Skip to main content

Involvement of Antimicrobial Drug Efflux Systems in Bacterial Fitness and Virulence

  • Chapter
  • First Online:
Efflux-Mediated Antimicrobial Resistance in Bacteria

Abstract

Multidrug efflux pumps play an important role in antimicrobial resistance and also serve other functions that are related to bacterial cell communication, stress responses, fitness, and virulence. Although it is challenging to define the natural functions of drug efflux pumps, accumulating evidence has revealed both direct and indirect involvement of multidrug efflux systems in these cellular processes. There is also an intertwined regulation of drug efflux and other cellular systems implying various shared regulators. These features explain diverse effects of multidrug efflux pump status on bacterial functions, including interactions between bacterial species and their hosts. Drug efflux pump contribution to improved fitness and increased virulence of pathogens is supported by numerous examples. This chapter describes the current understanding of the roles of drug efflux pumps (in particular those of Gram-negative bacteria) in bacterial pathogenicity, which further underscores the clinical significance of drug efflux phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piddock LJ (2006) Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4:629–636. doi:10.1038/nrmicro1464

    Article  CAS  PubMed  Google Scholar 

  2. Poole K (2008) Bacterial multidrug efflux pumps serve other functions. Microbe 3:179–185

    Google Scholar 

  3. Li X-Z, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418. doi:10.1128/CMR.00117-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Poole K (1994) Bacterial multidrug resistance–emphasis on efflux mechanisms and Pseudomonas aeruginosa. J Antimicrob Chemother 34:453–456. doi:10.1093/jac/34.4.453

    Article  CAS  PubMed  Google Scholar 

  5. Saier MH Jr (2003) Tracing pathways of transport protein evolution. Mol Microbiol 48:1145–1156. doi:10.1046/j.1365-2958.2003.03499.x

    Article  CAS  PubMed  Google Scholar 

  6. Woolridge DP, Vazquez-Laslop N, Markham PN, Chevalier MS, Gerner EW, Neyfakh AA (1997) Efflux of the natural polyamine spermidine facilitated by the Bacillus subtilis multidrug transporter Blt. J Biol Chem 272:8864–8866. doi:10.1074/jbc.272.14.8864

    Article  CAS  PubMed  Google Scholar 

  7. Köhler T, van Delden C, Curty LK, Hamzehpour MM, Pechère JC (2001) Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 183:5213–5222. doi:10.1128/JB.183.18.5213-5222.2001

    Article  PubMed  PubMed Central  Google Scholar 

  8. Helling RB, Janes BK, Kimball H, Tran T, Bundesmann M, Check P, Phelan D, Miller C (2002) Toxic waste disposal in Escherichia coli. J Bacteriol 184:3699–3703. doi:10.1128/JB.184.13.3699-3703.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE (1995) Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 16:45–55. doi:10.1111/j.1365-2958.1995.tb02390.x

    Article  CAS  PubMed  Google Scholar 

  10. Starr LM, Fruci M, Poole K (2012) Pentachlorophenol induction of the Pseudomonas aeruginosa mexAB-oprM efflux operon: involvement of repressors NalC and MexR and the antirepressor ArmR. PLoS One 7:e32684. doi:10.1371/journal.pone.0032684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kostoulias X, Murray GL, Cerqueira GM, Kong JB, Bantun F, Mylonakis E, Khoo CA, Peleg AY (2016) The impact of a cross-kingdom signalling molecule of Candida albicans on Acinetobacter baumannii physiology. Antimicrob Agents Chemother 60:161–167. doi:10.1128/AAC.01540-15

    Article  CAS  Google Scholar 

  12. Muller C, Plésiat P, Jeannot K (2011) A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother 55:1211–1221. doi:10.1128/AAC.01252-10

    Article  CAS  PubMed  Google Scholar 

  13. De Gelder L, Ponciano JM, Abdo Z, Joyce P, Forney LJ, Top EM (2004) Combining mathematical models and statistical methods to understand and predict the dynamics of antibiotic-sensitive mutants in a population of resistant bacteria during experimental evolution. Genetics 168:1131–1144. doi:10.1534/genetics.104.033431

    Article  PubMed  PubMed Central  Google Scholar 

  14. Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8:260–271. doi:10.1038/nrmicro2319

    CAS  PubMed  Google Scholar 

  15. Grkovic S, Brown MH, Skurray RA (2001) Transcriptional regulation of multidrug efflux pumps in bacteria. Semin Cell Dev Biol 12:225–237. doi:10.1006/scdb.2000.0248

    Article  CAS  PubMed  Google Scholar 

  16. Morosini MI, Ayala JA, Baquero F, Martinez JL, Blazquez J (2000) Biological cost of AmpC production for Salmonella enterica serotype Typhimurium. Antimicrob Agents Chemother 44:3137–3143. doi:10.1128/AAC.44.11.3137-3143.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sánchez P, Linares JF, Ruiz-Diez B, Campanario E, Navas A, Baquero F, Martinez JL (2002) Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J Antimicrob Chemother 50:657–664. doi:10.1093/jac/dkf185

    Google Scholar 

  18. Alonso A, Morales G, Escalante R, Campanario E, Sastre L, Martínez JL (2004) Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology. J Antimicrob Chemother 53:432–434. doi:10.1093/jac/dkh074

    Article  CAS  PubMed  Google Scholar 

  19. Warner DM, Shafer WM, Jerse AE (2008) Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE Efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol Microbiol 70:462–478. doi:10.1111/j.1365-2958.2008.06424.x

    Google Scholar 

  20. Olivares J, Alvarez-Ortega C, Martinez JL (2014) Metabolic compensation of fitness costs associated with overexpression of the multidrug efflux pump MexEF-OprN in Pseudomonas aeruginosa. Antimicrob Agents Chemother 58:3904–3913. doi:10.1128/AAC.00121-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Huang YW, Liou RS, Lin YT, Huang HH, Yang TC (2014) A linkage between SmeIJK efflux pump, cell envelope integrity, and sigmaE-mediated envelope stress response in Stenotrophomonas maltophilia. PLoS One 9:e111784. doi:10.1371/journal.pone.0111784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Buckley AM, Webber MA, Cooles S, Randall LP, La Ragione RM, Woodward MJ, Piddock LJ (2006) The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell Microbiol 8:847–856. doi:10.1111/j.1462-5822.2005.00671.x

    Article  CAS  PubMed  Google Scholar 

  23. Virlogeux-Payant I, Baucheron S, Pelet J, Trotereau J, Bottreau E, Velge P, Cloeckaert A (2008) TolC, but not AcrB, is involved in the invasiveness of multidrug-resistant Salmonella enterica serovar Typhimurium by increasing type III secretion system-1 expression. Int J Med Microbiol 298:561–569. doi:10.1016/j.ijmm.2007.12.006

    Article  CAS  PubMed  Google Scholar 

  24. Patel JC, Rossanese OW, Galan JE (2005) The functional interface between Salmonella and its host cell: opportunities for therapeutic intervention. Trends Pharmacol Sci 26:564–570. doi:10.1016/j.tips.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  25. Baucheron S, Mouline C, Praud K, Chaslus-Dancla E, Cloeckaert A (2005) TolC but not AcrB is essential for multidrug-resistant Salmonella enterica serotype Typhimurium colonization of chicks. J Antimicrob Chemother 55:707–712. doi:10.1093/jac/dki091

    Article  CAS  PubMed  Google Scholar 

  26. Webber MA, Bailey AM, Blair JM, Morgan E, Stevens MP, Hinton JC, Ivens A, Wain J et al (2009) The global consequence of disruption of the AcrAB-TolC efflux pump in Salmonella enterica includes reduced expression of SPI-1 and other attributes required to infect the host. J Bacteriol 191:4276–4285. doi:10.1128/JB.00363-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perez A, Poza M, Fernandez A, Fernandez Mdel C, Mallo S, Merino M, Rumbo-Feal S, Cabral MP et al (2012) Involvement of the AcrAB-TolC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae. Antimicrob Agents Chemother 56:2084–2090. doi:10.1128/AAC.05509-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferhat M, Atlan D, Vianney A, Lazzaroni JC, Doublet P, Gilbert C (2009) The TolC protein of Legionella pneumophila plays a major role in multi-drug resistance and the early steps of host invasion. PLoS One 4:e7732. doi:10.1371/journal.pone.0007732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bina XR, Provenzano D, Nguyen N, Bina JE (2008) Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine. Infect Immun 76:3595–3605. doi:10.1128/IAI.01620-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Olivares J, Alvarez-Ortega C, Linares JF, Rojo F, Köhler T, Martínez JL (2012) Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environ Microbiol 14:1968–1981. doi:10.1111/j.1462-2920.2012.02727.x

    Article  CAS  PubMed  Google Scholar 

  31. Tian ZX, Mac Aogain M, O’Connor HF, Fargier E, Mooij MJ, Adams C, Wang YP, O’Gara F (2009) MexT modulates virulence determinants in Pseudomonas aeruginosa independent of the MexEF-OprN efflux pump. Microb Pathog 47:237–241. doi:10.1016/j.micpath.2009.08.003

    Article  CAS  PubMed  Google Scholar 

  32. Hirakata Y, Srikumar R, Poole K, Gotoh N, Suematsu T, Kohno S, Kamihira S, Hancock RE et al (2002) Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 196:109–118. doi:10.1084/jem.20020005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palumbo JD, Kado CI, Phillips DA (1998) An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol 180:3107–3113

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gonzalez-Pasayo R, Martinez-Romero E (2000) Multiresistance genes of Rhizobium etli CFN42. Mol Plant Microbe Interact 13:572–577. doi:10.1094/MPMI.2000.13.5.572

    Google Scholar 

  35. Kang H, Gross DC (2005) Characterization of a resistance-nodulation-cell division transporter system associated with the syr-syp genomic island of Pseudomonas syringae pv. syringae. Appl Environ Microbiol 71:5056–5065. doi:10.1128/AEM.71.9.5056-5065.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burse A, Weingart H, Ullrich MS (2004) The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora. Mol Plant Microbe Interact 17:43–54. doi:10.1094/MPMI.2004.17.1.43

    Article  CAS  PubMed  Google Scholar 

  37. Brown DG, Swanson JK, Allen C (2007) Two host-induced Ralstonia solanacearum genes, acrA and dinF, encode multidrug efflux pumps and contribute to bacterial wilt virulence. Appl Environ Microbiol 73:2777–2786. doi:10.1128/AEM.00984-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman JB, Reppas C (2006) Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res 23:165–176. doi:10.1007/s11095-005-8476-1

    Article  CAS  PubMed  Google Scholar 

  39. Thanassi DG, Cheng LW, Nikaido H (1997) Active efflux of bile salts by Escherichia coli. J Bacteriol 179:2512–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maldonado-Valderrama J, Wilde P, Macierzanka A, Mackie A (2011) The role of bile salts in digestion. Adv Colloid Interface Sci 165:36–46. doi:10.1016/j.cis.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  41. Hofmann AF (1999) The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 159:2647–2658. doi:10.1001/archinte.159.22.2647

    Article  CAS  PubMed  Google Scholar 

  42. Merritt ME, Donaldson JR (2009) Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J Med Microbiol 58:1533–1541. doi:10.1099/jmm.0.014092-0

    Article  CAS  PubMed  Google Scholar 

  43. Lacroix FJ, Cloeckaert A, Grepinet O, Pinault C, Popoff MY, Waxin H, Pardon P (1996) Salmonella typhimurium acrB-like gene: identification and role in resistance to biliary salts and detergents and in murine infection. FEMS Microbiol Lett 135:161–167. doi:10.1111/j.1574-6968.1996.tb07983.x

    Article  CAS  PubMed  Google Scholar 

  44. Rosenberg EY, Bertenthal D, Nilles ML, Bertrand KP, Nikaido H (2003) Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol Microbiol 48:1609–1619. doi:10.1046/j.1365-2958.2003.03531.x

    Article  CAS  PubMed  Google Scholar 

  45. Paul S, Alegre KO, Holdsworth SR, Rice M, Brown JA, McVeigh P, Kelly SM, Law CJ (2014) A single-component multidrug transporter of the major facilitator superfamily is part of a network that protects Escherichia coli from bile salt stress. Mol Microbiol 92:872–884. doi:10.1111/mmi.12597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baucheron S, Nishino K, Monchaux I, Canepa S, Maurel MC, Coste F, Roussel A, Cloeckaert A et al (2014) Bile-mediated activation of the acrAB and tolC multidrug efflux genes occurs mainly through transcriptional derepression of ramA in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 69:2400–2406. doi:10.1093/jac/dku140

    Article  CAS  PubMed  Google Scholar 

  47. Nikaido E, Yamaguchi A, Nishino K (2008) AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J Biol Chem 283:24245–24253. doi:10.1074/jbc.M804544200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bailey AM, Ivens A, Kingsley R, Cottell JL, Wain J, Piddock LJ (2010) RamA, a member of the AraC/XylS family, influences both virulence and efflux in Salmonella enterica serovar Typhimurium. J Bacteriol 192:1607–1616. doi:10.1128/JB.01517-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Matsuo T, Nakamura K, Kodama T, Mikami T, Hiyoshi H, Tsuchiya T, Ogawa W, Kuroda T (2013) Characterization of all RND-type multidrug efflux transporters in Vibrio parahaemolyticus. Microbiol Open 2:725–742. doi:10.1002/mbo3.100

    CAS  Google Scholar 

  50. Matsuo T, Ogawa W, Tsuchiya T, Kuroda T (2014) Overexpression of vmeTUV encoding a multidrug efflux transporter of Vibrio parahaemolyticus causes bile acid resistance. Gene 541:19–25. doi:10.1016/j.gene.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  51. Lin J, Sahin O, Michel LO, Zhang Q (2003) Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immun 71:4250–4259. doi:10.1128/IAI.71.8.4250-4259.2003

    Google Scholar 

  52. Lin J, Cagliero C, Guo B, Barton YW, Maurel MC, Payot S, Zhang Q (2005) Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J Bacteriol 187:7417–7424. doi:10.1128/JB.187.21.7417-7424.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lei HT, Shen Z, Surana P, Routh MD, Su CC, Zhang Q, Yu EW (2011) Crystal structures of CmeR-bile acid complexes from Campylobacter jejuni. Protein Sci 20:712–723. doi:10.1002/pro.602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guo B, Wang Y, Shi F, Barton YW, Plummer P, Reynolds DL, Nettleton D, Grinnage-Pulley T et al (2008) CmeR functions as a pleiotropic regulator and is required for optimal colonization of Campylobacter jejuni in vivo. J Bacteriol 190:1879–1890. doi:10.1128/JB.01796-07

    Google Scholar 

  55. Srinivasan VB, Rajamohan G (2013) KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 57:4449–4462. doi:10.1128/AAC.02284-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Raczkowska A, Trzos J, Lewandowska O, Nieckarz M, Brzostek K (2015) Expression of the AcrAB components of the AcrAB-TolC multidrug efflux pump of Yersinia enterocolitica is subject to dual regulation by OmpR. PLoS One 10:e0124248. doi:10.1371/journal.pone.0124248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Vazquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Dominguez-Bernal G, Goebel W, Gonzalez-Zorn B, Wehland J et al (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640. doi:10.1128/CMR.14.3.584-640.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Quillin SJ, Schwartz KT, Leber JH (2011) The novel Listeria monocytogenes bile sensor BrtA controls expression of the cholic acid efflux pump MdrT. Mol Microbiol 81:129–142. doi:10.1111/j.1365-2958.2011.07683.x

    Article  CAS  PubMed  Google Scholar 

  59. Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320:217–234. doi:10.1016/S0005-2728(97)00034-0

    Article  CAS  PubMed  Google Scholar 

  60. Kwon YM, Weiss B (2009) Production of 3-nitrosoindole derivatives by Escherichia coli during anaerobic growth. J Bacteriol 191:5369–5376. doi:10.1128/JB.00586-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang Y, Xiao M, Horiyama T, Zhang Y, Li X, Nishino K, Yan A (2011) The multidrug efflux pump MdtEF protects against nitrosative damage during the anaerobic respiration in Escherichia coli. J Biol Chem 286:26576–26584. doi:10.1074/jbc.M111.243261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Van Delden C, Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560. doi:10.3201/eid0404.980405

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tummler B, Kiewitz C (1999) Cystic fibrosis: an inherited susceptibility to bacterial respiratory infections. Mol Med Today 5:351–358. doi:10.1016/S1357-4310(99)01506-3

    Article  CAS  PubMed  Google Scholar 

  64. Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, Birrer P, Bellon G et al (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325. doi:10.1172/JCI13870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fetar H, Gilmour C, Klinoski R, Daigle DM, Dean CR, Poole K (2011) mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother 55:508–514. doi:10.1128/AAC.00830-10

    Article  CAS  PubMed  Google Scholar 

  66. Darling KE, Evans TJ (2003) Effects of nitric oxide on Pseudomonas aeruginosa infection of epithelial cells from a human respiratory cell line derived from a patient with cystic fibrosis. Infect Immun 71:2341–2349. doi:10.1128/IAI.71.5.2341-2349.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thomas SR, Kharitonov SA, Scott SF, Hodson ME, Barnes PJ (2000) Nasal and exhaled nitric oxide is reduced in adult patients with cystic fibrosis and does not correlate with cystic fibrosis genotype. Chest 117:1085–1089. doi:10.1378/chest.117.4.1085

    Article  CAS  PubMed  Google Scholar 

  68. Meng QH, Springall DR, Bishop AE, Morgan K, Evans TJ, Habib S, Gruenert DC, Gyi KM et al (1998) Lack of inducible nitric oxide synthase in bronchial epithelium: a possible mechanism of susceptibility to infection in cystic fibrosis. J Pathol 184:323–331. doi:10.1002/(SICI)1096-9896(199803)184:3<323::AID-PATH2>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  69. Kikuchi S, Ishimoto M (1980) Nitrate respiration of Klebsiella pneumoniae on amino acids, especially on serine. Z Allg Mikrobiol 20:405–413. doi:10.1002/jobm.19800200607

    Article  CAS  PubMed  Google Scholar 

  70. Forrester MT, Foster MW (2012) Protection from nitrosative stress: a central role for microbial flavohemoglobin. Free Radic Biol Med 52:1620–1633. doi:10.1016/j.freeradbiomed.2012.01.028

    Article  CAS  PubMed  Google Scholar 

  71. Fu H, Yuan J, Gao H (2015) Microbial oxidative stress response: novel insights from environmental facultative anaerobic bacteria. Arch Biochem Biophys 584:28–35. doi:10.1016/j.abb.2015.08.012

    Article  CAS  PubMed  Google Scholar 

  72. Pericone CD, Overweg K, Hermans PW, Weiser JN (2000) Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect Immun 68:3990–3997. doi:10.1128/IAI.68.7.3990-3997.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275. doi:10.1146/annurev.arplant.48.1.251

    Article  CAS  PubMed  Google Scholar 

  74. Ferrari CK, Souto PC, Franca EL, Honorio-Franca AC (2011) Oxidative and nitrosative stress on phagocytes’ function: from effective defense to immunity evasion mechanisms. Arch Immunol Ther Exp 59:441–448. doi:10.1007/s00005-011-0144-z

    Article  CAS  Google Scholar 

  75. Aikawa C, Nozawa T, Maruyama F, Tsumoto K, Hamada S, Nakagawa I (2010) Reactive oxygen species induced by Streptococcus pyogenes invasion trigger apoptotic cell death in infected epithelial cells. Cell Microbiol 12:814–830. doi:10.1111/j.1462-5822.2010.01435.x

    Article  CAS  PubMed  Google Scholar 

  76. Pomposiello PJ, Demple B (2000) Identification of SoxS-regulated genes in Salmonella enterica serovar Typhimurium. J Bacteriol 182:23–29. doi:10.1128/JB.182.1.23-29.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Duval V, Lister IM (2013) MarA, SoxS and Rob of – global regulators of multidrug resistance, virulence and stress response. Int J Biotechnol Wellness Ind 2:101–124. doi:10.6000/1927-3037.2013.02.03.2

    PubMed  PubMed Central  Google Scholar 

  78. Dietrich LE, Teal TK, Price-Whelan A, Newman DK (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321:1203–1206. doi:10.1126/science.1160619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ding H, Hidalgo E, Demple B (1996) The redox state of the [2Fe-2S] clusters in SoxR protein regulates its activity as a transcription factor. J Biol Chem 271:33173–33175

    Article  CAS  PubMed  Google Scholar 

  80. Gu M, Imlay JA (2011) The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol Microbiol 79:1136–1150. doi:10.1111/j.1365-2958.2010.07520.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61:1308–1321. doi:10.1111/j.1365-2958.2006.05306.x

    Article  CAS  PubMed  Google Scholar 

  82. Guelfo JR, Rodriguez-Rojas A, Matic I, Blazquez J (2010) A MATE-family efflux pump rescues the Escherichia coli 8-oxoguanine-repair-deficient mutator phenotype and protects against H2O2 killing. PLoS Genet 6:e1000931. doi:10.1371/journal.pgen.1000931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Bogomolnaya LM, Andrews KD, Talamantes M, Maple A, Ragoza Y, Vazquez-Torres A, Andrews-Polymenis H (2013) The ABC-type efflux pump MacAB protects Salmonella enterica serovar Typhimurium from oxidative stress. mBio 4:e00630-13. doi:10.1128/mBio.00630-13

  84. Fraud S, Poole K (2011) Oxidative stress induction of the MexXY multidrug efflux genes and promotion of aminoglycoside resistance development in Pseudomonas aeruginosa. Antimicrob Agents Chemother 55:1068–1074. doi:10.1128/AAC.01495-10

    Article  CAS  PubMed  Google Scholar 

  85. Skaar EP (2010) The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6:e1000949. doi:10.1371/journal.ppat.1000949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Poole K, Krebes K, McNally C, Neshat S (1993) Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 175:7363–7372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Poole K, Heinrichs DE, Neshat S (1993) Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyoverdine. Mol Microbiol 10:529–544. doi:10.1111/j.1365-2958.1993.tb00925.x

    Article  CAS  PubMed  Google Scholar 

  88. Furrer JL, Sanders DN, Hook-Barnard IG, McIntosh MA (2002) Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol Microbiol 44:1225–1234. doi:10.1046/j.1365-2958.2002.02885.x

    Article  CAS  PubMed  Google Scholar 

  89. Bleuel C, Grosse C, Taudte N, Scherer J, Wesenberg D, Krauss GJ, Nies DH, Grass G (2005) TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli. J Bacteriol 187:6701–6707. doi:10.1128/JB.187.19.6701-6707.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Horiyama T, Nishino K (2014) AcrB, AcrD, and MdtABC multidrug efflux systems are involved in enterobactin export in Escherichia coli. PLoS One 9:e108642. doi:10.1371/journal.pone.0108642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557. doi:10.1038/nbt1267

    Article  CAS  PubMed  Google Scholar 

  92. Di Francesco A, Favaroni A, Donati M (2013) Host defense peptides: general overview and an update on their activity against Chlamydia spp. Expert Rev Anti Infect Ther 11:1215–1224. doi:10.1586/14787210.2013.841450

    Article  PubMed  CAS  Google Scholar 

  93. Zanetti M, Gennaro R, Romeo D (1997) The cathelicidin family of antimicrobial peptide precursors: a component of the oxygen-independent defense mechanisms of neutrophils. Ann N Y Acad Sci 832:147–162. doi:10.1111/j.1749-6632.1997.tb46244.x

    Article  CAS  PubMed  Google Scholar 

  94. De Smet K, Contreras R (2005) Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27:1337–1347. doi:10.1007/s10529-005-0936-5

    Article  PubMed  CAS  Google Scholar 

  95. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55. doi:10.1124/pr.55.1.2

    Article  CAS  PubMed  Google Scholar 

  96. Shafer WM, Qu X, Waring AJ, Lehrer RI (1998) Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci U S A 95:1829–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tzeng YL, Ambrose KD, Zughaier S, Zhou X, Miller YK, Shafer WM, Stephens DS (2005) Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 187:5387–5396. doi:10.1128/JB.187.15.5387-5396.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bengoechea JA, Skurnik M (2000) Temperature-regulated efflux pump/potassium antiporter system mediates resistance to cationic antimicrobial peptides in Yersinia. Mol Microbiol 37:67–80. doi:10.1046/j.1365-2958.2000.01956.x

    Article  CAS  PubMed  Google Scholar 

  99. Padilla E, Llobet E, Doménech-Sánchez A, Martínez-Martínez L, Bengoechea JA, Albertí S (2010) Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother 54:177–183. doi:10.1128/AAC.00715-09

    Article  CAS  PubMed  Google Scholar 

  100. Crimmins GT, Herskovits AA, Rehder K, Sivick KE, Lauer P, Dubensky TW Jr, Portnoy DA (2008) Listeria monocytogenes multidrug resistance transporters activate a cytosolic surveillance pathway of innate immunity. Proc Natl Acad Sci U S A 105:10191–10196. doi:10.1073/pnas.0804170105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Woodward JJ, Iavarone AT, Portnoy DA (2010) c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:1703–1705. doi:10.1126/science.1189801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. O’Riordan M, Yi CH, Gonzales R, Lee KD, Portnoy DA (2002) Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proc Natl Acad Sci U S A 99:13861–13866. doi:10.1073/pnas.202476699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Stockinger S, Materna T, Stoiber D, Bayr L, Steinborn R, Kolbe T, Unger H, Chakraborty T et al (2002) Production of type I IFN sensitizes macrophages to cell death induced by Listeria monocytogenes. J Immunol 169:6522–6529. doi:10.4049/jimmunol.169.11.6522

    Article  CAS  PubMed  Google Scholar 

  104. Yamamoto T, Hara H, Tsuchiya K, Sakai S, Fang R, Matsuura M, Nomura T, Sato F et al (2012) Listeria monocytogenes strain-specific impairment of the TetR regulator underlies the drastic increase in cyclic di-AMP secretion and beta interferon-inducing ability. Infect Immun 80:2323–2332. doi:10.1128/IAI.06162-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schwartz KT, Carleton JD, Quillin SJ, Rollins SD, Portnoy DA, Leber JH (2012) Hyperinduction of host beta interferon by a Listeria monocytogenes strain naturally overexpressing the multidrug efflux pump MdrT. Infect Immun 80:1537–1545. doi:10.1128/IAI.06286-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Commichau FM, Dickmanns A, Gundlach J, Ficner R, Stulke J (2015) A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Mol Microbiol 97:189–204. doi:10.1111/mmi.13026

    Article  CAS  PubMed  Google Scholar 

  107. Sauer JD, Sotelo-Troha K, von Moltke J, Monroe KM, Rae CS, Brubaker SW, Hyodo M, Hayakawa Y et al (2011) The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect Immun 79:688–694. doi:10.1128/IAI.00999-10

    Google Scholar 

  108. Auerbuch V, Brockstedt DG, Meyer-Morse N, O’Riordan M, Portnoy DA (2004) Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J Exp Med 200:527–533. doi:10.1084/jem.20040976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Carrero JA, Calderon B, Unanue ER (2004) Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J Exp Med 200:535–540. doi:10.1084/jem.20040769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. O’Connell RM, Saha SK, Vaidya SA, Bruhn KW, Miranda GA, Zarnegar B, Perry AK, Nguyen BO et al (2004) Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J Exp Med 200:437–445. doi:10.1084/jem.20040712

    Article  PubMed  PubMed Central  Google Scholar 

  111. Doran KS, Chang JC, Benoit VM, Eckmann L, Nizet V (2002) Group B streptococcal β-hemolysin/cytolysin promotes invasion of human lung epithelial cells and the release of interleukin-8. J Infect Dis 185:196–203. doi:10.1086/338475

    Google Scholar 

  112. Doran KS, Liu GY, Nizet V (2003) Group B streptococcal beta-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. J Clin Invest 112:736–744. doi:10.1172/JCI17335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Spellerberg B, Pohl B, Haase G, Martin S, Weber-Heynemann J, Lutticken R (1999) Identification of genetic determinants for the hemolytic activity of Streptococcus agalactiae by ISS1 transposition. J Bacteriol 181:3212–3219

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Whidbey C, Harrell MI, Burnside K, Ngo L, Becraft AK, Iyer LM, Aravind L, Hitti J et al (2013) A hemolytic pigment of group B Streptococcus allows bacterial penetration of human placenta. J Exp Med 210:1265–1281. doi:10.1084/jem.20122753

    Google Scholar 

  115. Rosa-Fraile M, Rodriguez-Granger J, Haidour-Benamin A, Cuerva JM, Sampedro A (2006) Granadaene: proposed structure of the group B Streptococcus polyenic pigment. Appl Environ Microbiol 72:6367–6370. doi:10.1128/AEM.00756-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Garg N, Manchanda G, Kumar A (2014) Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek 105:289–305. doi:10.1007/s10482-013-0082-3

    Article  PubMed  Google Scholar 

  117. Parker CT, Sperandio V (2009) Cell-to-cell signalling during pathogenesis. Cell Microbiol 11:363–369. doi:10.1111/j.1462-5822.2008.01272.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234. doi:10.1073/pnas.96.20.11229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kendall MM, Sperandio V (2014) Cell-to-cell signaling in Escherichia coli and Salmonella. EcoSal Plus 6. doi:10.1128/ecosalplus.ESP-0002-2013

  120. Huse H, Whiteley M (2011) 4-Quinolones: smart phones of the microbial world. Chem Rev 111:152–159. doi:10.1021/cr100063u

    Article  CAS  PubMed  Google Scholar 

  121. Maseda H, Saito K, Nakajima A, Nakae T (2000) Variation of the mexT gene, a regulator of the MexEF-OrN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. FEMS Microbiol Lett 192:107–112. doi:10.1111/j.1574-6968.2000.tb09367.x

    Google Scholar 

  122. Fraser GM, Hughes C (1999) Swarming motility. Curr Opin Microbiol 2:630–635. doi:10.1016/S1369-5274(99)00033-8

    Article  CAS  PubMed  Google Scholar 

  123. Köhler T, Curty LK, Barja F, van Delden C, Pechere JC (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996. doi:10.1128/JB.182.21.5990-5996.2000

    Article  PubMed  PubMed Central  Google Scholar 

  124. Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lamarche MG, Deziel E (2011) MexEF-OprN efflux pump exports the Pseudomonas quinolone signal (PQS) precursor HHQ (4-hydroxy-2-heptylquinoline). PLoS One 6:e24310. doi:10.1371/journal.pone.0024310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182:2702–2708. doi:10.1128/JB.182.10.2702-2708.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Evans K, Passador L, Srikumar R, Tsang E, Nezezon J, Poole K (1998) Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J Bacteriol 180:5443–5447

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Minagawa S, Inami H, Kato T, Sawada S, Yasuki T, Miyairi S, Horikawa M, Okuda J et al (2012) RND type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication. BMC Microbiol 12:70. doi:10.1186/1471-2180-12-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Aendekerk S, Diggle SP, Song Z, Hoiby N, Cornelis P, Williams P, Camara M (2005) The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology 151:1113–1125. doi:10.1099/mic.0.27631-0

    Article  CAS  PubMed  Google Scholar 

  130. Chan YY, Bian HS, Tan TM, Mattmann ME, Geske GD, Igarashi J, Hatano T, Suga H et al (2007) Control of quorum sensing by a Burkholderia pseudomallei multidrug efflux pump. J Bacteriol 189:4320–4324. doi:10.1128/JB.00003-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chan YY, Chua KL (2005) The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence. J Bacteriol 187:4707–4719. doi:10.1128/JB.187.14.4707-4719.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mima T, Schweizer HP (2010) The BpeAB-OprB efflux pump of Burkholderia pseudomallei 1026b does not play a role in quorum sensing, virulence factor production, or extrusion of aminoglycosides but is a broad-spectrum drug efflux system. Antimicrob Agents Chemother 54:3113–3120. doi:10.1128/AAC.01803-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yang S, Lopez CR, Zechiedrich EL (2006) Quorum sensing and multidrug transporters in Escherichia coli. Proc Natl Acad Sci U S A 103:2386–2391. doi:10.1073/pnas.0502890102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. doi:10.1146/annurev.micro.55.1.165

    Article  CAS  PubMed  Google Scholar 

  135. Matsumura K, Furukawa S, Ogihara H, Morinaga Y (2011) Roles of multidrug efflux pumps on the biofilm formation of Escherichia coli K-12. Biocontrol Sci 16:69–72. doi:10.4265/bio.16.69

    Article  CAS  PubMed  Google Scholar 

  136. Baugh S, Ekanayaka AS, Piddock LJ, Webber MA (2012) Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm. J Antimicrob Chemother 67:2409–2417. doi:10.1093/jac/dks228

    Article  CAS  PubMed  Google Scholar 

  137. Baugh S, Phillips CR, Ekanayaka AS, Piddock LJ, Webber MA (2014) Inhibition of multidrug efflux as a strategy to prevent biofilm formation. J Antimicrob Chemother 69:673–681. doi:10.1093/jac/dkt420

    Article  CAS  PubMed  Google Scholar 

  138. Kvist M, Hancock V, Klemm P (2008) Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol 74:7376–7382. doi:10.1128/AEM.01310-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Beceiro A, Tomas M, Bou G (2013) Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 26:185–230. doi:10.1128/CMR.00059-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The views expressed in this chapter do not necessarily reflect those of the author’s affiliation, U.S. Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalya Baranova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baranova, N. (2016). Involvement of Antimicrobial Drug Efflux Systems in Bacterial Fitness and Virulence. In: Li, XZ., Elkins, C., Zgurskaya, H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham. https://doi.org/10.1007/978-3-319-39658-3_27

Download citation

Publish with us

Policies and ethics