Skip to main content

Antimicrobial Resistance in Bacteria: An Overview of Mechanisms and Role of Drug Efflux Pumps

  • Chapter
  • First Online:

Abstract

Antimicrobial agents target several essential cellular functions in bacteria including biosynthesis of the cell wall, nucleic acids, and proteins, which consequently produce inhibitory and even lethal effects on bacterial survival. In contrast, bacterial cells possess remarkable capacities to counteract the action of antimicrobials, thus contributing to resistance. The mechanisms of resistance predominantly involve the production of drug-inactivating enzymes, alteration of drug targets, and prevention of drug access; the latter mechanism refers to the function of drug influx and efflux. This chapter provides an overview of molecular and biochemical mechanisms of antimicrobial resistance with an emphasis on the role of drug efflux pumps and their relationship with other key resistance mechanisms in clinically relevant intrinsic and acquired resistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Neu HC (1992) The crisis in antibiotic resistance. Science 257:1064–1073. doi:10.1126/science.257.5073.1064

    Article  CAS  PubMed  Google Scholar 

  2. Cohen ML (1992) Epidemiology of drug resistance: implications for a post-antimicrobial era. Science 257:1050–1055. doi:10.1126/science.257.5073.1050

    Article  CAS  PubMed  Google Scholar 

  3. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433. doi:10.1128/MMBR.00016-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5:175. doi:10.1038/nrmicro1614

    Article  CAS  PubMed  Google Scholar 

  5. Livermore DM, British Society for Antimicrobial Chemotherapy Working Party on The Urgent Need: Regenerating Antibacterial Drug D, Development (2011) Discovery research: the scientific challenge of finding new antibiotics. J Antimicrob Chemother 66:1941–1944. doi:10.1093/jac/dkr262

    Article  CAS  PubMed  Google Scholar 

  6. Pucci MJ, Bush K (2013) Investigational antimicrobial agents of 2013. Clin Microbiol Rev 26:792–821. doi:10.1128/CMR.00033-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gots JS (1945) The detection of penicillinase-producing properties of microorganisms. Science 102:309. doi:10.1126/science.102.2647.309

    Article  CAS  PubMed  Google Scholar 

  8. D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G et al (2011) Antibiotic resistance is ancient. Nature 477:457–461. doi:10.1038/nature10388

    Article  PubMed  CAS  Google Scholar 

  9. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD (2012) Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 7:e34953. doi:10.1371/journal.pone.0034953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. U.S. Centers for Disease Control and Prevention (2013) Antibiotic resistance threats in the United States, 2013. Atlanta

    Google Scholar 

  11. World Health Organization (2014) Antimicrobial resistance: global report on surveillance. Geneva

    Google Scholar 

  12. Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R, Philippon A (2002) β-Lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob Agents Chemother 46:3045–3049. doi:10.1128/AAC.46.9.3045-3049.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodriguez MM, Power P, Radice M, Vay C, Famiglietti A, Galleni M, Ayala JA, Gutkind G (2004) Chromosome-encoded CTX-M-3 from Kluyvera ascorbata: a possible origin of plasmid-borne CTX-M-1-derived cefotaximases. Antimicrob Agents Chemother 48:4895–4897. doi:10.1128/AAC.48.12.4895-4897.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rodriguez MM, Power P, Sader H, Galleni M, Gutkind G (2010) Novel chromosome-encoded CTX-M-78 β-lactamase from a Kluyvera georgiana clinical isolate as a putative origin of CTX-M-25 subgroup. Antimicrob Agents Chemother 54:3070–3071. doi:10.1128/AAC.01615-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, Ayala J, Coque TM et al (2007) CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59:165–174. doi:10.1093/jac/dkl483

    Article  CAS  PubMed  Google Scholar 

  16. Fournier PE, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, Richet H, Robert C et al (2006) Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2:e7. doi:10.1371/journal.pgen.0020007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mulvey MR, Boyd DA, Olson AB, Doublet B, Cloeckaert A (2006) The genetics of Salmonella genomic island 1. Microbes Infect 8:1915–1922. doi:10.1016/j.micinf.2005.12.028

    Article  CAS  PubMed  Google Scholar 

  18. Hall RM (2010) Salmonella genomic islands and antibiotic resistance in Salmonella enterica. Future Microbiol 5:1525–1538. doi:10.2217/fmb.10.122

    Article  CAS  PubMed  Google Scholar 

  19. Hall RM (2012) Integrons and gene cassettes: hotspots of diversity in bacterial genomes. Ann N Y Acad Sci 1267:71–78. doi:10.1111/j.1749-6632.2012.06588.x

    Article  CAS  PubMed  Google Scholar 

  20. Barraud O, Ploy MC (2015) Diversity of class 1 integron gene cassette rearrangements selected under antibiotic pressure. J Bacteriol 197:2171–2178. doi:10.1128/JB.02455-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jacoby GA, Strahilevitz J, Hooper DC (2014) Plasmid-mediated quinolone resistance. Microbiol Spectr 2. doi:10.1128/microbiolspec.PLAS-0006-2013

  22. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G et al (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168. doi:10.1016/S1473-3099(15)00424-7

    Google Scholar 

  23. Arcilla MS, van Hattem JM, Matamoros S, Melles DC, Penders J, de Jong MD, Schultsz C, Consortium C (2016) Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 16:147–149. doi:10.1016/S1473-3099(15)00541-1

    Google Scholar 

  24. Hasman H, Hammerum AM, Hansen F, Hendriksen RS, Olesen B, Agerso Y, Zankari E, Leekitcharoenphon P et al (2015) Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveill 20. doi:10.2807/1560-7917.ES.2015.20.49.30085

  25. Hu Y, Liu F, Lin IY, Gao GF, Zhu B (2016) Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 16:146–147. doi:10.1016/S1473-3099(15)00533-2

    Google Scholar 

  26. Olaitan AO, Chabou S, Okdah L, Morand S, Rolain JM (2016) Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 16:147. doi:10.1016/S1473-3099(15)00540-X

    Google Scholar 

  27. Tse H, Yuen KY (2016) Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 16:145–146. doi:10.1016/S1473-3099(15)00532-0

    Google Scholar 

  28. Webb HE, Granier SA, Marault M, Millemann Y, den Bakker HC, Nightingale KK, Bugarel M, Ison SA et al (2016) Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 16:144–145. doi:10.1016/S1473-3099(15)00538-1

    Google Scholar 

  29. Fridman O, Goldberg A, Ronin I, Shoresh N, Balaban NQ (2014) Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513:418–421. doi:10.1038/nature13469

    Article  CAS  PubMed  Google Scholar 

  30. Chang HH, Cohen T, Grad YH, Hanage WP, O’Brien TF, Lipsitch M (2015) Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiol Mol Biol Rev 79:101–116. doi:10.1128/MMBR.00039-14

    Article  PubMed  PubMed Central  Google Scholar 

  31. Contreras A, Maxwell A (1992) gyrB mutations which confer coumarin resistance also affect DNA supercoiling and ATP hydrolysis by Escherichia coli DNA gyrase. Mol Microbiol 6:1617–1624. doi:10.1111/j.1365-2958.1992.tb00886.x

    Article  CAS  PubMed  Google Scholar 

  32. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348. doi:10.1038/35030019

    Article  CAS  PubMed  Google Scholar 

  33. Liu B, Pop M (2009) ARDB – antibiotic resistance genes database. Nucleic Acids Res 37:D443–D447. doi:10.1093/nar/gkn656

    Article  CAS  PubMed  Google Scholar 

  34. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ et al (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57:3348–3357. doi:10.1128/AAC.00419-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li X-Z (2016) Active efflux as a mechanism of resistance to antimicrobial drugs. In: Mayers DL (ed) Antimicrobial drug resistance, 2nd edn. Springer, New York (in press)

    Google Scholar 

  36. Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–388. doi:10.1126/science.8153625

    Article  CAS  PubMed  Google Scholar 

  37. Li X-Z, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418. doi:10.1128/CMR.00117-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schaberle TF et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459. doi:10.1038/nature14098

    Article  CAS  PubMed  Google Scholar 

  39. Shockman GD, Barrett JF (1983) Structure, function, and assembly of cell walls of Gram-positive bacteria. Annu Rev Microbiol 37:501–527. doi:10.1146/annurev.mi.37.100183.002441

    Article  CAS  PubMed  Google Scholar 

  40. Shockman GD, Daneo-Moore L, Kariyama R, Massidda O (1996) Bacterial walls, peptidoglycan hydrolases, autolysins, and autolysis. Microb Drug Resist 2:95–98. doi:10.1089/mdr.1996.2.95

    Article  CAS  PubMed  Google Scholar 

  41. Schaffer C, Messner P (2005) The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology 151:643–651. doi:10.1099/mic.0.27749-0

    Article  PubMed  CAS  Google Scholar 

  42. Cui L, Tominaga E, Neoh HM, Hiramatsu K (2006) Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 50:1079–1082. doi:10.1128/AAC.50.3.1079-1082.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Song H, Sandie R, Wang Y, Andrade-Navarro MA, Niederweis M (2008) Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis 88:526–544. doi:10.1016/j.tube.2008.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Niederweis M, Danilchanka O, Huff J, Hoffmann C, Engelhardt H (2010) Mycobacterial outer membranes: in search of proteins. Trends Microbiol 18:109–116. doi:10.1016/j.tim.2009.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jarlier V, Nikaido H (1994) Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 123:11–18. doi:10.1111/j.1574-6968.1994.tb07194.x

    Article  CAS  PubMed  Google Scholar 

  46. Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63. doi:10.1146/annurev.bi.64.070195.000333

    Article  CAS  PubMed  Google Scholar 

  47. Raynaud C, Laneelle MA, Senaratne RH, Draper P, Laneelle G, Daffe M (1999) Mechanisms of pyrazinamide resistance in mycobacteria: importance of lack of uptake in addition to lack of pyrazinamidase activity. Microbiology 145:1359–1367. doi:10.1099/13500872-145-6-1359

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Scorpio A, Nikaido H, Sun Z (1999) Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Bacteriol 181:2044–2049

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656. doi:10.1128/MMBR.67.4.593-656.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yethon JA, Heinrichs DE, Monteiro MA, Perry MB, Whitfield C (1998) Involvement of waaY, waaQ, and waaP in the modification of Escherichia coli lipopolysaccharide and their role in the formation of a stable outer membrane. J Biol Chem 273:26310–26316. doi:10.1074/jbc.273.41.26310

    Article  CAS  PubMed  Google Scholar 

  51. Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395–411

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Munoz JL, Garcia MI, Munoz S, Leal S, Fajardo M, Garcia-Rodriguez JA (1996) Activity of trimethoprim/sulfamethoxazole plus polymyxin B against multiresistant Stenotrophomonas maltophilia. Eur J Clin Microbiol Infect Dis 15:879–882. doi:10.1007/BF01691222

    Article  CAS  PubMed  Google Scholar 

  53. Gunn JS, Miller SI (1996) PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J Bacteriol 178:6857–6864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Macfarlane EL, Kwasnicka A, Ochs MM, Hancock RE (1999) PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 34:305–316. doi:10.1046/j.1365-2958.1999.01600.x

    Article  CAS  PubMed  Google Scholar 

  55. Merighi M, Carroll-Portillo A, Septer AN, Bhatiya A, Gunn JS (2006) Role of Salmonella enterica serovar Typhimurium two-component system PreA/PreB in modulating PmrA-regulated gene transcription. J Bacteriol 188:141–149. doi:10.1128/JB.188.1.141-149.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fernandez L, Alvarez-Ortega C, Wiegand I, Olivares J, Kocincova D, Lam JS, Martinez JL, Hancock RE (2013) Characterization of the polymyxin B resistome of Pseudomonas aeruginosa. Antimicrob Agents Chemother 57:110–119. doi:10.1128/AAC.01583-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Olaitan AO, Morand S, Rolain JM (2014) Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 5:643. doi:10.3389/fmicb.2014.00643

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yoshimura F, Nikaido H (1985) Diffusion of β-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob Agents Chemother 27:84–92. doi:10.1128/AAC.27.1.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Charrel RN, Pagès JM, De Micco P, Mallea M (1996) Prevalence of outer membrane porin alteration in β-lactam-antibiotic-resistant Enterobacter aerogenes. Antimicrob Agents Chemother 40:2854–2858

    Google Scholar 

  60. Szabo D, Silveira F, Hujer AM, Bonomo RA, Hujer KM, Marsh JW, Bethel CR, Doi Y et al (2006) Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob Agents Chemother 50:2833–2835. doi:10.1128/AAC.01591-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gutmann L, Williamson R, Moreau N, Kitzis MD, Collatz E, Acar JF, Goldstein FW (1985) Cross-resistance to nalidixic acid, trimethoprim, and chloramphenicol associated with alterations in outer membrane proteins of Klebsiella, Enterobacter, and Serratia. J Infect Dis 151:501–507. doi:10.1093/infdis/151.3.501

    Article  CAS  PubMed  Google Scholar 

  62. Ardanuy C, Linares J, Dominguez MA, Hernandez-Alles S, Benedi VJ, Martinez-Martinez L (1998) Outer membrane profiles of clonally related Klebsiella pneumoniae isolates from clinical samples and activities of cephalosporins and carbapenems. Antimicrob Agents Chemother 42:1636–1640

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hernandez-Alles S, Benedi VJ, Martinez-Martinez L, Pascual A, Aguilar A, Tomas JM, Alberti S (1999) Development of resistance during antimicrobial therapy caused by insertion sequence interruption of porin genes. Antimicrob Agents Chemother 43:937–939

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sugawara E, Nestorovich EM, Bezrukov SM, Nikaido H (2006) Pseudomonas aeruginosa porin OprF exists in two different conformations. J Biol Chem 281:16220–16229. doi:10.1074/jbc.M600680200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sugawara E, Nikaido H (2012) OmpA is the principal nonspecific slow porin of Acinetobacter baumannii. J Bacteriol 194:4089–4096. doi:10.1128/JB.00435-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Trias J, Nikaido H (1990) Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J Biol Chem 265:15680–15684

    CAS  PubMed  Google Scholar 

  67. Mussi MA, Relling VM, Limansky AS, Viale AM (2007) CarO, an Acinetobacter baumannii outer membrane protein involved in carbapenem resistance, is essential for L-ornithine uptake. FEBS Lett 581:5573–5578. doi:10.1016/j.febslet.2007.10.063

    Article  CAS  PubMed  Google Scholar 

  68. Ikonomidis A, Tsakris A, Kantzanou M, Spanakis N, Maniatis AN, Pournaras S (2008) Efflux system overexpression and decreased OprD contribute to the carbapenem heterogeneity in Pseudomonas aeruginosa. FEMS Microbiol Lett 279:36–39. doi:10.1111/j.1574-6968.2007.00997.x

    Article  CAS  PubMed  Google Scholar 

  69. Rodriguez-Martinez JM, Poirel L, Nordmann P (2009) Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 53:4783–4788. doi:10.1128/AAC.00574-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tomás M, Doumith M, Warner M, Turton JF, Beceiro A, Bou G, Livermore DM, Woodford N (2010) Efflux pumps, OprD porin, AmpC β-lactamase, and multiresistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 54:2219–2224. doi:10.1128/AAC.00816-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Mussi MA, Limansky AS, Viale AM (2005) Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of β-barrel outer membrane proteins. Antimicrob Agents Chemother 49:1432–1440. doi:10.1128/AAC.49.4.1432-1440.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee Y, Kim CK, Lee H, Jeong SH, Yong D, Lee K (2011) A novel insertion sequence, ISAba10, inserted into ISAba1 adjacent to the bla OXA-23 gene and disrupting the outer membrane protein gene carO in Acinetobacter baumannii. Antimicrob Agents Chemother 55:361–363. doi:10.1128/AAC.01672-09

    Article  CAS  PubMed  Google Scholar 

  73. Levy SB (1992) Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents Chemother 36:695–703. doi:10.1128/AAC.36.4.695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Delmar JA, Yu EW (2016) The AbgT family: a novel class of antimetabolite transporters. Protein Sci 25:322–337. doi:10.1002/pro.2820

    Article  CAS  PubMed  Google Scholar 

  75. Hassan KA, Liu Q, Henderson PJ, Paulsen IT (2015) Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio 6:e01982–14. doi:10.1128/mBio.01982-14

  76. Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N, Greene J, DiDomenico B, Shaw KJ et al (2001) Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother 45:1126–1136. doi:10.1128/AAC.45.4.1126-1136.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M, Chaba R, Lee S, Kazmierczak KM et al (2011) Phenotypic landscape of a bacterial cell. Cell 144:143–156. doi:10.1016/j.cell.2010.11.052

    Article  CAS  PubMed  Google Scholar 

  78. Lee EW, Huda MN, Kuroda T, Mizushima T, Tsuchiya T (2003) EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrob Agents Chemother 47:3733–3738. doi:10.1128/AAC.47.12.3733-3738.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wendlandt S, Kadlec K, Fessler AT, Schwarz S (2015) Identification of ABC transporter genes conferring combined pleuromutilin-lincosamide-streptogramin A resistance in bovine methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci. Vet Microbiol 177:353–358. doi:10.1016/j.vetmic.2015.03.027

    Article  CAS  PubMed  Google Scholar 

  80. Kaatz GW, McAleese F, Seo SM (2005) Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother 49:1857–1864. doi:10.1128/AAC.49.5.1857-1864.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McAleese F, Petersen P, Ruzin A, Dunman PM, Murphy E, Projan SJ, Bradford PA (2005) A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother 49:1865–1871. doi:10.1128/AAC.49.5.1865-1871.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Reynolds ED, Cove JH (2005) Resistance to telithromycin is conferred by msr(A), msrC and msr(D) in Staphylococcus aureus. J Antimicrob Chemother 56:1179–1180. doi:10.1093/jac/dki378

    Article  CAS  PubMed  Google Scholar 

  83. Vimberg V, Lenart J, Janata J, Balikova Novotna G (2015) ClpP-independent function of ClpX interferes with telithromycin resistance conferred by Msr(A) in Staphylococcus aureus. Antimicrob Agents Chemother 59:3611–3614. doi:10.1128/AAC.04367-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yoshida H, Bogaki M, Nakamura S, Ubukata K, Konno M (1990) Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol 172:6942–6949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Littlejohn TG, Paulsen IT, Gillespie MT, Tennent JM, Midgley M, Jones IG, Purewal AS, Skurray RA (1992) Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol Lett 95:259–265. doi:10.1016/0378-1097(92)90439-U

    Article  CAS  Google Scholar 

  86. Tait-Kamradt A, Clancy J, Cronan M, Dib-Hajj F, Wondrack L, Yuan W, Sutcliffe J (1997) mefE is necessary for the erythromycin-resistant M phenotype in Streptococcus pneumoniae. Antimicrob Agents Chemother 41:2251–2255

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Marrer E, Schad K, Satoh AT, Page MG, Johnson MM, Piddock LJ (2006) Involvement of the putative ATP-dependent efflux proteins PatA and PatB in fluoroquinolone resistance of a multidrug-resistant mutant of Streptococcus pneumoniae. Antimicrob Agents Chemother 50:685–693. doi:10.1128/AAC.50.2.685-693.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li X-Z, Nikaido H (2004) Efflux-mediated drug resistance in bacteria. Drugs 64:159–204. doi:10.2165/00003495-200464020-00004

    Article  CAS  PubMed  Google Scholar 

  89. Balganesh M, Dinesh N, Sharma S, Kuruppath S, Nair AV, Sharma U (2012) Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob Agents Chemother 56:2643–2651. doi:10.1128/AAC.06003-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rodrigues L, Villellas C, Bailo R, Viveiros M, Ainsa JA (2013) Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 57:751–757. doi:10.1128/AAC.01482-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Balganesh M, Kuruppath S, Marcel N, Sharma S, Nair A, Sharma U (2010) Rv1218c, an ABC transporter of Mycobacterium tuberculosis with implications in drug discovery. Antimicrob Agents Chemother 54:5167–5172. doi:10.1128/AAC.00610-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Aínsa JA, Blokpoel MC, Otal I, Young DB, De Smet KA, Martin C (1998) Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J Bacteriol 180:5836–5843

    PubMed  PubMed Central  Google Scholar 

  93. Ramón-García S, Mick V, Dainese E, Martin C, Thompson CJ, De Rossi E, Manganelli R, Aínsa JA (2012) Functional and genetic characterization of the Tap efflux pump in Mycobacterium bovis BCG. Antimicrob Agents Chemother 56:2074–2083. doi:10.1128/AAC.05946-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Su XZ, Chen J, Mizushima T, Kuroda T, Tsuchiya T (2005) AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob Agents Chemother 49:4362–4364. doi:10.1128/AAC.49.10.4362-4364.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Damier-Piolle L, Magnet S, Bremont S, Lambert T, Courvalin P (2008) AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother 52:557–562. doi:10.1128/AAC.00732-07

    Article  CAS  PubMed  Google Scholar 

  96. Magnet S, Courvalin P, Lambert T (2001) Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 45:3375–3380. doi:10.1128/AAC.45.12.3375-3380.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Coyne S, Rosenfeld N, Lambert T, Courvalin P, Perichon B (2010) Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 54:4389–4393. doi:10.1128/AAC.00155-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rajamohan G, Srinivasan VB, Gebreyes WA (2010) Novel role of Acinetobacter baumannii RND efflux transporters in mediating decreased susceptibility to biocides. J Antimicrob Chemother 65:228–232. doi:10.1093/jac/dkp427

    Article  CAS  PubMed  Google Scholar 

  99. Roca I, Marti S, Espinal P, Martinez P, Gibert I, Vila J (2009) CraA: an MFS efflux pump associated with chloramphenicol resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 53:4013–4014. doi:10.1128/AAC.00584-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Akiba M, Lin J, Barton YW, Zhang Q (2006) Interaction of CmeABC and CmeDEF in conferring antimicrobial resistance and maintaining cell viability in Campylobacter jejuni. J Antimicrob Chemother 57:52–60. doi:10.1093/jac/dki419

    Article  CAS  PubMed  Google Scholar 

  101. Lin J, Michel LO, Zhang Q (2002) CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob Agents Chemother 46:2124–2131. doi:10.1128/AAC.46.7.2124-2131.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE (1993) Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol 175:6299–6313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Swick MC, Morgan-Linnell SK, Carlson KM, Zechiedrich L (2011) Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance. Antimicrob Agents Chemother 55:921–924. doi:10.1128/AAC.00996-10

    Article  CAS  PubMed  Google Scholar 

  104. Gomes AR, Westh H, de Lencastre H (2006) Origins and evolution of methicillin-resistant Staphylococcus aureus clonal lineages. Antimicrob Agents Chemother 50:3237–3244. doi:10.1128/AAC.00521-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lennen RM, Politz MG, Kruziki MA, Pfleger BF (2013) Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J Bacteriol 195:135–144. doi:10.1128/JB.01477-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schuldiner S (2009) EmrE, a model for studying evolution and mechanism of ion-coupled transporters. Biochim Biophys Acta 1794:748–762. doi:10.1016/j.bbapap.2008.12.018

    Article  CAS  PubMed  Google Scholar 

  107. Beketskaia MS, Bay DC, Turner RJ (2014) Outer membrane protein OmpW participates with small multidrug resistance protein member EmrE in quaternary cationic compound efflux. J Bacteriol 196:1483–1414. doi:10.1128/JB.01483-14

    Article  CAS  Google Scholar 

  108. Kobayashi N, Nishino K, Yamaguchi A (2001) Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 183:5639–5644. doi:10.1128/JB.183.19.5639-5644.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nishino K, Latifi T, Groisman EA (2006) Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 59:126–141. doi:10.1111/j.1365-2958.2005.04940.x

    Article  CAS  PubMed  Google Scholar 

  110. Cattoir V, Poirel L, Nordmann P (2008) Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob Agents Chemother 52:3801–3804. doi:10.1128/AAC.00638-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hansen LH, Johannesen E, Burmolle M, Sørensen AH, Sørensen SJ (2004) Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob Agents Chemother 48:3332–3337. doi:10.1128/AAC.48.9.3332-3337.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Srinivasan VB, Rajamohan G (2013) KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 57:4449–4462. doi:10.1128/AAC.02284-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Srinivasan VB, Singh BB, Priyadarshi N, Chauhan NK, Rajamohan G (2014) Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS One 9:e96288. doi:10.1371/journal.pone.0096288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Golparian D, Shafer WM, Ohnishi M, Unemo M (2014) Importance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 58:3556–3559. doi:10.1128/AAC.00038-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Shafer WM, Qu X, Waring AJ, Lehrer RI (1998) Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci U S A 95:1829–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li X-Z, Nikaido H, Poole K (1995) Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:1948–1953. doi:10.1128/AAC.39.9.1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Aires JR, Kohler T, Nikaido H, Plésiat P (1999) Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 43:2624–2628

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Poole K, Gotoh N, Tsujimoto H, Zhao Q, Wada A, Yamasaki T, Neshat S, Yamagishi J et al (1996) Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 21:713–724. doi:10.1046/j.1365-2958.1996.281397.x

    Article  CAS  PubMed  Google Scholar 

  119. Köhler T, Michea-Hamzehpour M, Henze U, Gotoh N, Curty LK, Pechere JC (1997) Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 23:345–354. doi:10.1046/j.1365-2958.1997.2281594.x

    Article  PubMed  Google Scholar 

  120. Hu RM, Liao ST, Huang CC, Huang YW, Yang TC (2012) An inducible fusaric acid tripartite efflux pump contributes to the fusaric acid resistance in Stenotrophomonas maltophilia. PLoS One 7:e51053. doi:10.1371/journal.pone.0051053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li X-Z, Zhang L, Poole K (2002) SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 46:333–343. doi:10.1128/AAC.46.2.333-343.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang L, Li X-Z, Poole K (2001) SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 45:3497–3503. doi:10.1128/AAC.45.12.3497-3503.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T (1998) NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 42:1778–1782

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Huda N, Lee EW, Chen J, Morita Y, Kuroda T, Mizushima T, Tsuchiya T (2003) Molecular cloning and characterization of an ABC multidrug efflux pump, VcaM, in Non-O1 Vibrio cholerae. Antimicrob Agents Chemother 47:2413–2417. doi:10.1128/AAC.47.8.2413-2417.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li X-Z, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623. doi:10.2165/11317030-000000000-00000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Costa SS, Viveiros M, Rosato AE, Melo-Cristino J, Couto I (2015) Impact of efflux in the development of multidrug resistance phenotypes in Staphylococcus aureus. BMC Microbiol 15:232. doi:10.1186/s12866-015-0572-8

    Article  PubMed Central  Google Scholar 

  127. Conceicao T, Coelho C, de Lencastre H, Aires-de-Sousa M (2015) High prevalence of biocide resistance determinants in Staphylococcus aureus isolates from three African countries. Antimicrob Agents Chemother 60:678–681. doi:10.1128/AAC.02140-15

    Article  PubMed  PubMed Central  Google Scholar 

  128. DeMarco CE, Cushing LA, Frempong-Manso E, Seo SM, Jaravaza TA, Kaatz GW (2007) Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus. Antimicrob Agents Chemother 51:3235–3239. doi:10.1128/AAC.00430-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li XS, Dong WC, Wang XM, Hu GZ, Wang YB, Cai BY, Wu CM, Wang Y et al (2014) Presence and genetic environment of pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in enterococci of human and swine origin. J Antimicrob Chemother 69:1424–1426. doi:10.1093/jac/dkt502

    Article  CAS  PubMed  Google Scholar 

  130. Garvey MI, Piddock LJ (2008) The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob Agents Chemother 52:1677–1685. doi:10.1128/AAC.01644-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Garvey MI, Baylay AJ, Wong RL, Piddock LJ (2011) Overexpression of patA and patB, which encode ABC transporters, is associated with fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 55:190–196. doi:10.1128/AAC.00672-10

    Article  CAS  PubMed  Google Scholar 

  132. Li X-Z, Zhang L, Nikaido H (2004) Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48:2415–2423. doi:10.1128/AAC.48.7.2415-2423.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schmalstieg AM, Srivastava S, Belkaya S, Deshpande D, Meek C, Leff R, van Oers NS, Gumbo T (2012) The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. Antimicrob Agents Chemother 56:4806–4815. doi:10.1128/AAC.05546-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Wang K, Pei H, Huang B, Zhu X, Zhang J, Zhou B, Zhu L, Zhang Y et al (2013) The expression of ABC efflux pump, Rv1217c-Rv1218c, and its association with multidrug resistance of Mycobacterium tuberculosis in China. Curr Microbiol 66:222–226. doi:10.1007/s00284-012-0215-3

    Article  CAS  PubMed  Google Scholar 

  135. Colangeli R, Helb D, Sridharan S, Sun J, Varma-Basil M, Hazbon MH, Harbacheuski R, Megjugorac NJ et al (2005) The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Mol Microbiol 55:1829–1840. doi:10.1111/j.1365-2958.2005.04510.x

    Article  CAS  PubMed  Google Scholar 

  136. Machado D, Couto I, Perdigao J, Rodrigues L, Portugal I, Baptista P, Veigas B, Amaral L et al (2012) Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLoS One 7:e34538. doi:10.1371/journal.pone.0034538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zimic M, Fuentes P, Gilman RH, Gutierrez AH, Kirwan D, Sheen P (2012) Pyrazinoic acid efflux rate in Mycobacterium tuberculosis is a better proxy of pyrazinamide resistance. Tuberculosis 92:84–91. doi:10.1016/j.tube.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  138. Lee A, Mao W, Warren MS, Mistry A, Hoshino K, Okumura R, Ishida H, Lomovskaya O (2000) Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol 182:3142–3150. doi:10.1128/JB.182.11.3142-3150.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Palmer M (2003) Efflux of cytoplasmically acting antibiotics from Gram-negative bacteria: periplasmic substrate capture by multicomponent efflux pumps inferred from their cooperative action with single-component transporters. J Bacteriol 185:5287–5289. doi:10.1128/JB.185.17.5287-5289.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tal N, Schuldiner S (2009) A coordinated network of transporters with overlapping specificities provides a robust survival strategy. Proc Natl Acad Sci U S A 106:9051–9056. doi:10.1073/pnas.0902400106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hocquet D, Roussel-Delvallez M, Cavallo JD, Plésiat P (2007) MexAB-OprM- and MexXY-overproducing mutants are very prevalent among clinical strains of Pseudomonas aeruginosa with reduced susceptibility to ticarcillin. Antimicrob Agents Chemother 51:1582–1583. doi:10.1128/AAC.01334-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Reinhardt A, Kohler T, Wood P, Rohner P, Dumas JL, Ricou B, van Delden C (2007) Development and persistence of antimicrobial resistance in Pseudomonas aeruginosa: a longitudinal observation in mechanically ventilated patients. Antimicrob Agents Chemother 51:1341–1350. doi:10.1128/AAC.01278-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260. doi:10.1128/MMBR.65.2.232-260.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sutcliffe J, Tait-Kamradt A, Wondrack L (1996) Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother 40:1817–1824

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233. doi:10.1128/AAC.39.6.1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bush K, Fisher JF (2011) Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from Gram-negative bacteria. Annu Rev Microbiol 65:455–478. doi:10.1146/annurev-micro-090110-102911

    Article  CAS  PubMed  Google Scholar 

  147. Ambler RP (1980) The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 289:321–331. doi:10.1098/rstb.1980.0049

    Article  CAS  PubMed  Google Scholar 

  148. Li X-Z, Mehrotra M, Ghimire S, Adewoye L (2007) β-Lactam resistance and β-lactamases in bacteria of animal origin. Vet Microbiol 121:197–214. doi:10.1016/j.vetmic.2007.01.015

    Article  CAS  PubMed  Google Scholar 

  149. Martinez M, Blondeau J, Cerniglia CE, Fink-Gremmels J, Guenther S, Hunter RP, Li X-Z, Papich M et al (2014) Workshop report: the 2012 antimicrobial agents in veterinary medicine: exploring the consequences of antimicrobial drug use: a 3-D approach. J Vet Pharmacol Ther 37:e1–e16. doi:10.1111/jvp.12104

    Article  CAS  PubMed  Google Scholar 

  150. Bonnet R (2004) Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48:1–14. doi:10.1128/AAC.48.1.1-14.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jacoby GA (2009) AmpC β-lactamases. Clin Microbiol Rev 22:161–182. doi:10.1128/CMR.00036-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Evans BA, Amyes SG (2014) OXA β-lactamases. Clin Microbiol Rev 27:241–263. doi:10.1128/CMR.00117-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Queenan AM, Bush K (2007) Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev 20:440–458. doi:10.1128/CMR.00001-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Shaw KJ, Rather PN, Hare RS, Miller GH (1993) Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57:138–163

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Davies J, Wright GD (1997) Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 5:234–240. doi:10.1016/S0966-842X(97)01033-0

    Article  CAS  PubMed  Google Scholar 

  156. Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Updat 13:151–171. doi:10.1016/j.drup.2010.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhu L, Yan Z, Zhang Z, Zhou Q, Zhou J, Wakeland EK, Fang X, Xuan Z et al (2013) Complete genome analysis of three Acinetobacter baumannii clinical isolates in China for insight into the diversification of drug resistance elements. PLoS One 8:e66584. doi:10.1371/journal.pone.0066584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Boehr DD, Draker KA, Koteva K, Bains M, Hancock RE, Wright GD (2003) Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes. Chem Biol 10:189–196. doi:10.1016/S1074-5521(03)00026-7

    Article  CAS  PubMed  Google Scholar 

  159. Lin DL, Tran T, Adams C, Alam JY, Herron SR, Tolmasky ME (2013) Inhibitors of the aminoglycoside 6′-N-acetyltransferase type Ib [AAC(6′)-Ib] identified by in silico molecular docking. Bioorg Med Chem Lett 23:5694–5698. doi:10.1016/j.bmcl.2013.08.016

    Article  CAS  PubMed  Google Scholar 

  160. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Hye Park C, Bush K, Hooper DC (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83–88. doi:10.1038/nm1347

    Article  CAS  PubMed  Google Scholar 

  161. Leclercq R (2002) Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 34:482–492. doi:10.1086/324626

    Article  CAS  PubMed  Google Scholar 

  162. Morar M, Pengelly K, Koteva K, Wright GD (2012) Mechanism and diversity of the erythromycin esterase family of enzymes. Biochemistry 51:1740–1751. doi:10.1021/bi201790u

    Article  CAS  PubMed  Google Scholar 

  163. Phuc Nguyen MC, Woerther PL, Bouvet M, Andremont A, Leclercq R, Canu A (2009) Escherichia coli as reservoir for macrolide resistance genes. Emerg Infect Dis 15:1648–1650. doi:10.3201/eid1510.090696

    Article  PubMed  CAS  Google Scholar 

  164. Nonaka L, Maruyama F, Suzuki S, Masuda M (2015) Novel macrolide-resistance genes, mef(C) and mph(G), carried by plasmids from Vibrio and Photobacterium isolated from sediment and seawater of a coastal aquaculture site. Lett Appl Microbiol 61:1–6. doi:10.1111/lam.12414

    Article  CAS  PubMed  Google Scholar 

  165. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A (2004) Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28:519–542. doi:10.1016/j.femsre.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  166. Quan S, Venter H, Dabbs ER (1997) Ribosylative inactivation of rifampin by Mycobacterium smegmatis is a principal contributor to its low susceptibility to this antibiotic. Antimicrob Agents Chemother 41:2456–2460

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Spanogiannopoulos P, Waglechner N, Koteva K, Wright GD (2014) A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria. Proc Natl Acad Sci U S A 111:7102–7107. doi:10.1073/pnas.1402358111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Spanogiannopoulos P, Thaker M, Koteva K, Waglechner N, Wright GD (2012) Characterization of a rifampin-inactivating glycosyltransferase from a screen of environmental actinomycetes. Antimicrob Agents Chemother 56:5061–5069. doi:10.1128/AAC.01166-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Fillgrove KL, Pakhomova S, Newcomer ME, Armstrong RN (2003) Mechanistic diversity of fosfomycin resistance in pathogenic microorganisms. J Am Chem Soc 125:15730–15731. doi:10.1021/ja039307z

    Article  CAS  PubMed  Google Scholar 

  170. Lee SY, Park YJ, Yu JK, Jung S, Kim Y, Jeong SH, Arakawa Y (2012) Prevalence of acquired fosfomycin resistance among extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Korea and IS26-composite transposon surrounding fosA3. J Antimicrob Chemother 67:2843–2847. doi:10.1093/jac/dks319

    Google Scholar 

  171. Volkers G, Palm GJ, Weiss MS, Wright GD, Hinrichs W (2011) Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Lett 585:1061–1066. doi:10.1016/j.febslet.2011.03.012

    Article  CAS  PubMed  Google Scholar 

  172. Forsberg KJ, Patel S, Wencewicz TA, Dantas G (2015) The tetracycline destructases: a novel family of tetracycline-inactivating enzymes. Chem Biol 22:888–897. doi:10.1016/j.chembiol.2015.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. International Working Group on the Classification of Staphylococcal Cassette Chromosome E (2009) Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother 53:4961–4967. doi:10.1128/AAC.00579-09

    Article  CAS  Google Scholar 

  174. Chongtrakool P, Ito T, Ma XX, Kondo Y, Trakulsomboon S, Tiensasitorn C, Jamklang M, Chavalit T et al (2006) Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCCmec elements. Antimicrob Agents Chemother 50:1001–1012. doi:10.1128/AAC.50.3.1001-1012.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jensen A, Valdorsson O, Frimodt-Moller N, Hollingshead S, Kilian M (2015) Commensal streptococci serve as a reservoir for β-lactam resistance genes in Streptococcus pneumoniae. Antimicrob Agents Chemother 59:3529–3540. doi:10.1128/AAC.00429-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Unemo M, Shafer WM (2014) Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev 27:587–613. doi:10.1128/CMR.00010-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wilson DN (2014) Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 12:35–48. doi:10.1038/nrmicro3155

    Article  CAS  PubMed  Google Scholar 

  178. Vester B, Douthwaite S (2001) Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother 45:1–12. doi:10.1128/AAC.45.1.1-12.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Long KS, Vester B (2012) Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 56:603–612. doi:10.1128/AAC.05702-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Recht MI, Puglisi JD (2001) Aminoglycoside resistance with homogeneous and heterogeneous populations of antibiotic-resistant ribosomes. Antimicrob Agents Chemother 45:2414–2419. doi:10.1128/AAC.45.9.2414-2419.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B (2006) The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob Agents Chemother 50:2500–2505. doi:10.1128/AAC.00131-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Beabout K, Hammerstrom TG, Perez AM, Magalhaes BF, Prater AG, Clements TP, Arias CA, Saxer G et al (2015) The ribosomal S10 protein is a general target for decreased tigecycline susceptibility. Antimicrob Agents Chemother 59:5561–5566. doi:10.1128/AAC.00547-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Li BB, Wu CM, Wang Y, Shen JZ (2011) Single and dual mutations at positions 2058, 2503 and 2504 of 23S rRNA and their relationship to resistance to antibiotics that target the large ribosomal subunit. J Antimicrob Chemother 66:1983–1986. doi:10.1093/jac/dkr268

    Article  CAS  PubMed  Google Scholar 

  184. Hooper DC, Jacoby GA (2015) Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci 1354:12–31. doi:10.1111/nyas.12830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Li X-Z (2005) Quinolone resistance in bacteria: emphasis on plasmid-mediated mechanisms. Int J Antimicrob Agents 25:453–463. doi:10.1016/j.ijantimicag.2005.04.002

    Article  CAS  PubMed  Google Scholar 

  186. Sánchez MB, Martínez JL (2010) SmQnr contributes to intrinsic resistance to quinolones in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 54:580–581. doi:10.1128/AAC.00496-09

    Article  PubMed  CAS  Google Scholar 

  187. Pootoolal J, Neu J, Wright GD (2002) Glycopeptide antibiotic resistance. Annu Rev Pharmacol Toxicol 42:381–408. doi:10.1146/annurev.pharmtox.42.091601.142813

    Article  CAS  PubMed  Google Scholar 

  188. Lambert PA (2005) Bacterial resistance to antibiotics: modified target sites. Adv Drug Deliv Rev 57:1471–1485. doi:10.1016/j.addr.2005.04.003

    Article  CAS  PubMed  Google Scholar 

  189. Thomas CM, Hothersall J, Willis CL, Simpson TJ (2010) Resistance to and synthesis of the antibiotic mupirocin. Nat Rev Microbiol 8:281–289. doi:10.1038/nrmicro2278

    Article  CAS  PubMed  Google Scholar 

  190. Shi W, Zhang X, Jiang X, Yuan H, Lee JS, Barry CE 3rd, Wang H, Zhang W et al (2011) Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 333:1630–1632. doi:10.1126/science.1208813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Huovinen P (2001) Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis 32:1608–1614. doi:10.1086/320532

    Article  CAS  PubMed  Google Scholar 

  192. Almeida Da Silva PE, Palomino JC (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66:1417–1430. doi:10.1093/jac/dkr173

    Article  CAS  PubMed  Google Scholar 

  193. Jeong JY, Mukhopadhyay AK, Akada JK, Dailidiene D, Hoffman PS, Berg DE (2001) Roles of FrxA and RdxA nitroreductases of Helicobacter pylori in susceptibility and resistance to metronidazole. J Bacteriol 183:5155–5162. doi:10.1128/JB.183.17.5155-5162.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Giske CG (2015) Contemporary resistance trends and mechanisms for the old antibiotics colistin, temocillin, fosfomycin, mecillinam and nitrofurantoin. Clin Microbiol Infect 21:899–905. doi:10.1016/j.cmi.2015.05.022

    Article  CAS  PubMed  Google Scholar 

  195. Yang S, Clayton SR, Zechiedrich EL (2003) Relative contributions of the AcrAB, MdfA and NorE efflux pumps to quinolone resistance in Escherichia coli. J Antimicrob Chemother 51:545–556. doi:10.1093/jac/dkg126

    Article  CAS  PubMed  Google Scholar 

  196. Li X-Z, Zhang L, Poole K (2000) Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. J Antimicrob Chemother 45:433–436. doi:10.1093/jac/45.4.433

    Article  CAS  PubMed  Google Scholar 

  197. Li X-Z, Livermore DM, Nikaido H (1994) Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother 38:1732–1741. doi:10.1128/AAC.38.8.1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kropinski AM, Kuzio J, Angus BL, Hancock RE (1982) Chemical and chromatographic analysis of lipopolysaccharide from an antibiotic-supersusceptible mutant of Pseudomonas aeruginosa. Antimicrob Agents Chemother 21:310–319. doi:10.1128/AAC.21.2.310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Mazzariol A, Cornaglia G, Nikaido H (2000) Contributions of the AmpC β-lactamase and the AcrAB multidrug efflux system in intrinsic resistance of Escherichia coli K-12 to β-lactams. Antimicrob Agents Chemother 44:1387–1390. doi:10.1128/AAC.44.5.1387-1390.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Srikumar R, Tsang E, Poole K (1999) Contribution of the MexAB-OprM multidrug efflux system to the β-lactam resistance of penicillin-binding protein and β-lactamase-derepressed mutants of Pseudomonas aeruginosa. J Antimicrob Chemother 44:537–540. doi:10.1093/jac/44.4.537

    Article  CAS  PubMed  Google Scholar 

  201. Cagliero C, Mouline C, Cloeckaert A, Payot S (2006) Synergy between efflux pump CmeABC and modifications in ribosomal proteins L4 and L22 in conferring macrolide resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 50:3893–3896. doi:10.1128/AAC.00616-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Veal WL, Nicholas RA, Shafer WM (2002) Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J Bacteriol 184:5619–5624. doi:10.1128/JB.184.20.5619-5624.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The views expressed in this chapter do not necessarily reflect those of the author’s affiliation, Health Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Zhi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, XZ. (2016). Antimicrobial Resistance in Bacteria: An Overview of Mechanisms and Role of Drug Efflux Pumps. In: Li, XZ., Elkins, C., Zgurskaya, H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham. https://doi.org/10.1007/978-3-319-39658-3_6

Download citation

Publish with us

Policies and ethics