Skip to main content

Structures and Transport Mechanisms of the ABC Efflux Pumps

  • Chapter
  • First Online:
Book cover Efflux-Mediated Antimicrobial Resistance in Bacteria

Abstract

The ATP-binding cassette (ABC) transporters form one of the largest families of proteins in living organisms. They are overrepresented in bacteria where they are involved in the influx or efflux of various molecules. Although bacterial drug efflux transporters were initially discovered as ion-motive-driven pumps, evidence has accumulated since the mid-1990s that members of the ABC superfamily can play a prominent role in drug resistance mechanisms. Yet, the implication of drug efflux ABC transporters in clinical settings is still lagging behind for most bacterial pathogens. Thanks to the accumulation of three-dimensional structures, our knowledge of the functioning mechanisms of drug efflux transporters has progressed tremendously in the recent years, but many questions still remain. In this chapter, we will summarize the current view of the structures and transport mechanisms of drug efflux ABC transporters with an emphasis on multidrug bacterial efflux pumps. Unsolved mysteries about these fascinating transporters will also be mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ter Beek J, Guskov A, Slotboom DJ (2014) Structural diversity of ABC transporters. J Gen Physiol 143:419–435. doi:10.1085/jgp.201411164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lee M, Choi Y, Burla B, Kim YY, Jeon B, Maeshima M, Yoo JY, Martinoia E et al (2008) The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat Cell Biol 10:1217–1223. doi:10.1038/ncb1782

    Google Scholar 

  3. Jones PM, O’Mara ML, George AM (2009) ABC transporters: a riddle wrapped in a mystery inside an enigma. Trends Biochem Sci 34:520–531. doi:10.1016/j.tibs.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  4. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227. doi:10.1038/nrm2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rice AJ, Park A, Pinkett HW (2014) Diversity in ABC transporters: type I, II and III importers. Crit Rev Biochem Mol Biol 49:426–437. doi:10.3109/10409238.2014.953626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Veen HW, Venema K, Bolhuis H, Oussenko I, Kok J, Poolman B, Driessen AJ, Konings WN (1996) Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc Natl Acad Sci U S A 93:10668–10672

    Article  PubMed  PubMed Central  Google Scholar 

  7. van Veen HW, Margolles A, Muller M, Higgins CF, Konings WN (2000) The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J 19:2503–2514. doi:10.1093/emboj/19.11.2503

    Google Scholar 

  8. van Veen HW, Callaghan R, Soceneantu L, Sardini A, Konings WN, Higgins CF (1998) A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene. Nature 391:291–295. doi:10.1038/34669

    Article  PubMed  Google Scholar 

  9. Steinfels E, Orelle C, Dalmas O, Penin F, Miroux B, Di Pietro A, Jault JM (2002) Highly efficient over-production in E. coli of YvcC, a multidrug-like ATP-binding cassette transporter from Bacillus subtilis. Biochim Biophys Acta 1565:1–5. doi:10.1016/S0005-2736(02)00515-1

    Article  CAS  PubMed  Google Scholar 

  10. Dalmas O, Do Cao MA, Lugo MR, Sharom FJ, Di Pietro A, Jault JM (2005) Time-resolved fluorescence resonance energy transfer shows that the bacterial multidrug ABC half-transporter BmrA functions as a homodimer. Biochemistry 44:4312–4321. doi:10.1021/bi0482809

    Article  CAS  PubMed  Google Scholar 

  11. Steinfels E, Orelle C, Fantino JR, Dalmas O, Rigaud JL, Denizot F, Di Pietro A, Jault JM (2004) Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis. Biochemistry 43:7491–7502. doi:10.1021/bi0362018

    Article  CAS  PubMed  Google Scholar 

  12. Krugel H, Licht A, Biedermann G, Petzold A, Lassak J, Hupfer Y, Schlott B, Hertweck C et al (2010) Cervimycin C resistance in Bacillus subtilis is due to a promoter up-mutation and increased mRNA stability of the constitutive ABC-transporter gene bmrA. FEMS Microbiol Lett 313:155–163. doi:10.1111/j.1574-6968.2010.02143.x

    Article  PubMed  CAS  Google Scholar 

  13. Lubelski J, Mazurkiewicz P, van Merkerk R, Konings WN, Driessen AJ (2004) ydaG and ydbA of Lactococcus lactis encode a heterodimeric ATP-binding cassette-type multidrug transporter. J Biol Chem 279:34449–34455. doi:10.1074/jbc.M404072200

    Article  CAS  PubMed  Google Scholar 

  14. Torres C, Galian C, Freiberg C, Fantino JR, Jault JM (2009) The YheI/YheH heterodimer from Bacillus subtilis is a multidrug ABC transporter. Biochim Biophys Acta 1788:615–622. doi:10.1016/j.bbamem.2008

    Article  CAS  PubMed  Google Scholar 

  15. Marrer E, Schad K, Satoh AT, Page MG, Johnson MM, Piddock LJ (2006) Involvement of the putative ATP-dependent efflux proteins PatA and PatB in fluoroquinolone resistance of a multidrug-resistant mutant of Streptococcus pneumoniae. Antimicrob Agents Chemother 50:685–693. doi:10.1128/AAC.50.2.685-693.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matsuo T, Chen J, Minato Y, Ogawa W, Mizushima T, Kuroda T, Tsuchiya T (2008) SmdAB, a heterodimeric ABC-Type multidrug efflux pump, in Serratia marcescens. J Bacteriol 190:648–654. doi:10.1128/JB.01513-07

    Article  CAS  PubMed  Google Scholar 

  17. Lubelski J, van Merkerk R, Konings WN, Driessen AJ (2006) Nucleotide-binding sites of the heterodimeric LmrCD ABC-multidrug transporter of Lactococcus lactis are asymmetric. Biochemistry 45:648–656. doi:10.1021/bi051276s

    Article  CAS  PubMed  Google Scholar 

  18. Zutz A, Hoffmann J, Hellmich UA, Glaubitz C, Ludwig B, Brutschy B, Tampe R (2011) Asymmetric ATP hydrolysis cycle of the heterodimeric multidrug ABC transport complex TmrAB from Thermus thermophilus. J Biol Chem 286:7104–7115. doi:10.1074/jbc.M110.201178

    Article  CAS  PubMed  Google Scholar 

  19. Hinz A, Tampe R (2012) ABC transporters and immunity: mechanism of self-defense. Biochemistry 51:4981–4989. doi:10.1021/bi300128f

    Article  CAS  PubMed  Google Scholar 

  20. Qin L, Zheng J, Grant CE, Jia Z, Cole SP, Deeley RG (2008) Residues responsible for the asymmetric function of the nucleotide binding domains of multidrug resistance protein 1. Biochemistry 47:13952–13965. doi:10.1021/bi801532g

    Article  CAS  PubMed  Google Scholar 

  21. Lubelski J, de Jong A, van Merkerk R, Agustiandari H, Kuipers OP, Kok J, Driessen AJ (2006) LmrCD is a major multidrug resistance transporter in Lactococcus lactis. Mol Microbiol 61:771–781. doi:10.1111/j.1365-2958.2006.05267.x

    Article  CAS  PubMed  Google Scholar 

  22. Zaidi AH, Bakkes PJ, Lubelski J, Agustiandari H, Kuipers OP, Driessen AJ (2008) The ABC-type multidrug resistance transporter LmrCD is responsible for an extrusion-based mechanism of bile acid resistance in Lactococcus lactis. J Bacteriol 190:7357–7366. doi:10.1128/JB.00485-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Agustiandari H, Lubelski J, van den Berg van Saparoea HB, Kuipers OP, Driessen AJ (2008) LmrR is a transcriptional repressor of expression of the multidrug ABC transporter LmrCD in Lactococcus lactis. J Bacteriol 190:759–763. doi:10.1128/JB.01151-07

    Article  CAS  PubMed  Google Scholar 

  24. Agustiandari H, Peeters E, de Wit JG, Charlier D, Driessen AJ (2011) LmrR-mediated gene regulation of multidrug resistance in Lactococcus lactis. Microbiology 157:1519–1530. doi:10.1099/mic.0.048025-0

    Article  CAS  PubMed  Google Scholar 

  25. Madoori PK, Agustiandari H, Driessen AJ, Thunnissen AM (2009) Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition. EMBO J 28:156–166. doi:10.1038/emboj.2008.263

    Article  CAS  PubMed  Google Scholar 

  26. Takeuchi K, Tokunaga Y, Imai M, Takahashi H, Shimada I (2014) Dynamic multidrug recognition by multidrug transcriptional repressor LmrR. Sci Rep 4:6922. doi:10.1038/srep06922

    Article  PubMed  PubMed Central  Google Scholar 

  27. van der Berg JP, Madoori PK, Komarudin AG, Thunnissen AM, Driessen AJ (2015) Binding of the lactococcal drug dependent transcriptional regulator LmrR to its ligands and responsive promoter regions. PLoS One 10:e0135467. doi:10.1371/journal.pone.0135467

    Google Scholar 

  28. Reilman E, Mars RA, van Dijl JM, Denham EL (2014) The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism. Nucleic Acids Res 42:11393–11407. doi:10.1093/nar/gku832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dezi M, Di Cicco A, Bassereau P, Levy D (2013) Detergent-mediated incorporation of transmembrane proteins in giant unilamellar vesicles with controlled physiological contents. Proc Natl Acad Sci U S A 110:7276–7281. doi:10.1073/pnas.1303857110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Galian C, Manon F, Dezi M, Torres C, Ebel C, Levy D, Jault JM (2011) Optimized purification of a heterodimeric ABC transporter in a highly stable form amenable to 2-D crystallization. PLoS One 6:e19677. doi:10.1371/journal.pone.0019677

    Google Scholar 

  31. Mishra S, Verhalen B, Stein RA, Wen PC, Tajkhorshid E, McHaourab HS (2014) Conformational dynamics of the nucleotide binding domains and the power stroke of a heterodimeric ABC transporter. eLife 3:e02740. doi:10.7554/eLife.02740

  32. Robertson GT, Doyle TB, Lynch AS (2005) Use of an efflux-deficient Streptococcus pneumoniae strain panel to identify ABC-class multidrug transporters involved in intrinsic resistance to antimicrobial agents. Antimicrob Agents Chemother 49:4781–4783. doi:10.1128/AAC.49.11.4781-4783.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marrer E, Satoh AT, Johnson MM, Piddock LJ, Page MG (2006) Global transcriptome analysis of the responses of a fluoroquinolone-resistant Streptococcus pneumoniae mutant and its parent to ciprofloxacin. Antimicrob Agents Chemother 50:269–278. doi:10.1128/aac.50.1.269-278.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. El Garch F, Lismond A, Piddock LJ, Courvalin P, Tulkens PM, Van Bambeke F (2010) Fluoroquinolones induce the expression of patA and patB, which encode ABC efflux pumps in Streptococcus pneumoniae. J Antimicrob Chemother 65:2076–2082. doi:10.1093/jac/dkq287

    Article  PubMed  CAS  Google Scholar 

  35. Garvey MI, Baylay AJ, Wong RL, Piddock LJ (2011) Overexpression of patA and patB, which encode ABC transporters, is associated with fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 55:190–196. doi:10.1128/AAC.00672-10

    Article  CAS  PubMed  Google Scholar 

  36. Lupien A, Billal DS, Fani F, Soualhine H, Zhanel GG, Leprohon P, Ouellette M (2013) Genomic characterization of ciprofloxacin resistance in a laboratory-derived mutant and a clinical isolate of Streptococcus pneumoniae. Antimicrob Agents Chemother 57:4911–4919. doi:10.1128/aac.00418-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baylay AJ, Piddock LJ (2015) Clinically relevant fluoroquinolone resistance due to constitutive overexpression of the PatAB ABC transporter in Streptococcus pneumoniae is conferred by disruption of a transcriptional attenuator. J Antimicrob Chemother 70:670–679. doi:10.1093/jac/dku449

    Article  CAS  PubMed  Google Scholar 

  38. Baylay AJ, Ivens A, Piddock LJ (2015) A novel gene amplification causes upregulation of the PatAB ABC transporter and fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 59:3098–3108. doi:10.1128/AAC.04858-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lupien A, Gingras H, Bergeron MG, Leprohon P, Ouellette M (2015) Multiple mutations and increased RNA expression in tetracycline-resistant Streptococcus pneumoniae as determined by genome-wide DNA and mRNA sequencing. J Antimicrob Chemother 70:1946–1959. doi:10.1093/jac/dkv060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boncoeur E, Durmort C, Bernay B, Ebel C, Di Guilmi AM, Croize J, Vernet T, Jault JM (2012) PatA and PatB form a functional heterodimeric ABC multidrug efflux transporter responsible for the resistance of Streptococcus pneumoniae to fluoroquinolones. Biochemistry 51:7755–7765. doi:10.1021/bi300762p

    Article  CAS  PubMed  Google Scholar 

  41. Hohl M, Briand C, Grutter MG, Seeger MA (2012) Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat Struct Mol Biol 19:395–402. doi:10.1038/nsmb.2267

    Article  CAS  PubMed  Google Scholar 

  42. Bechara C, Noll A, Morgner N, Degiacomi MT, Tampe R, Robinson CV (2015) A subset of annular lipids is linked to the flippase activity of an ABC transporter. Nat Chem 7:255–262. doi:10.1038/nchem.2172

    Article  CAS  PubMed  Google Scholar 

  43. Li W, Sharma M, Kaur P (2014) The DrrAB efflux system of Streptomyces peucetius is a multidrug transporter of broad substrate specificity. J Biol Chem 289:12633–12646. doi:10.1074/jbc.M113.536136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gandlur SM, Wei L, Levine J, Russell J, Kaur P (2004) Membrane topology of the DrrB protein of the doxorubicin transporter of Streptomyces peucetius. J Biol Chem 279:27799–27806. doi:10.1074/jbc.M402898200

    Article  CAS  PubMed  Google Scholar 

  45. Kobayashi N, Nishino K, Yamaguchi A (2001) Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 183:5639–5644. doi:10.1128/JB.183.19.5639-5644.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu S, Zgurskaya HI (2012) Role of ATP binding and hydrolysis in assembly of MacAB-TolC macrolide transporter. Mol Microbiol 86:1132–1143. doi:10.1111/mmi.12046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin HT, Bavro VN, Barrera NP, Frankish HM, Velamakanni S, van Veen HW, Robinson CV, Borges-Walmsley MI et al (2009) MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA. J Biol Chem 284:1145–1154. doi:10.1074/jbc.M806964200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tikhonova EB, Devroy VK, Lau SY, Zgurskaya HI (2007) Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB. Mol Microbiol 63:895–910. doi:10.1111/j.1365-2958.2006.05549.x

    Article  CAS  PubMed  Google Scholar 

  49. Turlin E, Heuck G, Simoes Brandao MI, Szili N, Mellin JR, Lange N, Wandersman C (2014) Protoporphyrin (PPIX) efflux by the MacAB-TolC pump in Escherichia coli. Microbiol Open 3:849–859. doi:10.1002/mbo3.203

    Article  CAS  Google Scholar 

  50. Oswald C, Holland IB, Schmitt L (2006) The motor domains of ABC-transporters. What can structures tell us? Naunyn Schmiedebergs Arch Pharmacol 372:385–399. doi:10.1007/s00210-005-0031-4

    Article  CAS  PubMed  Google Scholar 

  51. Hung LW, Wang IX, Nikaido K, Liu PQ, Ames GF, Kim SH (1998) Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396:703–707. doi:10.1038/25393

    Article  CAS  PubMed  Google Scholar 

  52. Karpowich N, Martsinkevich O, Millen L, Yuan YR, Dai PL, MacVey K, Thomas PJ, Hunt JF (2001) Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure 9:571–586. doi:10.1016/S0969-2126(01)00617-7

    Article  CAS  PubMed  Google Scholar 

  53. Geourjon C, Orelle C, Steinfels E, Blanchet C, Deleage G, Di Pietro A, Jault JM (2001) A common mechanism for ATP hydrolysis in ABC transporter and helicase superfamilies. Trends Biochem Sci 26:539–544. doi:10.1016/S0968-0004(01)01907-7

    Article  CAS  PubMed  Google Scholar 

  54. Ye J, Osborne AR, Groll M, Rapoport TA (2004) RecA-like motor ATPases-lessons from structures. Biochim Biophys Acta 1659:1–18. doi:10.1016/j.bbabio.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  55. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Muneyuki E, Noji H, Amano T, Masaike T, Yoshida M (2000) F0F1-ATP synthase: general structural features of ‘ATP-engine’ and a problem on free energy transduction. Biochim Biophys Acta 1458:467–481. doi:10.1016/S0005-2728(00)00095-5

    Article  CAS  PubMed  Google Scholar 

  57. Thomsen ND, Berger JM (2008) Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases. Mol Microbiol 69:1071–1090. doi:10.1111/j.1365-2958.2008.06364.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Orelle C, Dalmas O, Gros P, Di Pietro A, Jault JM (2003) The conserved glutamate residue adjacent to the Walker-B motif is the catalytic base for ATP hydrolysis in the ATP-binding cassette transporter BmrA. J Biol Chem 278:47002–47008. doi:10.1074/jbc.M308268200

    Article  CAS  PubMed  Google Scholar 

  59. Oldham ML, Chen J (2011) Snapshots of the maltose transporter during ATP hydrolysis. Proc Natl Acad Sci U S A 108:15152–15156. doi:10.1073/pnas.1108858108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Senior AE (2011) Reaction chemistry ABC-style. Proc Natl Acad Sci U S A 108:15015–15016. doi:10.1073/pnas.1111863108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zaitseva J, Jenewein S, Jumpertz T, Holland IB, Schmitt L (2005) H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. EMBO J 24:1901–1910. doi:10.1038/sj.emboj.7600657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, Tainer JA (2000) Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101:789–800. doi:10.1016/S0092-8674(00)80890-9

    Article  CAS  PubMed  Google Scholar 

  63. Jones PM, George AM (2012) Role of the D-loops in allosteric control of ATP hydrolysis in an ABC transporter. J Phys Chem A 116:3004–3013. doi:10.1021/jp211139s

    Article  CAS  PubMed  Google Scholar 

  64. Grossmann N, Vakkasoglu AS, Hulpke S, Abele R, Gaudet R, Tampe R (2014) Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter. Nat Commun 5:5419. doi:10.1038/ncomms6419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Smith PC, Karpowich N, Millen L, Moody JE, Rosen J, Thomas PJ, Hunt JF (2002) ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 10:139–149. doi:10.1016/S1097-2765(02)00576-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185. doi:10.1038/nature05155

    Article  CAS  PubMed  Google Scholar 

  67. Becker JP, Van Bambeke F, Tulkens PM, Prevost M (2010) Dynamics and structural changes induced by ATP binding in SAV1866, a bacterial ABC exporter. J Phys Chem B 114:15948–15957. doi:10.1021/jp1038392

    Article  CAS  PubMed  Google Scholar 

  68. Damas JM, Oliveira AS, Baptista AM, Soares CM (2011) Structural consequences of ATP hydrolysis on the ABC transporter NBD dimer: molecular dynamics studies of HlyB. Protein Sci 20:1220–1230. doi:10.1002/pro.650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kluth M, Stindt J, Droge C, Linnemann D, Kubitz R, Schmitt L (2015) A mutation within the extended X loop abolished substrate-induced ATPase activity of the human liver ATP-binding cassette (ABC) transporter MDR3. J Biol Chem 290:4896–4907. doi:10.1074/jbc.M114.588566

    Article  CAS  PubMed  Google Scholar 

  70. Oancea G, O’Mara ML, Bennett WF, Tieleman DP, Abele R, Tampe R (2009) Structural arrangement of the transmission interface in the antigen ABC transport complex TAP. Proc Natl Acad Sci U S A 106:5551–5556. doi:10.1073/pnas.0811260106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ambudkar SV, Kim IW, Xia D, Sauna ZE (2006) The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Lett 580:1049–1055. doi:10.1016/j.febslet.2005.12.051

    Article  CAS  PubMed  Google Scholar 

  72. Bukowska MA, Hohl M, Geertsma ER, Hurlimann LM, Grutter MG, Seeger MA (2015) A transporter motor taken apart: flexibility in the nucleotide binding domains of a heterodimeric ABC exporter. Biochemistry 54:3086–3099. doi:10.1021/acs.biochem.5b00188

    Article  CAS  PubMed  Google Scholar 

  73. De Marcos LC, Dietrich D, Johnson B, Baldwin SA, Holdsworth MJ, Theodoulou FL, Baker A (2009) The NBDs that wouldn’t die: a cautionary tale of the use of isolated nucleotide binding domains of ABC transporters. Commun Integr Biol 2:97–99. doi:10.4161/cib.7621

    Article  Google Scholar 

  74. Li J, Jaimes KF, Aller SG (2014) Refined structures of mouse P-glycoprotein. Protein Sci 23:34–46. doi:10.1002/pro.2387

    Article  PubMed  CAS  Google Scholar 

  75. Ward A, Reyes CL, Yu J, Roth CB, Chang G (2007) Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci U S A 104:19005–19010. doi:10.1073/pnas.0709388104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Velamakanni S, Yao Y, Gutmann DA, van Veen HW (2008) Multidrug transport by the ABC transporter Sav 1866 from Staphylococcus aureus. Biochemistry 47:9300–9308. doi:10.1021/bi8006737

    Article  CAS  PubMed  Google Scholar 

  77. Chang G, Roth CB, Reyes CL, Pornillos O, Chen YJ, Chen AP (2006) Retraction. Science 314:1875. doi:10.1126/science.314.5807.1875b

    Article  CAS  PubMed  Google Scholar 

  78. Dawson RJ, Locher KP (2007) Structure of the multidrug ABC transporter Sav 1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581:935–938. doi:10.1016/j.febslet.2007.01.073

    Article  CAS  PubMed  Google Scholar 

  79. Zhou Z, White KA, Polissi A, Georgopoulos C, Raetz CR (1998) Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J Biol Chem 273:12466–12475. doi:10.1074/jbc.273.20.12466

    Article  CAS  PubMed  Google Scholar 

  80. Reuter G, Janvilisri T, Venter H, Shahi S, Balakrishnan L, van Veen HW (2003) The ATP binding cassette multidrug transporter LmrA and lipid transporter MsbA have overlapping substrate specificities. J Biol Chem 278:35193–35198. doi:10.1074/jbc.M306226200

    Article  CAS  PubMed  Google Scholar 

  81. Woebking B, Reuter G, Shilling RA, Velamakanni S, Shahi S, Venter H, Balakrishnan L, van Veen HW (2005) Drug-lipid A interactions on the Escherichia coli ABC transporter MsbA. J Bacteriol 187:6363–6369. doi:10.1128/JB.187.18.6363-6369.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT et al (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722. doi:10.1126/science.1168750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jin MS, Oldham ML, Zhang Q, Chen J (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490:566–569. doi:10.1038/nature11448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Perez C, Gerber S, Boilevin J, Bucher M, Darbre T, Aebi M, Reymond JL, Locher KP (2015) Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 524:433–438. doi:10.1038/nature14953

    Article  CAS  PubMed  Google Scholar 

  85. Fribourg PF, Chami M, Sorzano CO, Gubellini F, Marabini R, Marco S, Jault JM, Levy D (2014) 3D cryo-electron reconstruction of BmrA, a bacterial multidrug ABC transporter in an inward-facing conformation and in a lipidic environment. J Mol Biol 426:2059–2069. doi:10.1016/j.jmb.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  86. Choudhury HG, Tong Z, Mathavan I, Li Y, Iwata S, Zirah S, Rebuffat S, van Veen HW et al (2014) Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc Natl Acad Sci U S A 111:9145–9150. doi:10.1073/pnas.1320506111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hohl M, Hurlimann LM, Bohm S, Schoppe J, Grutter MG, Bordignon E, Seeger MA (2014) Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter. Proc Natl Acad Sci U S A 111:11025–11030. doi:10.1073/pnas.1400485111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shintre CA, Pike AC, Li Q, Kim JI, Barr AJ, Goubin S, Shrestha L, Yang J et al (2013) Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci U S A 110:9710–9715. doi:10.1073/pnas.1217042110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kim J, Wu S, Tomasiak TM, Mergel C, Winter MB, Stiller SB, Robles-Colmanares Y, Stroud RM et al (2015) Subnanometre-resolution electron cryomicroscopy structure of a heterodimeric ABC exporter. Nature 517:396–400. doi:10.1038/nature13872

    Article  CAS  PubMed  Google Scholar 

  90. Khare D, Oldham ML, Orelle C, Davidson AL, Chen J (2009) Alternating access in maltose transporter mediated by rigid-body rotations. Mol Cell 33:528–536. doi:10.1016/j.molcel.2009.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. van Wonderen JH, McMahon RM, O’Mara ML, McDevitt CA, Thomson AJ, Kerr ID, MacMillan F, Callaghan R (2014) The central cavity of ABCB1 undergoes alternating access during ATP hydrolysis. FEBS J 281:2190–2201. doi:10.1111/febs.12773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Zou P, McHaourab HS (2009) Alternating access of the putative substrate-binding chamber in the ABC transporter MsbA. J Mol Biol 393:574–585. doi:10.1016/j.jmb.2009.08.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Martin C, Higgins CF, Callaghan R (2001) The vinblastine binding site adopts high- and low-affinity conformations during a transport cycle of P-glycoprotein. Biochemistry 40:15733–15742. doi:10.1021/bi011211z

    Article  CAS  PubMed  Google Scholar 

  94. Ramachandra M, Ambudkar SV, Chen D, Hrycyna CA, Dey S, Gottesman MM, Pastan I (1998) Human P-glycoprotein exhibits reduced affinity for substrates during a catalytic transition state. Biochemistry 37:5010–5019. doi:10.1021/bi973045u

    Article  CAS  PubMed  Google Scholar 

  95. Moradi M, Tajkhorshid E (2013) Mechanistic picture for conformational transition of a membrane transporter at atomic resolution. Proc Natl Acad Sci U S A 110:18916–18921. doi:10.1073/pnas.1313202110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wise JG (2012) Catalytic transitions in the human MDR1 P-glycoprotein drug binding sites. Biochemistry 51:5125–5141. doi:10.1021/bi300299z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bayeva M, Khechaduri A, Wu R, Burke MA, Wasserstrom JA, Singh N, Liesa M, Shirihai OS et al (2013) ATP-binding cassette B10 regulates early steps of heme synthesis. Circ Res 113:279–287. doi:10.1161/CIRCRESAHA.113.301552

    Article  CAS  PubMed  Google Scholar 

  98. Qiu W, Liesa M, Carpenter EP, Shirihai OS (2015) ATP binding and hydrolysis properties of ABCB10 and their regulation by glutathione. PLoS One 10:e0129772. doi:10.1371/journal.pone.0129772

    Google Scholar 

  99. Loo TW, Bartlett MC, Clarke DM (2004) The drug-binding pocket of the human multidrug resistance P-glycoprotein is accessible to the aqueous medium. Biochemistry 43:12081–12089. doi:10.1021/bi049045t

    Article  CAS  PubMed  Google Scholar 

  100. Loo TW, Bartlett MC, Clarke DM (2009) Identification of residues in the drug translocation pathway of the human multidrug resistance P-glycoprotein by arginine mutagenesis. J Biol Chem 284:24074–24087. doi:10.1074/jbc.M109.023267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Poelarends GJ, Konings WN (2002) The transmembrane domains of the ABC multidrug transporter LmrA form a cytoplasmic exposed, aqueous chamber within the membrane. J Biol Chem 277:42891–42898. doi:10.1074/jbc.M206508200

    Article  CAS  PubMed  Google Scholar 

  102. Gatlik-Landwojtowicz E, Aanismaa P, Seelig A (2006) Quantification and characterization of P-glycoprotein-substrate interactions. Biochemistry 45:3020–3032. doi:10.1021/bi051380+

    Article  CAS  PubMed  Google Scholar 

  103. Chufan EE, Sim HM, Ambudkar SV (2015) Molecular basis of the polyspecificity of P-glycoprotein (ABCB1): recent biochemical and structural studies. Adv Cancer Res 125:71–96. doi:10.1016/bs.acr.2014.10.003

    Article  PubMed  Google Scholar 

  104. Loo TW, Clarke DM (1999) The transmembrane domains of the human multidrug resistance P-glycoprotein are sufficient to mediate drug binding and trafficking to the cell surface. J Biol Chem 274:24759–24765. doi:10.1074/jbc.274.35.24759

    Article  CAS  PubMed  Google Scholar 

  105. Ayesh S, Shao YM, Stein WD (1996) Co-operative, competitive and non-competitive interactions between modulators of P-glycoprotein. Biochim Biophys Acta 1316:8–18. doi:10.1016/0925-4439(96)00008-7

    Article  PubMed  Google Scholar 

  106. Garrigos M, Mir LM, Orlowski S (1997) Competitive and non-competitive inhibition of the multidrug-resistance-associated P-glycoprotein ATPase–further experimental evidence for a multisite model. Eur J Biochem 244:664–673. doi:10.1111/j.1432-1033.1997.00664.x

    Article  CAS  PubMed  Google Scholar 

  107. Tamai I, Safa AR (1991) Azidopine noncompetitively interacts with vinblastine and cyclosporin A binding to P-glycoprotein in multidrug resistant cells. J Biol Chem 266:16796–16800

    CAS  PubMed  Google Scholar 

  108. Shapiro AB, Ling V (1997) Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur J Biochem 250:130–137. doi:10.1111/j.1432-1033.1997.00130.x

    Article  CAS  PubMed  Google Scholar 

  109. Shapiro AB, Fox K, Lam P, Ling V (1999) Stimulation of P-glycoprotein-mediated drug transport by prazosin and progesterone. Evidence for a third drug-binding site. Eur J Biochem 259:841–850. doi:10.1046/j.1432-1327.1999.00098.x

    Article  CAS  PubMed  Google Scholar 

  110. Lugo MR, Sharom FJ (2005) Interaction of LDS-751 with P-glycoprotein and mapping of the location of the R drug binding site. Biochemistry 44:643–655. doi:10.1021/bi0485326

    Article  CAS  PubMed  Google Scholar 

  111. Qu Q, Sharom FJ (2002) Proximity of bound Hoechst 33342 to the ATPase catalytic sites places the drug binding site of P-glycoprotein within the cytoplasmic membrane leaflet. Biochemistry 41:4744–4752. doi:10.1021/bi0120897

    Article  CAS  PubMed  Google Scholar 

  112. Loo TW, Clarke DM (2002) Location of the rhodamine-binding site in the human multidrug resistance P-glycoprotein. J Biol Chem 277:44332–44338. doi:10.1074/jbc.M208433200

    Article  CAS  PubMed  Google Scholar 

  113. Loo TW, Bartlett MC, Clarke DM (2003) Simultaneous binding of two different drugs in the binding pocket of the human multidrug resistance P-glycoprotein. J Biol Chem 278:39706–39710. doi:10.1074/jbc.M308559200

    Article  CAS  PubMed  Google Scholar 

  114. Martinez L, Arnaud O, Henin E, Tao H, Chaptal V, Doshi R, Andrieu T, Dussurgey S et al (2014) Understanding polyspecificity within the substrate-binding cavity of the human multidrug resistance P-glycoprotein. FEBS J 281:673–682. doi:10.1111/febs.12613

    Article  CAS  PubMed  Google Scholar 

  115. Pajeva IK, Sterz K, Christlieb M, Steggemann K, Marighetti F, Wiese M (2013) Interactions of the multidrug resistance modulators tariquidar and elacridar and their analogues with P-glycoprotein. ChemMedChem 8:1701–1713. doi:10.1002/cmdc.201300233

    Article  CAS  PubMed  Google Scholar 

  116. Smriti, Zou P, McHaourab HS (2009) Mapping daunorubicin-binding sites in the ATP-binding cassette transporter MsbA using site-specific quenching by spin labels. J Biol Chem 284:13904–13913. doi:10.1074/jbc.M900837200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Siarheyeva A, Sharom FJ (2009) The ABC transporter MsbA interacts with lipid A and amphipathic drugs at different sites. Biochem J 419:317–328. doi:10.1042/BJ20081364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Infed N, Hanekop N, Driessen AJ, Smits SH, Schmitt L (2011) Influence of detergents on the activity of the ABC transporter LmrA. Biochim Biophys Acta 1808:2313–2321. doi:10.1016/j.bbamem.2011.05.016

    Article  CAS  PubMed  Google Scholar 

  119. Seeger MA, Mittal A, Velamakanni S, Hohl M, Schauer S, Salaa I, Grutter MG, van Veen HW (2012) Tuning the drug efflux activity of an ABC transporter in vivo by in vitro selected DARPin binders. PLoS One 7:e37845. doi:10.1371/journal.pone.0037845

    Google Scholar 

  120. Herget M, Kreissig N, Kolbe C, Scholz C, Tampe R, Abele R (2009) Purification and reconstitution of the antigen transport complex TAP: a prerequisite for determination of peptide stoichiometry and ATP hydrolysis. J Biol Chem 284:33740–33749. doi:10.1074/jbc.M109.047779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ames GF, Nikaido K, Wang IX, Liu PQ, Liu CE, Hu C (2001) Purification and characterization of the membrane-bound complex of an ABC transporter, the histidine permease. J Bioenerg Biomembr 33:79–92. doi:10.1023/A:1010797029183

    Article  CAS  PubMed  Google Scholar 

  122. Davidson AL, Shuman HA, Nikaido H (1992) Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. Proc Natl Acad Sci U S A 89:2360–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Vigonsky E, Ovcharenko E, Lewinson O (2013) Two molybdate/tungstate ABC transporters that interact very differently with their substrate binding proteins. Proc Natl Acad Sci U S A 110:5440–5445. doi:10.1073/pnas.1213598110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Doshi R, van Veen HW (2013) Substrate binding stabilizes a pre-translocation intermediate in the ATP-binding cassette transport protein MsbA. J Biol Chem 288:21638–21647. doi:10.1074/jbc.M113.485714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Loo TW, Bartlett MC, Clarke DM (2003) Drug binding in human P-glycoprotein causes conformational changes in both nucleotide-binding domains. J Biol Chem 278:1575–1578. doi:10.1074/jbc.M211307200

    Article  CAS  PubMed  Google Scholar 

  126. Geng J, Sivaramakrishnan S, Raghavan M (2013) Analyses of conformational states of the transporter associated with antigen processing (TAP) protein in a native cellular membrane environment. J Biol Chem 288:37039–37047. doi:10.1074/jbc.M113.504696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Modali SD, Zgurskaya HI (2011) The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter. Mol Microbiol 81:937–951. doi:10.1111/j.1365-2958.2011.07744.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Alvarez FJ, Orelle C, Huang Y, Bajaj R, Everly RM, Klug CS, Davidson AL (2015) Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter. Mol Microbiol 98:878–894. doi:10.1111/mmi.13165

    Article  CAS  PubMed  Google Scholar 

  129. Orelle C, Ayvaz T, Everly RM, Klug CS, Davidson AL (2008) Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter. Proc Natl Acad Sci U S A 105:12837–12842. doi:10.1073/pnas.0803799105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sippach M, Weidlich D, Klose D, Abe C, Klare J, Schneider E, Steinhoff HJ (2014) Conformational changes of the histidine ATP-binding cassette transporter studied by double electron-electron resonance spectroscopy. Biochim Biophys Acta 1838:1760–1768. doi:10.1016/j.bbamem.2014.02.010

    Article  CAS  PubMed  Google Scholar 

  131. Margolles A, Putman M, van Veen HW, Konings WN (1999) The purified and functionally reconstituted multidrug transporter LmrA of Lactococcus lactis mediates the transbilayer movement of specific fluorescent phospholipids. Biochemistry 38:16298–16306

    Google Scholar 

  132. van Helvoort A, Smith AJ, Sprong H, Fritzsche I, Schinkel AH, Borst P, van Meer G (1996) MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87:507–517. doi:10.1016/S0092-8674(00)81370-7

    Article  PubMed  Google Scholar 

  133. Al-Shawi MK, Polar MK, Omote H, Figler RA (2003) Transition state analysis of the coupling of drug transport to ATP hydrolysis by P-glycoprotein. J Biol Chem 278:52629–52640. doi:10.1074/jbc.M308175200

    Article  CAS  PubMed  Google Scholar 

  134. Ernst R, Kueppers P, Stindt J, Kuchler K, Schmitt L (2010) Multidrug efflux pumps: substrate selection in ATP-binding cassette multidrug efflux pumps–first come, first served? FEBS J 277:540–549. doi:10.1111/j.1742-4658.2009.07485.x

    Article  CAS  PubMed  Google Scholar 

  135. Gupta RP, Kueppers P, Schmitt L, Ernst R (2011) The multidrug transporter Pdr5: a molecular diode? Biol Chem 392:53–60. doi:10.1515/BC.2011.011

    CAS  PubMed  Google Scholar 

  136. Cooper RS, Altenberg GA (2013) Association/dissociation of the nucleotide-binding domains of the ATP-binding cassette protein MsbA measured during continuous hydrolysis. J Biol Chem 288:20785–20796. doi:10.1074/jbc.M113.477976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Moody JE, Millen L, Binns D, Hunt JF, Thomas PJ (2002) Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. J Biol Chem 277:21111–21114. doi:10.1074/jbc.C200228200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zoghbi ME, Fuson KL, Sutton RB, Altenberg GA (2012) Kinetics of the association/dissociation cycle of an ATP-binding cassette nucleotide-binding domain. J Biol Chem 287:4157–4164. doi:10.1074/jbc.M111.318378

    Article  CAS  PubMed  Google Scholar 

  139. Yuan YR, Blecker S, Martsinkevich O, Millen L, Thomas PJ, Hunt JF (2001) The crystal structure of the MJ0796 ATP-binding cassette. Implications for the structural consequences of ATP hydrolysis in the active site of an ABC transporter. J Biol Chem 276:32313–32321. doi:10.1074/jbc.M100758200

    Article  CAS  PubMed  Google Scholar 

  140. Jones PM, George AM (1999) Subunit interactions in ABC transporters: towards a functional architecture. FEMS Microbiol Lett 179:187–202. doi:10.1111/j.1574-6968.1999.tb08727.x

    Article  CAS  PubMed  Google Scholar 

  141. Fetsch EE, Davidson AL (2002) Vanadate-catalyzed photocleavage of the signature motif of an ATP-binding cassette (ABC) transporter. Proc Natl Acad Sci U S A 99:9685–9690. doi:10.1073/pnas.152204499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Buchaklian AH, Klug CS (2006) Characterization of the LSGGQ and H motifs from the Escherichia coli lipid A transporter MsbA. Biochemistry 45:12539–12546. doi:10.1021/bi060830a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tombline G, Bartholomew L, Gimi K, Tyndall GA, Senior AE (2004) Synergy between conserved ABC signature Ser residues in P-glycoprotein catalysis. J Biol Chem 279:5363–5373. doi:10.1074/jbc.M311964200

    Article  CAS  PubMed  Google Scholar 

  144. Orelle C, Alvarez FJ, Oldham ML, Orelle A, Wiley TE, Chen J, Davidson AL (2010) Dynamics of α-helical subdomain rotation in the intact maltose ATP-binding cassette transporter. Proc Natl Acad Sci U S A 107:20293–20298. doi:10.1073/pnas.1006544107

    Google Scholar 

  145. Ward AB, Szewczyk P, Grimard V, Lee CW, Martinez L, Doshi R, Caya A, Villaluz M et al (2013) Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain. Proc Natl Acad Sci U S A 110:13386–13391. doi:10.1073/pnas.1309275110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hellmich UA, Lyubenova S, Kaltenborn E, Doshi R, van Veen HW, Prisner TF, Glaubitz C (2012) Probing the ATP hydrolysis cycle of the ABC multidrug transporter LmrA by pulsed EPR spectroscopy. J Am Chem Soc 134:5857–5862. doi:10.1021/ja211007t

    Article  CAS  PubMed  Google Scholar 

  147. Mehmood S, Domene C, Forest E, Jault JM (2012) Dynamics of a bacterial multidrug ABC transporter in the inward- and outward-facing conformations. Proc Natl Acad Sci U S A 109:10832–10836. doi:10.1073/pnas.1204067109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Dalmas O, Orelle C, Foucher AE, Geourjon C, Crouzy S, Di Pietro A, Jault JM (2005) The Q-loop disengages from the first intracellular loop during the catalytic cycle of the multidrug ABC transporter BmrA. J Biol Chem 280:36857–36864. doi:10.1074/jbc.M503266200

    Article  CAS  PubMed  Google Scholar 

  149. Urbatsch IL, Gimi K, Wilke-Mounts S, Lerner-Marmarosh N, Rousseau ME, Gros P, Senior AE (2001) Cysteines 431 and 1074 are responsible for inhibitory disulfide cross-linking between the two nucleotide-binding sites in human P-glycoprotein. J Biol Chem 276:26980–26987. doi:10.1074/jbc.M010829200

    Article  CAS  PubMed  Google Scholar 

  150. Wen PC, Verhalen B, Wilkens S, McHaourab HS, Tajkhorshid E (2013) On the origin of large flexibility of P-glycoprotein in the inward-facing state. J Biol Chem 288:19211–19220. doi:10.1074/jbc.M113.450114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. George AM, Jones PM (2012) Perspectives on the structure-function of ABC transporters: the switch and constant contact models. Prog Biophys Mol Biol 109:95–107. doi:10.1016/j.pbiomolbio.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  152. Higgins CF, Linton KJ (2004) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11:918–926. doi:10.1038/nsmb836

    Article  CAS  PubMed  Google Scholar 

  153. Jones PM, George AM (2009) Opening of the ADP-bound active site in the ABC transporter ATPase dimer: evidence for a constant contact, alternating sites model for the catalytic cycle. Proteins 75:387–396. doi:10.1002/prot.22250

    Article  CAS  PubMed  Google Scholar 

  154. van der Does C, Tampe R (2004) How do ABC transporters drive transport? Biol Chem 385:927–933. doi:10.1515/BC.2004.121

    PubMed  Google Scholar 

  155. Zoghbi ME, Altenberg GA (2014) ATP binding to two sites is necessary for dimerization of nucleotide-binding domains of ABC proteins. Biochem Biophys Res Commun 443:97–102. doi:10.1016/j.bbrc.2013.11.050

    Article  CAS  PubMed  Google Scholar 

  156. Zoghbi ME, Altenberg GA (2013) Hydrolysis at one of the two nucleotide-binding sites drives the dissociation of ATP-binding cassette nucleotide-binding domain dimers. J Biol Chem 288:34259–34265. doi:10.1074/jbc.M113.500371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Borbat PP, Surendhran K, Bortolus M, Zou P, Freed JH, McHaourab HS (2007) Conformational motion of the ABC transporter MsbA induced by ATP hydrolysis. PLoS Biol 5:e271. doi:10.1371/journal.pbio.0050271

    Google Scholar 

  158. Doshi R, Woebking B, van Veen HW (2010) Dissection of the conformational cycle of the multidrug/lipidA ABC exporter MsbA. Proteins 78:2867–2872. doi:10.1002/prot.22813

    Article  CAS  PubMed  Google Scholar 

  159. Zou P, Bortolus M, McHaourab HS (2009) Conformational cycle of the ABC transporter MsbA in liposomes: detailed analysis using double electron-electron resonance spectroscopy. J Mol Biol 393:586–597. doi:10.1016/j.jmb.2009.08.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Orelle C, Gubellini F, Durand A, Marco S, Levy D, Gros P, Di Pietro A, Jault JM (2008) Conformational change induced by ATP binding in the multidrug ATP-binding cassette transporter BmrA. Biochemistry 47:2404–2412. doi:10.1021/bi702303s

    Article  CAS  PubMed  Google Scholar 

  161. Gottesman MM, Ambudkar SV, Xia D (2009) Structure of a multidrug transporter. Nat Biotechnol 27:546–547. doi:10.1038/nbt0609-546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yaginuma H, Kawai S, Tabata KV, Tomiyama K, Kakizuka A, Komatsuzaki T, Noji H, Imamura H (2014) Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging. Sci Rep 4:6522. doi:10.1038/srep06522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Loo TW, Clarke DM (2014) Cysteines introduced into extracellular loops 1 and 4 of human P-glycoprotein that are close only in the open conformation spontaneously form a disulfide bond that inhibits drug efflux and ATPase activity. J Biol Chem 289:24749–24758. doi:10.1074/jbc.M114.583021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Jones PM, George AM (2011) Molecular-dynamics simulations of the ATP/apo state of a multidrug ATP-binding cassette transporter provide a structural and mechanistic basis for the asymmetric occluded state. Biophys J 100:3025–3034. doi:10.1016/j.bpj.2011.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Tombline G, Senior AE (2005) The occluded nucleotide conformation of P-glycoprotein. J Bioenerg Biomembr 37:497–500. doi:10.1007/s10863-005-9498-4

    Article  CAS  PubMed  Google Scholar 

  166. Urbatsch IL, Sankaran B, Bhagat S, Senior AE (1995) Both P-glycoprotein nucleotide-binding sites are catalytically active. J Biol Chem 270:26956–26961

    Article  CAS  PubMed  Google Scholar 

  167. Sharma S, Davidson AL (2000) Vanadate-induced trapping of nucleotides by purified maltose transport complex requires ATP hydrolysis. J Bacteriol 182:6570–6576. doi:10.1128/JB.182.23.6570-6576.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zaitseva J, Oswald C, Jumpertz T, Jenewein S, Wiedenmann A, Holland IB, Schmitt L (2006) A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer. EMBO J 25:3432–3443. doi:10.1038/sj.emboj.7601208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mittal A, Bohm S, Grutter MG, Bordignon E, Seeger MA (2012) Asymmetry in the homodimeric ABC transporter MsbA recognized by a DARPin. J Biol Chem 287:20395–20406. doi:10.1074/jbc.M112.359794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sauna ZE, Kim IW, Nandigama K, Kopp S, Chiba P, Ambudkar SV (2007) Catalytic cycle of ATP hydrolysis by P-glycoprotein: evidence for formation of the E.S. reaction intermediate with ATP-gamma-S, a nonhydrolyzable analogue of ATP. Biochemistry 46:13787–13799. doi:10.1021/bi701385t

    Article  CAS  PubMed  Google Scholar 

  171. Siarheyeva A, Liu R, Sharom FJ (2010) Characterization of an asymmetric occluded state of P-glycoprotein with two bound nucleotides: implications for catalysis. J Biol Chem 285:7575–7586. doi:10.1074/jbc.M109.047290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Aittoniemi J, de Wet H, Ashcroft FM, Sansom MS (2010) Asymmetric switching in a homodimeric ABC transporter: a simulation study. PLoS Comput Biol 6:e1000762. doi:10.1371/journal.pcbi.1000762

    Google Scholar 

  173. Loo TW, Bartlett MC, Detty MR, Clarke DM (2012) The ATPase activity of the P-glycoprotein drug pump is highly activated when the N-terminal and central regions of the nucleotide-binding domains are linked closely together. J Biol Chem 287:26806–26816. doi:10.1074/jbc.M112.376202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Loo TW, Clarke DM (2014) Identification of the distance between the homologous halves of P-glycoprotein that triggers the high/low ATPase activity switch. J Biol Chem 289:8484–8492. doi:10.1074/jbc.M114.552075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Verhalen B, Wilkens S (2011) P-glycoprotein retains drug-stimulated ATPase activity upon covalent linkage of the two nucleotide binding domains at their C-terminal ends. J Biol Chem 286:10476–10482. doi:10.1074/jbc.M110.193151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Verhalen B, Ernst S, Borsch M, Wilkens S (2012) Dynamic ligand-induced conformational rearrangements in P-glycoprotein as probed by fluorescence resonance energy transfer spectroscopy. J Biol Chem 287:1112–1127. doi:10.1074/jbc.M111.301192

    Article  CAS  PubMed  Google Scholar 

  177. Patzlaff JS, van der Heide T, Poolman B (2003) The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J Biol Chem 278:29546–29551. doi:10.1074/jbc.M304796200

    Article  CAS  PubMed  Google Scholar 

  178. Eytan GD, Regev R, Assaraf YG (1996) Functional reconstitution of P-glycoprotein reveals an apparent near stoichiometric drug transport to ATP hydrolysis. J Biol Chem 271:3172–3178. doi:10.1074/jbc.271.6.3172

    Article  CAS  PubMed  Google Scholar 

  179. Lee JY, LN Kinch, DM Borek, J Wang, J Wang, IL Urbatsch, XS Xie, NV Grishin, et al., (2016) Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 533:561–564. doi:10.1038/nature17666

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Jault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Orelle, C., Jault, JM. (2016). Structures and Transport Mechanisms of the ABC Efflux Pumps. In: Li, XZ., Elkins, C., Zgurskaya, H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham. https://doi.org/10.1007/978-3-319-39658-3_4

Download citation

Publish with us

Policies and ethics