwd.de/bvbw/generator/DWDWWW/Content/Oeffentlichkeit/KU/KU3/Biowetter/Bioprog/promet,templateId=raw,property=publicationFile.pdf/promet.pdf. Accessed 08 Aug 2014

  7. Höppe P, Mackensen S, Nowak D, Piel E (2002) Prävalenz von Wetterfühligkeit in Deutschland. Dtsch Med Wochenschr 127:15–20

    Article  Google Scholar 

  8. Sönning W (2007) Wetter und Gesundheit: Die Suche der Medizinmeteorologie nach dem biotropen Wetterfaktor, Umwelt-Medizin-Gesellschaft, 20, 212–218 http://www.diagnosefunk.org/downloads/soenning_umg-307.pdf. Accessed 08 Aug 2014

  9. Becker F (1956) Arbeitsgrundlage der medizin-meteorologischen Vorhersage im Königssteiner Arbeitskreis. Medizin-Meteorologische Hefte 11:21–25

    Google Scholar 

  10. Brezowsky H (1965) Meteorologische und biologische Analysen nach der Tölzer Arbeitsmethode. Meteorol Rdsch 18:132–143

    Google Scholar 

  11. Sönning W (1984) Katalog Meteorotropie. Deutscher Wetterdienst, Medizin-Meteorologie

    Google Scholar 

  12. Ungeheuer H, Kügler H (1957) Meteorologie-Biologie-Medizin. Arzneimittel Forschung 7:370–380

    Google Scholar 

  13. Hellpach W (1950) Geopsyche. Enke, Stuttgart

    Google Scholar 

  14. Durdu N, Chone L, Mueller H, Bucher K, Haas J (1998) Meteorologische Einflüsse und Thromboseentstehung, 79. Deutscher Röntgenkongress

    Google Scholar 

  15. Sönning W (1983) Zur biosynoptischen Arbeitshypothese, Z. Phys. Med., Balneologie. u. med. Klimat, 12, 2–4

    Google Scholar 

  16. Ranscht-Froemsdor W-R (1962) Beeinflussung der neuralen Information durch niederfrequente Schwankungen von Umweltfaktoren. Zeitschrift für angewandte Bäder und Klimaheilkunde 11:462–477

    Google Scholar 

  17. Richner H (1974) Zusammenhänge zwischen raschen atmosphärischen Druckschwankungen, Wetterlagen und subjektivem Empfinden, LAPETH-8. Laboratorium für Atmosphärenphysik, ETH Zürich, pp 97–98

    Google Scholar 

  18. The University of Waikato: Weka 3: Data Mining Software in Java, (2014) http://www.cs.waikato.ac.nz/ml/weka. Accessed 21 Aug 2014

  19. The University of Waikato: Weka 3: Use WEKA in your Java code, (2014) http://weka.wikispaces.com/Use+WEKA+in+your+Java+code#Clustering-Building a Clusterer. Accessed 21 Aug 2014

  20. The University of Waikato: Weka 3: SimpleKMeans, (2014) http://weka.sourceforge.net/doc.dev/weka/clusterers/SimpleKMeans.html. Accessed 21 Aug 2014

  21. The University of Waikato: Weka 3: J48, (2014) http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html. Accessed 21 Aug 2014

  22. Extreme Electronics Ltd: OpenWeatherMap—actual and forecast weather (2014) http://openweathermap.org. Accessed 21 Aug 2014

  23. Fiß T, Meinke C (2012) Stürze bei Senioren: gefahren erkennen und vermeiden, Pharmazeutische Zeitung, 9, http://www.pharmazeutische-zeitung.de/?id=41065. Accessed 21 Aug 2014

  24. Zhongtang Z, Yiqiang C, Junfa L (2010) Fall detecting and alarming based on mobile phone, ubiquitous intelligence & computing. In: 7th International Conference on Autonomic & Trusted Computing (UIC/ATC), 494–497

    Google Scholar 

  25. Yabo C, Yujiu Y, Wenhuang L (2012) E-FallD—A fall detection system using android-based smartphone, Fuzzy Sys Knowl Discov (FSKD), 1509–1513

    Google Scholar 

  26. Chia-Chi W, Chih-Yen C, Po-Yen L et al (2008) Development of a fall detecting system for the elderly residents, Bioinf Biomed Eng, 1359–1362

    Google Scholar 

  27. Libelium Comunicaciones Distribuidas S.L.: e-Health Sensor Platform V2.0 for Arduino and Raspberry Pi [Biometric/ Medical Applications] (2014) http://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical. Accessed 21 Aug 2014

  28. OrmLite.com: OrmLite—Lightweight Object Relational Mapping (ORM) Java Package (2014) http://ormlite.com. Accessed 21 Aug 2014

  29. PlayFramework.com: Play Framework—Build Modern & Scalable Web Apps with Java and Scala, The High Velocity Web Framework (2014) https://www.playframework.com. Accessed 20 Aug 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Seepold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Seepold, R. et al. (2016). Analyzing Environmental Conditions and Vital Signs to Increase Healthy Living. In: Conti, M., Martínez Madrid, N., Seepold, R., Orcioni, S. (eds) Mobile Networks for Biometric Data Analysis. Lecture Notes in Electrical Engineering, vol 392. Springer, Cham. https://doi.org/10.1007/978-3-319-39700-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39700-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39698-9

  • Online ISBN: 978-3-319-39700-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics