Skip to main content

Impact of Antimicrobial Drug Efflux Pumps on Antimicrobial Discovery and Development

  • Chapter
  • First Online:
Efflux-Mediated Antimicrobial Resistance in Bacteria
  • 2049 Accesses

Abstract

Antimicrobial efflux pumps reduce intracellular drug levels and play important roles in intrinsic and acquired drug resistance in bacteria. Their impact on antimicrobial discovery and development is multifaceted. Bacterial strains deficient in drug efflux can be used in cell-based assays (including high-throughput screening) to facilitate identification of antibacterial candidates. Drug efflux pump components and their expressional regulatory pathways are potential targets for antimicrobial discovery; these targets can be exploited for the development of drug efflux pump inhibitors to be administered as antimicrobial adjuvants in antimicrobial combination therapy. Although the scientific boom within the current “omics” era has increasingly identified numerous novel drug targets, many newly developed antimicrobials are mainly against Gram-positive bacteria, and their activities are hindered by promiscuous multidrug efflux pumps and the membrane permeability barrier of Gram-negative pathogens. Bypassing this efflux action and improving drug penetration provide important strategies for rational drug design which require careful consideration of both antimicrobial physicochemical properties and the features of drug efflux pumps/membrane barrier. This chapter describes the various impacts of drug efflux pumps on antimicrobial discovery and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brunel J (1951) Antibiosis from Pasteur to Fleming. J Hist Med Allied Sci 6:287–301. doi: 10.1093/jhmas/VI.Summer.287

    Google Scholar 

  2. Finland M, Weinstein L (1953) Complications induced by antimicrobial agents. N Engl J Med 248:220–226. doi:10.1056/NEJM195302052480602

    Article  CAS  PubMed  Google Scholar 

  3. Neu HC (1992) The crisis in antibiotic resistance. Science 257:1064–1073. doi:10.1126/science.257.5073.1064

    Article  CAS  PubMed  Google Scholar 

  4. Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197:1079–1081. doi:10.1086/533452

    Article  PubMed  Google Scholar 

  5. U.S. Centers for Disease Control and Prevention (2013) Antibiotic resistance threats in the United States, 2013. CDC, Atlanta

    Google Scholar 

  6. World Health Organization (2014) Antimicrobial resistance: global report on surveillance. Switzerland, Geneva

    Google Scholar 

  7. Spellberg B, Shlaes D (2014) Prioritized current unmet needs for antibacterial therapies. Clin Pharmacol Ther 96:151–153. doi:10.1038/clpt.2014.106

    Article  CAS  PubMed  Google Scholar 

  8. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G et al (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168. doi:10.1016/S1473-3099(15)00424-7

    Article  PubMed  CAS  Google Scholar 

  9. Hasman H, Hammerum AM, Hansen F, Hendriksen RS, Olesen B, Agerso Y, Zankari E, Leekitcharoenphon P et al (2015) Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveill 20:30085. doi:10.2807/1560-7917.ES.2015.20.49.30085

  10. Livermore DM, British Society for Antimicrobial Chemotherapy Working Party on The Urgent Need: Regenerating Antibacterial Drug D, Development (2011) Discovery research: the scientific challenge of finding new antibiotics. J Antimicrob Chemother 66:1941–1944. doi:10.1093/jac/dkr262

    Article  CAS  PubMed  Google Scholar 

  11. Pucci MJ, Bush K (2013) Investigational antimicrobial agents of 2013. Clin Microbiol Rev 26:792–821. doi:10.1128/CMR.00033-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Butler MS, Cooper MA (2011) Antibiotics in the clinical pipeline in 2011. J Antibiot (Tokyo) 64:413–425. doi:10.1038/ja.2011.44

    Article  CAS  Google Scholar 

  13. Butler MS, Blaskovich MA, Cooper MA (2013) Antibiotics in the clinical pipeline in 2013. J Antibiot (Tokyo) 66:571–591. doi:10.1038/ja.2013.86

    Article  CAS  Google Scholar 

  14. Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12:371–387. doi:10.1038/nrd3975

    Article  CAS  PubMed  Google Scholar 

  15. Piddock LJ (2012) The crisis of no new antibiotics – what is the way forward? Lancet Infect Dis 12:249–253. doi:10.1016/S1473-3099(11)70316-4

    Article  PubMed  Google Scholar 

  16. Ventola CL (2015) The antibiotic resistance crisis: part 2: management strategies and new agents. P T 40:344–352

    PubMed  PubMed Central  Google Scholar 

  17. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51. doi:10.1038/nrmicro3380

    Article  CAS  PubMed  Google Scholar 

  18. Li X-Z, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418. doi:10.1128/CMR.00117-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nikaido H (1998) The role of outer membrane and efflux pumps in the resistance of Gram-negative bacteria. Can we improve drug access? Drug Resist Updat 1:93–98. doi:10.1016/S1368-7646(98)80023-X

    Article  CAS  PubMed  Google Scholar 

  20. Payne DJ (2008) Desperately seeking new antibiotics. Science 321:1644–1645. doi:10.1126/science.1164586

    Article  CAS  PubMed  Google Scholar 

  21. Lomovskaya O, Bostian KA (2006) Practical applications and feasibility of efflux pump inhibitors in the clinic – a vision for applied use. Biochem Pharmacol 71:910–918. doi:10.1016/j.bcp.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  22. Piddock LJ (2014) Understanding the basis of antibiotic resistance: a platform for drug discovery. Microbiology 160:2366–2373. doi:10.1099/mic.0.082412-0

    Article  CAS  PubMed  Google Scholar 

  23. Saier MH Jr, Reddy VS, Tamang DG, Vastermark A (2014) The transporter classification database. Nucleic Acids Res 42:D251–D258. doi:10.1093/nar/gkt1097

    Article  CAS  PubMed  Google Scholar 

  24. Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH Jr (1999) The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125. doi:10.1007/s13205-013-0155-z

    CAS  PubMed  Google Scholar 

  25. Law CJ, Maloney PC, Wang DN (2008) Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289–305. doi:10.1146/annurev.micro.61.080706.093329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH Jr (2012) The major facilitator superfamily (MFS) revisited. FEBS J 279:2022–2035. doi:10.1111/j.1742-4658.2012.08588.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jack DL, Yang NM, Saier MH Jr (2001) The drug/metabolite transporter superfamily. Eur J Biochem 268:3620–3639. doi:10.1046/j.1432-1327.2001.02265.x

    Article  CAS  PubMed  Google Scholar 

  28. Davidson AL, Chen J (2004) ATP-binding cassette transporters in bacteria. Annu Rev Biochem 73:241–268. doi:10.1146/annurev.biochem.73.011303.073626

    Article  CAS  PubMed  Google Scholar 

  29. Kuroda T, Tsuchiya T (2009) Multidrug efflux transporters in the MATE family. Biochim Biophys Acta 1794:763–768. doi:10.1016/j.bbapap.2008.11.012

    Article  CAS  PubMed  Google Scholar 

  30. Chung YJ, Saier MH Jr (2001) SMR-type multidrug resistance pumps. Curr Opin Drug Discov Dev 4:237–245

    CAS  Google Scholar 

  31. Delmar JA, Yu EW (2016) The AbgT family: a novel class of antimetabolite transporters. Protein Sci 25:322–337. doi:10.1002/pro.2820

    Article  CAS  PubMed  Google Scholar 

  32. Hassan KA, Liu Q, Henderson PJ, Paulsen IT (2015) Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio 6:e01982-14. doi:10.1128/mBio.01982-14

  33. Nikaido H (1996) Multidrug efflux pumps of Gram-negative bacteria. J Bacteriol 178:5853–5859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poole K (2003) Overcoming multidrug resistance in Gram-negative bacteria. Curr Opin Investig Drugs 4:128–139

    CAS  PubMed  Google Scholar 

  35. Li X-Z, Nikaido H (2004) Efflux-mediated drug resistance in bacteria. Drugs 64:159–204. doi:10.2165/00003495-200464020-00004

    Article  CAS  PubMed  Google Scholar 

  36. Tal N, Schuldiner S (2009) A coordinated network of transporters with overlapping specificities provides a robust survival strategy. Proc Natl Acad Sci U S A 106:9051–9056. doi:10.1073/pnas.0902400106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McMurry L, Petrucci RE Jr, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A 77:3974–3977. doi:10.1073/pnas.77.7.3974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li X-Z, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623. doi:10.2165/11317030-000000000-00000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oh E, Zhang Q, Jeon B (2014) Target optimization for peptide nucleic acid (PNA)-mediated antisense inhibition of the CmeABC multidrug efflux pump in Campylobacter jejuni. J Antimicrob Chemother 69:375–380. doi:10.1093/jac/dkt381

    Article  CAS  PubMed  Google Scholar 

  40. Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183:5803–5812. doi:10.1128/JB.183.20.5803-5812.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N, Greene J, DiDomenico B, Shaw KJ et al (2001) Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother 45:1126–1136. doi:10.1128/AAC.45.4.1126-1136.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li X-Z, Livermore DM, Nikaido H (1994) Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother 38:1732–1741. doi:10.1128/AAC.38.8.1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li X-Z, Nikaido H, Poole K (1995) Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:1948–1953. doi:10.1128/AAC.39.9.1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–388. doi:10.1126/science.8153625

    Article  CAS  PubMed  Google Scholar 

  45. Shafer WM, Folster JP (2006) Towards an understanding of chromosomally mediated penicillin resistance in Neisseria gonorrhoeae: evidence for a porin-efflux pump collaboration. J Bacteriol 188:2297–2299. doi:10.1128/JB.188.7.2297-2299.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoshimura F, Nikaido H (1985) Diffusion of β-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob Agents Chemother 27:84–92. doi:10.1128/AAC.27.1.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nikaido H, Thanassi DG (1993) Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluoroquinolones as examples. Antimicrob Agents Chemother 37:1393–1399. doi:10.1128/AAC.37.7.1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Radu BM, Bacalum M, Marin A, Chifiriuc CM, Lazar V, Radu M (2011) Mechanisms of ceftazidime and ciprofloxacin transport through porins in multidrug-resistance developed by extended-spectrum β-lactamase E. coli strains. J Fluoresc 21:1421–1429. doi:10.1007/s10895-010-0826-7

    Article  CAS  PubMed  Google Scholar 

  49. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656. doi:10.1128/MMBR.67.4.593-656.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. doi:10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

  51. O’Shea R, Moser HE (2008) Physicochemical properties of antibacterial compounds: implications for drug discovery. J Med Chem 51:2871–2878. doi:10.1021/jm700967e

    Article  PubMed  CAS  Google Scholar 

  52. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K (2011) The challenge of new drug discovery for tuberculosis. Nature 469:483–490. doi:10.1038/nature09657

    Article  CAS  PubMed  Google Scholar 

  53. Singh SB (2014) Confronting the challenges of discovery of novel antibacterial agents. Bioorg Med Chem Lett 24:3683–3689. doi:10.1016/j.bmcl.2014.06.053

    Article  CAS  PubMed  Google Scholar 

  54. Nikaido H (1976) Outer membrane of Salmonella typhimurium. Transmembrane diffusion of some hydrophobic substances. Biochim Biophys Acta 433:118–132. doi:10.1016/0005-2736(76)90182-6

    Article  CAS  PubMed  Google Scholar 

  55. Li X-Z, Ma D, Livermore DM, Nikaido H (1994) Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to β-lactam resistance. Antimicrob Agents Chemother 38:1742–1752. doi:10.1128/AAC.38.8.1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nikaido H, Basina M, Nguyen V, Rosenberg EY (1998) Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those β-lactam antibiotics containing lipophilic side chains. J Bacteriol 180:4686–4692

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Brown DG, May-Dracka TL, Gagnon MM, Tommasi R (2014) Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. J Med Chem 57:10144–10161. doi:10.1021/jm501552x

    Article  CAS  PubMed  Google Scholar 

  58. Mazzariol A, Cornaglia G, Nikaido H (2000) Contributions of the AmpC β-lactamase and the AcrAB multidrug efflux system in intrinsic resistance of Escherichia coli K-12 to β-lactams. Antimicrob Agents Chemother 44:1387–1390. doi:10.1128/AAC.44.5.1387-1390.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Takeda S, Nakai T, Wakai Y, Ikeda F, Hatano K (2007) In vitro and in vivo activities of a new cephalosporin, FR264205, against Pseudomonas aeruginosa. Antimicrob Agents Chemother 51:826–830. doi:10.1128/AAC.00860-06

    Google Scholar 

  60. Yoshimura F, Nikaido H (1982) Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol 152:636–642

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kamicker BJ, Sweeney MT, Kaczmarek F, Dib-Hajj F, Shang W, Crimin K, Duignan J, Gootz TD (2008) Bacterial efflux pump inhibitors. In: Champney WS (ed) Methods in molecular medicine, vol 142, New antibiotic targets. Humana Press, Totowa, pp 187–204

    Google Scholar 

  62. Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395–411

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Li X-Z, Zhang L, Poole K (2000) Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. J Antimicrob Chemother 45:433–436. doi:10.1093/jac/45.4.433

    Article  CAS  PubMed  Google Scholar 

  64. Pagès JM, Peslier S, Keating TA, Lavigne JP, Nichols WW (2016) The role of the outer membrane and porins in the susceptibility of β-lactamase-producing Enterobacteriaceae to ceftazidime-avibactam. Antimicrob Agents Chemother 60:1349–1359. doi:10.1128/AAC.01585-15

    Google Scholar 

  65. Silver LL (2011) Challenges of antibacterial discovery. Clin Microbiol Rev 24:71–109. doi:10.1128/CMR.00030-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63. doi:10.1146/annurev.bi.64.070195.000333

    Article  CAS  PubMed  Google Scholar 

  67. Nikaido H (2001) Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol 12:215–223. doi:10.1006/scdb.2000.0247

    Article  CAS  PubMed  Google Scholar 

  68. Li X-Z, Zhang L, Nikaido H (2004) Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48:2415–2423. doi:10.1128/AAC.48.7.2415-2423.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pasca MR, Buroni S, Riccardi G (2013) Mycobacterium tuberculosis drug efflux pumps: an update. In: Yu EW, Zhang Q, Brown MH (eds) Microbial efflux pumps: current research. Caister Academic Press, Norfolk, pp 143–162

    Google Scholar 

  70. Gupta S, Cohen KA, Winglee K, Maiga M, Diarra B, Bishai WR (2014) Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:574–576. doi:10.1128/AAC.01462-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Grossman TH, Shoen CM, Jones SM, Jones PL, Cynamon MH, Locher CP (2015) The efflux pump inhibitor timcodar improves the potency of antimycobacterial agents. Antimicrob Agents Chemother 59:1534–1541. doi:10.1128/AAC.04271-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li G, Zhang J, Guo Q, Jiang Y, Wei J, Zhao LL, Zhao X, Lu J et al (2015) Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLoS One 10:e0119013. doi:10.1371/journal.pone.0119013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lomovskaya O, Watkins WJ (2001) Efflux pumps: their role in antibacterial drug discovery. Curr Med Chem 8:1699–1711. doi:10.2174/0929867013371743

    Article  CAS  PubMed  Google Scholar 

  74. Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M, Chaba R, Lee S, Kazmierczak KM et al (2011) Phenotypic landscape of a bacterial cell. Cell 144:143–156. doi:10.1016/j.cell.2010.11.052

    Article  CAS  PubMed  Google Scholar 

  75. Nayar AS, Dougherty TJ, Ferguson KE, Granger BA, McWilliams L, Stacey C, Leach LJ, Narita S et al (2015) Novel antibacterial targets and compounds revealed by a high-throughput cell wall reporter assay. J Bacteriol 197:1726–1734. doi:10.1128/JB.02552-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zimmermann W (1979) Penetration through the Gram-negative cell wall: a co-determinant of the efficacy of β-lactam antibiotics. Int J Clin Pharmacol Biopharm 17:131–134

    CAS  PubMed  Google Scholar 

  77. Zimmermann W (1980) Penetration of β-lactam antibiotics into their target enzymes in Pseudomonas aeruginosa: comparison of a highly sensitive mutant with its parent strain. Antimicrob Agents Chemother 18:94–100. doi:10.1128/AAC.18.1.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Scudamore RA, Goldner M (1982) Limited contribution of the outer-membrane penetration barrier towards intrinsic antibiotic resistance of Pseudomonas aeruginosa. Can J Microbiol 28:169–175. doi:10.1139/m82-022

    Article  CAS  PubMed  Google Scholar 

  79. Kropinski AM, Kuzio J, Angus BL, Hancock RE (1982) Chemical and chromatographic analysis of lipopolysaccharide from an antibiotic-supersusceptible mutant of Pseudomonas aeruginosa. Antimicrob Agents Chemother 21:310–319. doi:10.1128/AAC.21.2.310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li X-Z, Barré N, Poole K (2000) Influence of the MexA-MexB-OprM multidrug efflux system on expression of the MexC-MexD-OprJ and MexE-MexF-OprN multidrug efflux systems in Pseudomonas aeruginosa. J Antimicrob Chemother 46:885–893. doi:10.1093/jac/46.6.885

    Article  CAS  PubMed  Google Scholar 

  81. Mollmann U, Ghosh A, Dolence EK, Dolence JA, Ghosh M, Miller MJ, Reissbrodt R (1998) Selective growth promotion and growth inhibition of Gram-negative and Gram-positive bacteria by synthetic siderophore-beta-lactam conjugates. Biometals 11:1–12. doi:10.1023/A:1009266705308

    Article  CAS  PubMed  Google Scholar 

  82. Galm U, Heller S, Shapiro S, Page M, Li SM, Heide L (2004) Antimicrobial and DNA gyrase-inhibitory activities of novel clorobiocin derivatives produced by mutasynthesis. Antimicrob Agents Chemother 48:1307–1312. doi:10.1128/AAC.48.4.1307-1312.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE (1993) Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol 175:6299–6313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li X-Z, Zhang L, Srikumar R, Poole K (1998) β-Lactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa. Antimicrob Agents Chemother 42:399–403

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Li X-Z, Poole K, Nikaido H (2003) Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob Agents Chemother 47:27–33. doi:10.1128/AAC.47.1.27-33.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vaara M (1993) Antibiotic-supersusceptible mutants of Escherichia coli and Salmonella typhimurium. Antimicrob Agents Chemother 37:2255–2260. doi:10.1128/AAC.37.11.2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dean CR, Visalli MA, Projan SJ, Sum PE, Bradford PA (2003) Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 47:972–978. doi:10.1128/AAC.47.3.972-978.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dean CR, Narayan S, Daigle DM, Dzink-Fox JL, Puyang X, Bracken KR, Dean KE, Weidmann B et al (2005) Role of the AcrAB-TolC efflux pump in determining susceptibility of Haemophilus influenzae to the novel peptide deformylase inhibitor LBM415. Antimicrob Agents Chemother 49:3129–3135. doi:10.1128/AAC.49.8.3129-3135.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kourtesi C, Ball AR, Huang Y-Y, Jachak SM, Vera DMA, Khondkar P, Gibbons S, Hamblin MR et al (2013) Microbial efflux systems and inhibitors: approaches to drug discovery and the challenge of clinical implementation. Open Microbiol J 7:34–52. doi:10.2174/1874285801307010034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cinquin B, Maigre L, Pinet E, Chevalier J, Stavenger RA, Mills S, Refregiers M, Pagès JM (2015) Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level. Sci Rep 5:17968. doi:10.1038/srep17968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tegos G, Stermitz FR, Lomovskaya O, Lewis K (2002) Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob Agents Chemother 46:3133–3141. doi:10.1128/AAC.46.10.3133-3141.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tegos GP, Haynes M, Strouse JJ, Khan MM, Bologa CG, Oprea TI, Sklar LA (2011) Microbial efflux pump inhibition: tactics and strategies. Curr Pharm Des 17:1291–1302. doi:10.2174/138161211795703726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nguyen ST, Kwasny SM, Ding X, Cardinale SC, McCarthy CT, Kim H-S, Nikaido H, Peet NP et al (2015) Structure–activity relationships of a novel pyranopyridine series of Gram-negative bacterial efflux pump inhibitors. Bioorg Med Chem 23:2024–2034. doi:10.1016/j.bmc.2015.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Klepsch F, Vasanthanathan P, Ecker GF (2014) Ligand and structure-based classification models for prediction of P-glycoprotein inhibitors. J Chem Inf Model 54:218–229. doi:10.1021/ci400289j

    Article  CAS  PubMed  Google Scholar 

  95. Marbeuf-Gueye C, Salerno M, Quidu P, Garnier-Suillerot A (2000) Inhibition of the P-glycoprotein- and multidrug resistance protein-mediated efflux of anthracyclines and calcein acetoxymethyl ester by PAK-104P. Eur J Pharmacol 391:207–216. doi:10.1016/S0014-2999(00)00047-9

    Article  CAS  PubMed  Google Scholar 

  96. Szabo D, Keyzer H, Kaiser HE, Molnar J (2000) Reversal of multidrug resistance of tumor cells. Anticancer Res 20:4261–4274

    CAS  PubMed  Google Scholar 

  97. Teijaro CN, Munagala S, Zhao S, Sirasani G, Kokkonda P, Malofeeva EV, Hopper-Borge E, Andrade RB (2014) Synthesis and biological evaluation of pentacyclic strychnos alkaloids as selective modulators of the ABCC10 (MRP7) efflux pump. J Med Chem 57:10383–10390. doi:10.1021/jm501189p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vargiu AV, Ruggerone P, Opperman TJ, Nguyen ST, Nikaido H (2014) Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors. Antimicrob Agents Chemother 58:6224–6234. doi:10.1128/AAC.03283-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lepri S, Buonerba F, Goracci L, Velilla I, Ruzziconi R, Schindler BD, Seo SM, Kaatz GW et al (2016) Indole based weapons to fight antibiotic resistance: a structure-activity relationship study. J Med Chem 59:867–891. doi:10.1021/acs.jmedchem.5b01219

    Article  CAS  PubMed  Google Scholar 

  100. Mu Y, Shen Z, Jeon B, Dai L, Zhang Q (2013) Synergistic effects of anti-CmeA and anti-CmeB peptide nucleic acids on sensitizing Campylobacter jejuni to antibiotics. Antimicrob Agents Chemother 57:4575–4577. doi:10.1128/AAC.00605-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhanel GG, Lawson CD, Adam H, Schweizer F, Zelenitsky S, Lagace-Wiens PR, Denisuik A, Rubinstein E et al (2013) Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination. Drugs 73:159–177. doi:10.1007/s40265-013-0013-7

    Article  CAS  PubMed  Google Scholar 

  102. Cluck D, Lewis P, Stayer B, Spivey J, Moorman J (2015) Ceftolozane-tazobactam: a new-generation cephalosporin. Am J Health Syst Pharm 72:2135–2146. doi:10.2146/ajhp150049

    Article  CAS  PubMed  Google Scholar 

  103. Kaul M, Zhang Y, Parhi AK, Lavoie EJ, Pilch DS (2014) Inhibition of RND-type efflux pumps confers the FtsZ-directed prodrug TXY436 with activity against Gram-negative bacteria. Biochem Pharmacol 89:321–328. doi:10.1016/j.bcp.2014.03.002

    Article  PubMed  CAS  Google Scholar 

  104. Ordway D, Viveiros M, Leandro C, Arroz MJ, Amaral L (2002) Intracellular activity of clinical concentrations of phenothiazines including thioridazine against phagocytosed Staphylococcus aureus. Int J Antimicrob Agents 20:34–43. doi:10.1016/S0924-8579(02)00110-3

    Article  CAS  PubMed  Google Scholar 

  105. Ordway D, Viveiros M, Leandro C, Bettencourt R, Almeida J, Martins M, Kristiansen JE, Molnar J et al (2003) Clinical concentrations of thioridazine kill intracellular multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 47:917–922. doi:10.1128/AAC.47.3.917-922.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pieroni M, Machado D, Azzali E, Santos Costa S, Couto I, Costantino G, Viveiros M (2015) Rational design and synthesis of thioridazine analogues as enhancers of the antituberculosis therapy. J Med Chem 58:5842–5853. doi:10.1021/acs.jmedchem.5b00428

    Article  CAS  PubMed  Google Scholar 

  107. Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179. doi:10.1038/nature05076

    Article  CAS  PubMed  Google Scholar 

  108. Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos KM (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313:1295–1298. doi:10.1126/science.1131542

    Article  CAS  PubMed  Google Scholar 

  109. Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, Venter H, Chiu W et al (2014) Structure of the AcrAB-TolC multidrug efflux pump. Nature 509:512–515. doi:10.1038/nature13205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kinana AD, Vargiu AV, May T, Nikaido H (2016) Aminoacyl β-naphthylamides as substrates and modulators of AcrB multidrug efflux pump. Proc Natl Acad Sci U S A 113:1405–1410. doi:10.1073/pnas.1525143113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sjuts H, Vargiu AV, Kwasny SM, Nguyen ST, Kim HS, Ding X, Ornik AR, Ruggerone P et al (2016) Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc Natl Acad Sci U S A 113:3509–3514. doi:10.1073/pnas.1602472113

    Google Scholar 

  112. Sutcliffe JA (2011) Antibiotics in development targeting protein synthesis. Ann N Y Acad Sci 1241:122–152. doi:10.1111/j.1749-6632.2011.06323.x

    Article  CAS  PubMed  Google Scholar 

  113. Chopra I (2002) New developments in tetracycline antibiotics: glycylcyclines and tetracycline efflux pump inhibitors. Drug Resist Updat 5:119. doi:10.1016/S1368-7646(02)00051-1

    Article  CAS  PubMed  Google Scholar 

  114. Hirata T, Saito A, Nishino K, Tamura N, Yamaguchi A (2004) Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother 48:2179–2184. doi:10.1128/AAC.48.6.2179-2184.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Macone AB, Caruso BK, Leahy RG, Donatelli J, Weir S, Draper MP, Tanaka SK, Levy SB (2014) In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline. Antimicrob Agents Chemother 58:1127–1135. doi:10.1128/AAC.01242-13

    Google Scholar 

  116. Draper MP, Weir S, Macone A, Donatelli J, Trieber CA, Tanaka SK, Levy SB (2014) Mechanism of action of the novel aminomethylcycline antibiotic omadacycline. Antimicrob Agents Chemother 58:1279–1283. doi:10.1128/AAC.01066-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Sutcliffe JA, O’Brien W, Fyfe C, Grossman TH (2013) Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrob Agents Chemother 57:5548–5558. doi:10.1128/AAC.01288-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hancock RE, Rozek A (2002) Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206:143–149. doi:10.1111/j.1574-6968.2002.tb11000.x

    Article  CAS  PubMed  Google Scholar 

  119. Guilhelmelli F, Vilela N, Albuquerque P, Derengowski Lda S, Silva-Pereira I, Kyaw CM (2013) Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 4:353. doi:10.3389/fmicb.2013.00353

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rieg S, Huth A, Kalbacher H, Kern WV (2009) Resistance against antimicrobial peptides is independent of Escherichia coli AcrAB, Pseudomonas aeruginosa MexAB and Staphylococcus aureus NorA efflux pumps. Int J Antimicrob Agents 33:174–176. doi:10.1016/j.ijantimicag.2008.07.032

    Article  CAS  PubMed  Google Scholar 

  121. Shafer WM, Qu X, Waring AJ, Lehrer RI (1998) Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci U S A 95:1829–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kupferwasser LI, Skurray RA, Brown MH, Firth N, Yeaman MR, Bayer AS (1999) Plasmid-mediated resistance to thrombin-induced platelet microbicidal protein in staphylococci: role of the qacA locus. Antimicrob Agents Chemother 43:2395–2399

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Niewerth M, Kunze D, Seibold M, Schaller M, Korting HC, Hube B (2003) Ciclopirox olamine treatment affects the expression pattern of Candida albicans genes encoding virulence factors, iron metabolism proteins, and drug resistance factors. Antimicrob Agents Chemother 47:1805–1817. doi:10.1128/AAC.47.6.1805-1817.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Carlson-Banning KM, Chou A, Liu Z, Hamill RJ, Song Y, Zechiedrich L (2013) Toward repurposing ciclopirox as an antibiotic against drug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae. PLoS One 8:e69646. doi:10.1371/journal.pone.0069646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ejim L, Farha MA, Falconer SB, Wildenhain J, Coombes BK, Tyers M, Brown ED, Wright GD (2011) Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol 7:348–350. doi:10.1038/nchembio.559

    Article  CAS  PubMed  Google Scholar 

  126. Brown D (2015) Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? Nat Rev Drug Discov 14:821–832. doi:10.1038/nrd4675

    Article  CAS  PubMed  Google Scholar 

  127. Kim KS, Kim T, Pan JG (2015) In vitro evaluation of ciclopirox as an adjuvant for polymyxin B against Gram-negative bacteria. J Antibiot (Tokyo) 68:395–398. doi:10.1038/ja.2014.164

    Google Scholar 

  128. Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe K, Steinmann J, Van der Meijden B, Bernardini F et al (2010) Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327:1010–1013. doi:10.1126/science.1182749

    Article  CAS  PubMed  Google Scholar 

  129. Bush K (2012) Improving known classes of antibiotics: an optimistic approach for the future. Curr Opin Pharmacol 12:527–534. doi:10.1016/j.coph.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  130. Zhanel GG, Chung P, Adam H, Zelenitsky S, Denisuik A, Schweizer F, Lagace-Wiens PR, Rubinstein E et al (2013) Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant Gram-negative bacilli. Drugs 74:31–51. doi:10.1007/s40265-013-0168-2

    Article  CAS  Google Scholar 

  131. Farrell DJ, Sader HS, Flamm RK, Jones RN (2014) Ceftolozane/tazobactam activity tested against Gram-negative bacterial isolates from hospitalised patients with pneumonia in US and European medical centres (2012). Int J Antimicrob Agents 43:533–539. doi:10.1016/j.ijantimicag.2014.01.032

    Article  CAS  PubMed  Google Scholar 

  132. Sader HS, Farrell DJ, Castanheira M, Flamm RK, Jones RN (2014) Antimicrobial activity of ceftolozane/tazobactam tested against Pseudomonas aeruginosa and Enterobacteriaceae with various resistance patterns isolated in European hospitals (2011–12). J Antimicrob Chemother 69:2713–2722. doi:10.1093/jac/dku184

    Article  CAS  PubMed  Google Scholar 

  133. Mushtaq S, Warner M, Livermore DM (2010) In vitro activity of ceftazidime+NXL104 against Pseudomonas aeruginosa and other non-fermenters. J Antimicrob Chemother 65:2376–2381. doi:10.1093/jac/dkq306

    Google Scholar 

  134. Clark C, McGhee P, Appelbaum PC, Kosowska-Shick K (2011) Multistep resistance development studies of ceftaroline in Gram-positive and -negative bacteria. Antimicrob Agents Chemother 55:2344–2351. doi:10.1128/AAC.01602-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bulik CC, Christensen H, Nicolau DP (2010) In vitro potency of CXA-101, a novel cephalosporin, against Pseudomonas aeruginosa displaying various resistance phenotypes, including multidrug resistance. Antimicrob Agents Chemother 54:557–559. doi:10.1128/AAC.00912-09

    Google Scholar 

  136. Moya B, Beceiro A, Cabot G, Juan C, Zamorano L, Alberti S, Oliver A (2012) Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother 56:4771–4778. doi:10.1128/AAC.00680-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Castanheira M, Mills JC, Farrell DJ, Jones RN (2014) Mutation-driven β-lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible Pseudomonas aeruginosa isolates from U.S. hospitals. Antimicrob Agents Chemother 58:6844–6850. doi:10.1128/AAC.03681-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Biedenbach DJ, Kazmierczak K, Bouchillon SK, Sahm DF, Bradford PA (2015) In vitro activity of aztreonam-avibactam against a global collection of Gram-negative pathogens from 2012 and 2013. Antimicrob Agents Chemother 59:4239–4248. doi:10.1128/AAC.00206-15

    Google Scholar 

  139. Sader HS, Castanheira M, Flamm RK, Farrell DJ, Jones RN (2014) Antimicrobial activity of ceftazidime-avibactam against Gram-negative organisms collected from U.S. medical centers in 2012. Antimicrob Agents Chemother 58:1684–1692. doi:10.1128/AAC.02429-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Karlowsky JA, Adam HJ, Baxter MR, Lagace-Wiens PR, Walkty AJ, Hoban DJ, Zhanel GG (2013) In vitro activity of ceftaroline-avibactam against Gram-negative and Gram-positive pathogens isolated from patients in Canadian hospitals from 2010 to 2012: results from the CANWARD surveillance study. Antimicrob Agents Chemother 57:5600–5611. doi:10.1128/AAC.01485-13

    Google Scholar 

  141. Chollet R, Chevalier J, Bryskier A, Pagès JM (2004) The AcrAB-TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli. Antimicrob Agents Chemother 48:3621–3624. doi:10.1128/AAC.48.9.3621-3624.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bogdanovich T, Bozdogan B, Appelbaum PC (2006) Effect of efflux on telithromycin and macrolide susceptibility in Haemophilus influenzae. Antimicrob Agents Chemother 50:893–898. doi:10.1128/AAC.50.3.893-898.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bohnert JA, Schuster S, Fahnrich E, Trittler R, Kern WV (2007) Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF). J Antimicrob Chemother 59:1216–1222. doi:10.1093/jac/dkl426

    Article  CAS  PubMed  Google Scholar 

  144. Schumacher A, Trittler R, Bohnert JA, Kummerer K, Pages J-M, Kern WV (2007) Intracellular accumulation of linezolid in Escherichia coli, Citrobacter freundii and Enterobacter aerogenes: role of enhanced efflux pump activity and inactivation. J Antimicrob Chemother 59:1261–1264. doi:10.1093/jac/dkl380

    Article  CAS  PubMed  Google Scholar 

  145. Hung LW, Kim HB, Murakami S, Gupta G, Kim CY, Terwilliger TC (2013) Crystal structure of AcrB complexed with linezolid at 3.5 Å resolution. J Struct Func Genom 14:71–75. doi:10.1007/s10969-013-9154-x

    Article  CAS  Google Scholar 

  146. Mima T, Schweizer HP, Xu ZQ (2011) In vitro activity of cethromycin against Burkholderia pseudomallei and investigation of mechanism of resistance. J Antimicrob Chemother 66:73–78. doi:10.1093/jac/dkq391

    Google Scholar 

  147. Aggen JB, Armstrong ES, Goldblum AA, Dozzo P, Linsell MS, Gliedt MJ, Hildebrandt DJ, Feeney LA et al (2010) Synthesis and spectrum of the neoglycoside ACHN-490. Antimicrob Agents Chemother 54:4636–4642. doi:10.1128/AAC.00572-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Almaghrabi R, Clancy CJ, Doi Y, Hao B, Chen L, Shields RK, Press EG, Iovine NM et al (2014) Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on plazomicin and other agents. Antimicrob Agents Chemother 58:4443–4451. doi:10.1128/AAC.00099-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Landman D, Babu E, Shah N, Kelly P, Backer M, Bratu S, Quale J (2010) Activity of a novel aminoglycoside, ACHN-490, against clinical isolates of Escherichia coli and Klebsiella pneumoniae from New York City. J Antimicrob Chemother 65:2123–2127. doi:10.1093/jac/dkq278

    Article  CAS  PubMed  Google Scholar 

  150. Landman D, Kelly P, Backer M, Babu E, Shah N, Bratu S, Quale J (2011) Antimicrobial activity of a novel aminoglycoside, ACHN-490, against Acinetobacter baumannii and Pseudomonas aeruginosa from New York City. J Antimicrob Chemother 66:332–334. doi:10.1093/jac/dkq459

    Article  CAS  PubMed  Google Scholar 

  151. Walkty A, Adam H, Baxter M, Denisuik A, Lagace-Wiens P, Karlowsky JA, Hoban DJ, Zhanel GG (2014) In vitro activity of plazomicin against 5,015 Gram-negative and Gram-positive clinical isolates obtained from patients in canadian hospitals as part of the CANWARD study, 2011–2012. Antimicrob Agents Chemother 58:2554–2563. doi:10.1128/AAC.02744-13

    Google Scholar 

  152. Almer LS, Hoffrage JB, Keller EL, Flamm RK, Shortridge VD (2004) In vitro and bactericidal activities of ABT-492, a novel fluoroquinolone, against Gram-positive and Gram-negative organisms. Antimicrob Agents Chemother 48:2771–2777. doi:10.1128/AAC.48.7.2771-2777.2004

    Google Scholar 

  153. Adam HJ, Laing NM, King CR, Lulashnyk B, Hoban DJ, Zhanel GG (2009) In vitro activity of nemonoxacin, a novel nonfluorinated quinolone, against 2,440 clinical isolates. Antimicrob Agents Chemother 53:4915–4920. doi:10.1128/AAC.00078-09

    Google Scholar 

  154. Higgins PG, Stubbings W, Wisplinghoff H, Seifert H (2010) Activity of the investigational fluoroquinolone finafloxacin against ciprofloxacin-sensitive and -resistant Acinetobacter baumannii isolates. Antimicrob Agents Chemother 54:1613–1615. doi:10.1128/AAC.01637-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dalhoff A, Stubbings W, Schubert S (2011) Comparative in vitro activities of the novel antibacterial finafloxacin against selected Gram-positive and Gram-negative bacteria tested in Mueller-Hinton broth and synthetic urine. Antimicrob Agents Chemother 55:1814–1818. doi:10.1128/AAC.00886-10

    Google Scholar 

  156. Morrow BJ, He W, Amsler KM, Foleno BD, Macielag MJ, Lynch AS, Bush K (2010) In vitro antibacterial activities of JNJ-Q2, a new broad-spectrum fluoroquinolone. Antimicrob Agents Chemother 54:1955–1964. doi:10.1128/AAC.01374-09

    Google Scholar 

  157. Pucci MJ, Podos SD, Thanassi JA, Leggio MJ, Bradbury BJ, Deshpande M (2011) In vitro and in vivo profiles of ACH-702, an isothiazoloquinolone, against bacterial pathogens. Antimicrob Agents Chemother 55:2860–2871. doi:10.1128/AAC.01666-10

    Google Scholar 

  158. Morrow BJ, Abbanat D, Baum EZ, Crespo-Carbone SM, Davies TA, He W, Shang W, Queenan AM et al (2011) Antistaphylococcal activities of the new fluoroquinolone JNJ-Q2. Antimicrob Agents Chemother 55:5512–5521. doi:10.1128/AAC.00470-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Higuchi S, Onodera Y, Chiba M, Hoshino K, Gotoh N (2013) Potent in vitro antibacterial activity of DS-8587, a novel broad-spectrum quinolone, against Acinetobacter baumannii. Antimicrob Agents Chemother 57:1978–1981. doi:10.1128/AAC.02374-12

    Google Scholar 

  160. Higuchi S, Shikata M, Chiba M, Hoshino K, Gotoh N (2014) Characteristics of antibiotic resistance and sequence type of Acinetobacter baumannii clinical isolates in Japan and the antibacterial activity of DS-8587. J Infect Chemother 20:256–261. doi:10.1016/j.jiac.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  161. Higuchi S, Kurosaka Y, Uoyama S, Yoshida K, Chiba M, Ishii C, Fujikawa K, Karibe Y et al (2014) Anti-multidrug-resistant Acinetobacter baumannii activity of DS-8587: in vitro activity and in vivo efficacy in a murine calf muscle infection model. J Infect Chemother 20:312–316. doi:10.1016/j.jiac.2014.01.011

    Google Scholar 

  162. Jacobs MR, Bajaksouzian S, Windau A, Appelbaum PC, Patel MV, Gupte SV, Bhagwat SS, De Souza NJ et al (2004) In vitro activity of the new quinolone WCK 771 against staphylococci. Antimicrob Agents Chemother 48:3338–3342. doi:10.1128/AAC.48.9.3338-3342.2004

    Google Scholar 

  163. Bhagwat SS, McGhee P, Kosowska-Shick K, Patel MV, Appelbaum PC (2009) In vitro activity of the quinolone WCK 771 against recent U.S. hospital and community-acquired Staphylococcus aureus pathogens with various resistance types. Antimicrob Agents Chemother 53:811–813. doi:10.1128/AAC.01150-08

    Google Scholar 

  164. Shinabarger DL, Zurenko GE, Hesje CK, Sanfilippo CM, Morris TW, Haas W (2011) Evaluation of the effect of bacterial efflux pumps on the antibacterial activity of the novel fluoroquinolone besifloxacin. J Chemother 23:80–86. doi:10.1179/joc.2011.23.2.80

    Google Scholar 

  165. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schaberle TF et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459. doi:10.1038/nature14098

    Article  CAS  PubMed  Google Scholar 

  166. Barb AW, Zhou P (2008) Mechanism and inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis. Curr Pharm Biotechnol 9:9–15. doi:10.2174/138920108783497668

    Google Scholar 

  167. Tomaras AP, McPherson CJ, Kuhn M, Carifa A, Mullins L, George D, Desbonnet C, Eidem TM et al (2014) LpxC inhibitors as new antibacterial agents and tools for studying regulation of lipid A biosynthesis in Gram-negative pathogens. mBio 5:e01551–14. doi:10.1128/mBio.01551-14

  168. Caughlan RE, Jones AK, Delucia AM, Woods AL, Xie L, Ma B, Barnes SW, Walker JR et al (2012) Mechanisms decreasing in vitro susceptibility to the LpxC inhibitor CHIR-090 in the Gram-negative pathogen Pseudomonas aeruginosa. Antimicrob Agents Chemother 56:17–27. doi:10.1128/AAC.05417-11

    Google Scholar 

  169. Fritsche TR, Sader HS, Cleeland R, Jones RN (2005) Comparative antimicrobial characterization of LBM415 (NVP PDF-713), a new peptide deformylase inhibitor of clinical importance. Antimicrob Agents Chemother 49:1468–1476. doi:10.1128/AAC.49.4.1468-1476.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Caughlan RE, Sriram S, Daigle DM, Woods AL, Buco J, Peterson RL, Dzink-Fox J, Walker S et al (2009) Fmt bypass in Pseudomonas aeruginosa causes induction of MexXY efflux pump expression. Antimicrob Agents Chemother 53:5015–5021. doi:10.1128/AAC.00253-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mamelli L, Petit S, Chevalier J, Giglione C, Lieutaud A, Meinnel T, Artaud I, Pagès JM (2009) New antibiotic molecules: bypassing the membrane barrier of Gram negative bacteria increases the activity of peptide deformylase inhibitors. PLoS One 4:e6443. doi:10.1371/journal.pone.0006443

    Google Scholar 

  172. Goemaere E, Melet A, Larue V, Lieutaud A, Alves de Sousa R, Chevalier J, Yimga-Djapa L, Giglione C et al (2012) New peptide deformylase inhibitors and cooperative interaction: a combination to improve antibacterial activity. J Antimicrob Chemother 67:1392–1400. doi:10.1093/jac/dks058

    Article  CAS  PubMed  Google Scholar 

  173. Huguet F, Melet A, Alves de Sousa R, Lieutaud A, Chevalier J, Maigre L, Deschamps P, Tomas A et al (2012) Hydroxamic acids as potent inhibitors of Fe(II) and Mn(II) E. coli methionine aminopeptidase: biological activities and X-ray structures of oxazole hydroxamate-EcMetAP-Mn complexes. ChemMedChem 7:1020–1030. doi:10.1002/cmdc.201200076

    Article  CAS  PubMed  Google Scholar 

  174. Bax BD, Chan PF, Eggleston DS, Fosberry A, Gentry DR, Gorrec F, Giordano I, Hann MM et al (2010) Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466:935–940. doi:10.1038/nature09197

    Article  PubMed  Google Scholar 

  175. Boucher HW, Talbot GH, Benjamin DK Jr, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA et al (2013) 10 x ′20 Progress – development of new drugs active against Gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis 56:1685–1694. doi:10.1093/cid/cit152

    Article  PubMed  PubMed Central  Google Scholar 

  176. Tamma PD, Cosgrove SE, Maragakis LL (2012) Combination therapy for treatment of infections with Gram-negative bacteria. Clin Microbiol Rev 25:450–470. doi:10.1128/CMR.05041-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. ESAC (2014) Antimicrobial drug discovery: greater steps ahead. European Academies Science Advisory Council, Halle

    Google Scholar 

  178. Cohen BE (2014) Functional linkage between genes that regulate osmotic stress responses and multidrug resistance transporters: challenges and opportunities for antibiotic discovery. Antimicrob Agents Chemother 58:640–646. doi:10.1128/AAC.02095-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Vargiu AV, Pos KM, Poole K, Nikaido H (2016) Bad bugs in the XXIst century: resistance mediated by multi-drug efflux pumps in Gram-negative bacteria. Front Microbiol 7:833. doi:10.3389/fmicb.2016.00833

Download references

Acknowledgements

The views expressed in this chapter do not necessarily reflect those of Xian-Zhi Li’s affiliation, Health Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Zhi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, XZ. (2016). Impact of Antimicrobial Drug Efflux Pumps on Antimicrobial Discovery and Development. In: Li, XZ., Elkins, C., Zgurskaya, H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham. https://doi.org/10.1007/978-3-319-39658-3_28

Download citation

Publish with us

Policies and ethics