Skip to main content

Antimicrobial Resistance and Drug Efflux Pumps in Helicobacter

  • Chapter
  • First Online:
Efflux-Mediated Antimicrobial Resistance in Bacteria

Abstract

Helicobacter spp. play important etiological roles in the pathogenesis of gastroenteric diseases such as in the case of Helicobacter pylori. Despite wild-type strains of H. pylori being generally susceptible to multiple antimicrobial agents, increasing prevalence of antimicrobial resistance in this species constitutes a key risk factor that affects the effective therapy of H. pylori infections. Resistance to anti-H. pylori agents is mainly mediated by multiple drug-specific mechanisms. However, drug efflux systems, represented by the Hef pumps of the resistance-nodulation-cell division superfamily, are implicated in both intrinsic and acquired multidrug resistance as well as in bile salt/nitrosative stress response and gastric colonization of these pathogens. This chapter provides an overview of antimicrobial resistance and mechanisms in Helicobacter with an emphasis on drug efflux systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunn BE, Cohen H, Blaser MJ (1997) Helicobacter pylori. Clin Microbiol Rev 10:720–741

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Polk DB, Peek RM Jr (2010) Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 10:403–414. doi:10.1038/nrc2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Correa P, Houghton J (2007) Carcinogenesis of Helicobacter pylori. Gastroenterology 133:659–672. doi:10.1053/j.gastro.2007.06.026

    Article  CAS  PubMed  Google Scholar 

  4. Lawson AJ (2011) Chapter 54. Helicobacter. In: Versalovic J (ed) Manual of clinical microbiology, vol 1, 10th edn. ASM Press, Washington, DC, pp 900–915

    Chapter  Google Scholar 

  5. Okoli AS, Menard A, Mendz GL (2009) Helicobacter spp. other than Helicobacter pylori. Helicobacter 14(Suppl 1):69–74. doi:10.1111/j.1523-5378.2009.00701.x

    Article  PubMed  Google Scholar 

  6. Rossi M, Hanninen ML (2012) Helicobacter spp. other than H. pylori. Helicobacter 17(Suppl 1):56–61. doi:10.1111/j.1523-5378.2012.00984.x

    Article  PubMed  Google Scholar 

  7. Segura-Lopez FK, Guitron-Cantu A, Torres J (2015) Association between Helicobacter spp. infections and hepatobiliary malignancies: a review. World J Gastroenterol 21:1414–1423. doi:10.3748/wjg.v21.i5.1414

    Article  PubMed  PubMed Central  Google Scholar 

  8. Goldman CG, Mitchell HM (2010) Helicobacter spp. other than Helicobacter pylori. Helicobacter 15(Suppl 1):69–75. doi:10.1111/j.1523-5378.2010.00780.x

    Article  PubMed  Google Scholar 

  9. Schulz C, Koch N, Schutte K, Pieper DH, Malfertheiner P (2015) H. pylori and its modulation of gastrointestinal microbiota. J Dig Dis 16:109–117. doi:10.1111/1751-2980.12233

    Article  PubMed  Google Scholar 

  10. Khosravi Y, Seow SW, Amoyo AA, Chiow KH, Tan TL, Wong WY, Poh QH, Sentosa IM et al (2015) Helicobacter pylori infection can affect energy modulating hormones and body weight in germ free mice. Sci Rep 5:8731. doi:10.1038/srep08731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li J, Butcher J, Mack D, Stintzi A (2015) Functional impacts of the intestinal microbiome in the pathogenesis of inflammatory bowel disease. Inflamm Bowel Dis 21:139–153. doi:10.1097/MIB.0000000000000215

    Article  CAS  PubMed  Google Scholar 

  12. Fock KM, Graham DY, Malfertheiner P (2013) Helicobacter pylori research: historical insights and future directions. Nat Rev Gastroenterol Hepatol 10:495–500. doi:10.1038/nrgastro.2013.96

    PubMed  PubMed Central  Google Scholar 

  13. Megraud F, Lehours P (2007) Helicobacter pylori detection and antimicrobial susceptibility testing. Clin Microbiol Rev 20:280–322. doi:10.1128/CMR.00033-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gisbert JP, Calvet X (2012) Review article: rifabutin in the treatment of refractory Helicobacter pylori infection. Aliment Pharmacol Ther 35:209–221. doi:10.1111/j.1365-2036.2011.04937.x

    Article  CAS  PubMed  Google Scholar 

  15. Kutschke A, de Jonge BL (2005) Compound efflux in Helicobacter pylori. Antimicrob Agents Chemother 49:3009–3010. doi:10.1128/AAC.49.7.3009-3010.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Co EM, Schiller NL (2006) Resistance mechanisms in an in vitro-selected amoxicillin-resistant strain of Helicobacter pylori. Antimicrob Agents Chemother 50:4174–4176. doi:10.1128/AAC.00759-06

    Google Scholar 

  17. Bina JE, Alm RA, Uria-Nickelsen M, Thomas SR, Trust TJ, Hancock RE (2000) Helicobacter pylori uptake and efflux: basis for intrinsic susceptibility to antibiotics in vitro. Antimicrob Agents Chemother 44:248–254. doi:10.1128/AAC.44.2.248-254.2000

    Google Scholar 

  18. Yang JC, Lee PI, Hsueh PR (2010) In vitro activity of nemonoxacin, tigecycline, and other antimicrobial agents against Helicobacter pylori isolates in Taiwan, 1998–2007. Eur J Clin Microbiol Infect Dis 29:1369–1375. doi:10.1007/s10096-010-1009-9

    Google Scholar 

  19. Francesco VD, Zullo A, Hassan C, Giorgio F, Rosania R, Ierardi E (2011) Mechanisms of Helicobacter pylori antibiotic resistance: an updated appraisal. World J Gastrointest Pathophysiol 2:35–41. doi:10.4291/wjgp.v2.i3.35

    Article  PubMed  PubMed Central  Google Scholar 

  20. Binh TT, Shiota S, Suzuki R, Matsuda M, Trang TT, Kwon DH, Iwatani S, Yamaoka Y (2014) Discovery of novel mutations for clarithromycin resistance in Helicobacter pylori by using next-generation sequencing. J Antimicrob Chemother 69:1796–1803. doi:10.1093/jac/dku050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Taylor DE (2000) Pathophysiology of antibiotic resistance: clarithromycin. Can J Gastroenterol 14:891–894

    Article  CAS  PubMed  Google Scholar 

  22. Haas CE, Nix DE, Schentag JJ (1990) In vitro selection of resistant Helicobacter pylori. Antimicrob Agents Chemother 34:1637–1641. doi:10.1128/AAC.34.9.1637

    Google Scholar 

  23. Heep M, Beck D, Bayerdorffer E, Lehn N (1999) Rifampin and rifabutin resistance mechanism in Helicobacter pylori. Antimicrob Agents Chemother 43:1497–1499

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nishizawa T, Suzuki H, Matsuzaki J, Muraoka H, Tsugawa H, Hirata K, Hibi T (2011) Helicobacter pylori resistance to rifabutin in the last 7 years. Antimicrob Agents Chemother 55:5374–5375. doi:10.1128/AAC.05437-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gerrits MM, de Zoete MR, Arents NL, Kuipers EJ, Kusters JG (2002) 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Antimicrob Agents Chemother 46:2996–3000. doi:10.1128/AAC.46.9.2996-3000.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoffman PS, Bruce AM, Olekhnovich I, Warren CA, Burgess SL, Hontecillas R, Viladomiu M, Bassaganya-Riera J et al (2014) Preclinical studies of amixicile, a systemic therapeutic developed for treatment of Clostridium difficile infections that also shows efficacy against Helicobacter pylori. Antimicrob Agents Chemother 58:4703–4712. doi:10.1128/AAC.03112-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chiu HC, Lin TL, Yang JC, Wang JT (2009) Synergistic effect of imp/ostA and msbA in hydrophobic drug resistance of Helicobacter pylori. BMC Microbiol 9:136. doi:10.1186/1471-2180-9-136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Belzer C, Stoof J, Breijer S, Kusters JG, Kuipers EJ, van Vliet AH (2009) The Helicobacter hepaticus hefA gene is involved in resistance to amoxicillin. Helicobacter 14:72–79. doi:10.1111/j.1523-5378.2009.00661.x

    Article  CAS  PubMed  Google Scholar 

  29. Megraud F, Marshall BJ (2000) How to treat Helicobacter pylori. First-line, second-line, and future therapies. Gastroenterol Clin North Am 29:759–773. doi:10.1016/S0889-8553(05)70145-X

    Google Scholar 

  30. Wannmacher L (2011) Review of the evidence for H. pylori treatment regimens. (The 18th Expert Committee on the Selection and Use of Essential Medicines. March 21–25, 2011) http://www.who.int/selection_medicines/committees/expert/18/applications/Review_171.pdf. Accessed 12 Mar 2016

  31. Xie C, Lu NH (2015) Review: clinical management of Helicobacter pylori infection in China. Helicobacter 20:1–10. doi:10.1111/hel.12178

    Article  PubMed  CAS  Google Scholar 

  32. Matsuzaki J, Suzuki H, Nishizawa T, Hirata K, Tsugawa H, Saito Y, Okada S, Fukuhara S et al (2012) Efficacy of sitafloxacin-based rescue therapy for Helicobacter pylori after failures of first- and second-line therapies. Antimicrob Agents Chemother 56:1643–1645. doi:10.1128/AAC.05941-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hirata Y, Ohmae T, Yanai A, Sakitani K, Hayakawa Y, Yoshida S, Sugimoto T, Mitsuno Y et al (2012) Sitafloxacin resistance in Helicobacter pylori isolates and sitafloxacin-based triple therapy as a third-line regimen in Japan. Int J Antimicrob Agents 39:352–355. doi:10.1016/j.ijantimicag.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Wang H, Lv Z, Wang Y, Wang B, Xie Y, Zhou X, Lv N (2015) Rescue therapy with a proton pump inhibitor plus amoxicillin and rifabutin for Helicobacter pylori infection: a systematic review and meta-analysis. Gastroenterol Res Pract 2015:415648. doi:10.1155/2015/415648

    PubMed  PubMed Central  Google Scholar 

  35. Zhang Y, Gao W, Cheng H, Zhang X, Hu F (2014) Tetracycline- and furazolidone-containing quadruple regimen as rescue treatment for Helicobacter pylori infection: a single center retrospective study. Helicobacter 19:382–386. doi:10.1111/hel.12143

    Article  CAS  PubMed  Google Scholar 

  36. Megraud F (2001) Resistance of Helicobacter pylori to antibiotics and its impact on treatment options. Drug Resist Updat 4:178–186. doi:10.1054/drup.2001.0203

    Article  CAS  PubMed  Google Scholar 

  37. Alfizah H, Norazah A, Hamizah R, Ramelah M (2014) Resistotype of Helicobacter pylori isolates: the impact on eradication outcome. J Med Microbiol 63:703–709. doi:10.1099/jmm.0.069781-0

    CAS  PubMed  Google Scholar 

  38. Draeger S, Wuppenhorst N, Kist M, Glocker EO (2015) Outcome of second- and third-line Helicobacter pylori eradication therapies based on antimicrobial susceptibility testing. J Antimicrob Chemother 70:3141–3145. doi:10.1093/jac/dkv223

    Article  CAS  PubMed  Google Scholar 

  39. Wu IT, Chuah SK, Lee CH, Liang CM, Lu LS, Kuo YH, Yen YH, Hu ML et al (2015) Five-year sequential changes in secondary antibiotic resistance of Helicobacter pylori in Taiwan. World J Gastroenterol 21:10669–10674. doi:10.3748/wjg.v21.i37.10669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Romano M, Iovene MR, Russo MI, Rocco A, Salerno R, Cozzolino D, Pilloni AP, Tufano MA et al (2008) Failure of first-line eradication treatment significantly increases prevalence of antimicrobial-resistant Helicobacter pylori clinical isolates. J Clin Pathol 61:1112–1115. doi:10.1136/jcp.2008.060392

    Article  CAS  PubMed  Google Scholar 

  41. Nishizawa T, Suzuki H, Tsugawa H, Muraoka H, Matsuzaki J, Hirata K, Ikeda F, Takahashi M et al (2011) Enhancement of amoxicillin resistance after unsuccessful Helicobacter pylori eradication. Antimicrob Agents Chemother 55:3012–3014. doi:10.1128/AAC.00188-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nishizawa T, Suzuki H (2014) Mechanisms of Helicobacter pylori antibiotic resistance and molecular testing. Front Mol Biosci 1:19. doi:10.3389/fmolb.2014.00019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Megraud F, Coenen S, Versporten A, Kist M, Lopez-Brea M, Hirschl AM, Andersen LP, Goossens H et al (2013) Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut 62:34–42. doi:10.1136/gutjnl-2012-302254

    Article  CAS  PubMed  Google Scholar 

  44. Sun QJ, Liang X, Zheng Q, Gu WQ, Liu WZ, Xiao SD, Lu H (2010) Resistance of Helicobacter pylori to antibiotics from 2000 to 2009 in Shanghai. World J Gastroenterol 16:5118–5121. doi:10.3748/wjg.v16.i40.5118

    Article  PubMed  PubMed Central  Google Scholar 

  45. Su P, Li Y, Li H, Zhang J, Lin L, Wang Q, Guo F, Ji Z et al (2013) Antibiotic resistance of Helicobacter pylori isolated in the southeast coastal region of China. Helicobacter 18:274–279. doi:10.1111/hel.12046

    Article  PubMed  Google Scholar 

  46. Glocker E, Bogdan C, Kist M (2007) Characterization of rifampicin-resistant clinical Helicobacter pylori isolates from Germany. J Antimicrob Chemother 59:874–879. doi:10.1093/jac/dkm039

    Article  CAS  PubMed  Google Scholar 

  47. Wueppenhorst N, Stueger HP, Kist M, Glocker E (2009) Identification and molecular characterization of triple- and quadruple-resistant Helicobacter pylori clinical isolates in Germany. J Antimicrob Chemother 63:648–653. doi:10.1093/jac/dkp003

    Article  CAS  PubMed  Google Scholar 

  48. Lee JW, Kim N, Nam RH, Kim JM, Park JY, Lee SM, Kim JS, Lee DH et al (2015) High antimicrobial efficacy of finafloxacin on Helicobacter pylori isolates at pH 5.0 compared with those of other fluoroquinolones. Antimicrob Agents Chemother 59:7629–7636. doi:10.1128/AAC.01467-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boyanova L, Evstatiev I, Gergova G, Yaneva P, Mitov I (2015) Linezolid susceptibility in Helicobacter pylori, including strains with multidrug resistance. Int J Antimicrob Agents 46:703–706. doi:10.1016/j.ijantimicag.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  50. El-Halfawy OM, Valvano MA (2015) Antimicrobial heteroresistance: an emerging field in need of clarity. Clin Microbiol Rev 28:191–207. doi:10.1128/CMR.00058-14

    Article  PubMed  PubMed Central  Google Scholar 

  51. Matteo MJ, Granados G, Olmos M, Wonaga A, Catalano M (2008) Helicobacter pylori amoxicillin heteroresistance due to point mutations in PBP-1A in isogenic isolates. J Antimicrob Chemother 61:474–477. doi:10.1093/jac/dkm504

    Article  CAS  PubMed  Google Scholar 

  52. Kao CY, Lee AY, Huang AH, Song PY, Yang YJ, Sheu SM, Chang WL, Sheu BS et al (2014) Heteroresistance of Helicobacter pylori from the same patient prior to antibiotic treatment. Infect Genet Evol 23:196–202. doi:10.1016/j.meegid.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  53. Matteo MJ, Perez CV, Domingo MR, Olmos M, Sanchez C, Catalano M (2006) DNA sequence analysis of rdxA and frxA from paired metronidazole-sensitive and -resistant Helicobacter pylori isolates obtained from patients with heteroresistance. Int J Antimicrob Agents 27:152–158. doi:10.1016/j.ijantimicag.2005.09.019

    Article  CAS  PubMed  Google Scholar 

  54. Jakobsson HE, Jernberg C, Andersson AF, Sjolund-Karlsson M, Jansson JK, Engstrand L (2010) Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 5:e9836. doi:10.1371/journal.pone.0009836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sjolund M, Wreiber K, Andersson DI, Blaser MJ, Engstrand L (2003) Long-term persistence of resistant Enterococcus species after antibiotics to eradicate Helicobacter pylori. Ann Intern Med 139:483–487. doi:10.7326/0003-4819-139-6-200309160-00011

    Article  PubMed  Google Scholar 

  56. Gaddy JA, Radin JN, Cullen TW, Chazin WJ, Skaar EP, Trent MS, Algood HM (2015) Helicobacter pylori resists the antimicrobial activity of calprotectin via lipid A modification and associated biofilm formation. mBio 6:e01349–15. doi:10.1128/mBio.01349-15

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang G, Wilson TJ, Jiang Q, Taylor DE (2001) Spontaneous mutations that confer antibiotic resistance in Helicobacter pylori. Antimicrob Agents Chemother 45:727–733. doi:10.1128/AAC.45.3.727-733.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. DeLoney CR, Schiller NL (1999) Competition of various β-lactam antibiotics for the major penicillin-binding proteins of Helicobacter pylori: antibacterial activity and effects on bacterial morphology. Antimicrob Agents Chemother 43:2702–2709

    CAS  PubMed  PubMed Central  Google Scholar 

  59. DeLoney CR, Schiller NL (2000) Characterization of an in vitro-selected amoxicillin-resistant strain of Helicobacter pylori. Antimicrob Agents Chemother 44:3368–3373. doi:10.1128/AAC.44.12.3368-3373.2000

    Google Scholar 

  60. Tseng YS, Wu DC, Chang CY, Kuo CH, Yang YC, Jan CM, Su YC, Kuo FC et al (2009) Amoxicillin resistance with β-lactamase production in Helicobacter pylori. Eur J Clin Invest 39:807–812. doi:10.1111/j.1365-2362.2009.02166.x

    Article  CAS  PubMed  Google Scholar 

  61. Qureshi NN, Gallaher B, Schiller NL (2014) Evolution of amoxicillin resistance of Helicobacter pylori in vitro: characterization of resistance mechanisms. Microb Drug Resist 20:509–516. doi:10.1089/mdr.2014.0019

    Article  CAS  PubMed  Google Scholar 

  62. Versalovic J, Shortridge D, Kibler K, Griffy MV, Beyer J, Flamm RK, Tanaka SK, Graham DY et al (1996) Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrob Agents Chemother 40:477–480

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Occhialini A, Urdaci M, Doucet-Populaire F, Bebear CM, Lamouliatte H, Megraud F (1997) Macrolide resistance in Helicobacter pylori: rapid detection of point mutations and assays of macrolide binding to ribosomes. Antimicrob Agents Chemother 41:2724–2728

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Agudo S, Perez-Perez G, Alarcon T, Lopez-Brea M (2010) High prevalence of clarithromycin-resistant Helicobacter pylori strains and risk factors associated with resistance in Madrid, Spain. J Clin Microbiol 48:3703–3707. doi:10.1128/JCM.00144-10

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hirata K, Suzuki H, Nishizawa T, Tsugawa H, Muraoka H, Saito Y, Matsuzaki J, Hibi T (2010) Contribution of efflux pumps to clarithromycin resistance in Helicobacter pylori. J Gastroenterol Hepatol 25(Suppl 1):S75–S79. doi:10.1111/j.1440-1746.2009.06220.x

    Article  CAS  PubMed  Google Scholar 

  66. Kwon DH, Lee M, Kim JJ, Kim JG, El-Zaatari FA, Osato MS, Graham DY (2001) Furazolidone- and nitrofurantoin-resistant Helicobacter pylori: prevalence and role of genes involved in metronidazole resistance. Antimicrob Agents Chemother 45:306–308. doi:10.1128/AAC.45.1.306-308.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chatterjee SN, Ghose S, Maiti M (1977) Cross linking of deoxyribonucleic acid in furazolidone treated Vibrio cholerae cell. Biochem Pharmacol 26:1453–1454. doi:10.1016/0006-2952(77)90377-X

    Article  CAS  PubMed  Google Scholar 

  68. Martinez-Puchol S, Gomes C, Pons MJ, Ruiz-Roldan L, Torrents de la Pena A, Ochoa TJ, Ruiz J (2015) Development and analysis of furazolidone-resistant Escherichia coli mutants. APMIS 123:676–681. doi:10.1111/apm.12401

    Article  CAS  PubMed  Google Scholar 

  69. Su Z, Xu H, Zhang C, Shao S, Li L, Wang H, Wang H, Qiu G (2006) Mutations in Helicobacter pylori porD and oorD genes may contribute to furazolidone resistance. Croat Med J 47:410–415

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rimbara E, Noguchi N, Kawai T, Sasatsu M (2012) Fluoroquinolone resistance in Helicobacter pylori: role of mutations at position 87 and 91 of GyrA on the level of resistance and identification of a resistance conferring mutation in GyrB. Helicobacter 17:36–42. doi:10.1111/j.1523-5378.2011.00912.x

    Article  CAS  PubMed  Google Scholar 

  71. Suzuki H, Nishizawa T, Muraoka H, Hibi T (2009) Sitafloxacin and garenoxacin may overcome the antibiotic resistance of Helicobacter pylori with gyrA mutation. Antimicrob Agents Chemother 53:1720–1721. doi:10.1128/AAC.00049-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Tsugawa H, Suzuki H, Muraoka H, Ikeda F, Hirata K, Matsuzaki J, Saito Y, Hibi T (2011) Enhanced bacterial efflux system is the first step to the development of metronidazole resistance in Helicobacter pylori. Biochem Biophys Res Commun 404:656–660. doi:10.1016/j.bbrc.2010.12.034

    Article  CAS  PubMed  Google Scholar 

  73. Masaoka H, Suzuki H, Kurabayashi K, Nomoto Y, Nishizawa T, Mori M, Hibi T (2006) Could frameshift mutations in the frxA and rdxA genes of Helicobacter pylori be a marker for metronidazole resistance? Aliment Pharmacol Ther 24:81–87. doi:10.1111/j.1746-6342.2006.00029.x

    Article  Google Scholar 

  74. Tsugawa H, Suzuki H, Satoh K, Hirata K, Matsuzaki J, Saito Y, Suematsu M, Hibi T (2011) Two amino acids mutation of ferric uptake regulator determines Helicobacter pylori resistance to metronidazole. Antioxid Redox Signal 14:15–23. doi:10.1089/ars.2010.3146

    Article  CAS  PubMed  Google Scholar 

  75. Hoffman PS, Goodwin A, Johnsen J, Magee K, Veldhuyzen van Zanten SJ (1996) Metabolic activities of metronidazole-sensitive and -resistant strains of Helicobacter pylori: repression of pyruvate oxidoreductase and expression of isocitrate lyase activity correlate with resistance. J Bacteriol 178:4822–4829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Heep M, Odenbreit S, Beck D, Decker J, Prohaska E, Rieger U, Lehn N (2000) Mutations at four distinct regions of the rpoB gene can reduce the susceptibility of Helicobacter pylori to rifamycins. Antimicrob Agents Chemother 44:1713–1715. doi:10.1128/AAC.44.6.1713-1715.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Suzuki S, Suzuki H, Nishizawa T, Kaneko F, Ootani S, Muraoka H, Saito Y, Kobayashi I et al (2009) Past rifampicin dosing determines rifabutin resistance of Helicobacter pylori. Digestion 79:1–4. doi:10.1159/000191204

    Article  CAS  PubMed  Google Scholar 

  78. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260. doi:10.1128/MMBR.65.2.232-260.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kwon DH, Kim JJ, Lee M, Yamaoka Y, Kato M, Osato MS, El-Zaatari FA, Graham DY (2000) Isolation and characterization of tetracycline-resistant clinical isolates of Helicobacter pylori. Antimicrob Agents Chemother 44:3203–3205. doi:10.1128/AAC.44.11.3203-3205.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Trieber CA, Taylor DE (2002) Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. J Bacteriol 184:2131–2140. doi:10.1128/JB.184.8.2131-2140.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Toledo H, Lopez-Solis R (2010) Tetracycline resistance in Chilean clinical isolates of Helicobacter pylori. J Antimicrob Chemother 65:470–473. doi:10.1093/jac/dkp457

    Article  CAS  PubMed  Google Scholar 

  82. Khan R, Nahar S, Mukhopadhyay AK, Berg DE, Ahmad MM, Okamoto K, Nair GB, Rahman M (2008) Isolation of tetracycline-resistant clinical Helicobacter pylori without mutations in 16S rRNA gene in Bangladesh. Microbiol Imunol 52:508–511. doi:10.1111/j.1348-0421.2008.00062.x

    Article  CAS  Google Scholar 

  83. Li Y, Dannelly HK (2006) Inactivation of the putative tetracycline resistance gene HP1165 in Helicobacter pylori led to loss of inducible tetracycline resistance. Arch Microbiol 185:255–262. doi:10.1007/s00203-006-0093-9

    Article  CAS  PubMed  Google Scholar 

  84. Anoushiravani M, Falsafi T, Niknam V (2009) Proton motive force-dependent efflux of tetracycline in clinical isolates of Helicobacter pylori. J Med Microbiol 58:1309–1313. doi:10.1099/jmm.0.010876-0

    Article  CAS  PubMed  Google Scholar 

  85. Paul R, Postius S, Melchers K, Schafer KP (2001) Mutations of the Helicobacter pylori genes rdxA and pbp1 cause resistance against metronidazole and amoxicillin. Antimicrob Agents Chemother 45:962–965. doi:10.1128/AAC.45.3.962-965.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mittl PR, Luthy L, Hunziker P, Grutter MG (2000) The cysteine-rich protein A from Helicobacter pylori is a β-lactamase. J Biol Chem 275:17693–17699. doi:10.1074/jbc.M001869200

    Article  CAS  PubMed  Google Scholar 

  87. Deml L, Aigner M, Decker J, Eckhardt A, Schutz C, Mittl PR, Barabas S, Denk S et al (2005) Characterization of the Helicobacter pylori cysteine-rich protein A as a T-helper cell type 1 polarizing agent. Infect Immun 73:4732–4742. doi:10.1128/IAI.73.8.4732-4742.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dumrese C, Slomianka L, Ziegler U, Choi SS, Kalia A, Fulurija A, Lu W, Berg DE et al (2009) The secreted Helicobacter cysteine-rich protein A causes adherence of human monocytes and differentiation into a macrophage-like phenotype. FEBS Lett 583:1637–1643. doi:10.1016/j.febslet.2009.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kwon DH, Dore MP, Kim JJ, Kato M, Lee M, Wu JY, Graham DY (2003) High-level β-lactam resistance associated with acquired multidrug resistance in Helicobacter pylori. Antimicrob Agents Chemother 47:2169–2178. doi:10.1128/AAC.47.7.2169-2178.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nikaido H (1989) Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother 33:1831–1836. doi:10.1128/AAC.33.11.1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eng NF, Ybazeta G, Chapman K, Fraleigh NL, Letto R, Altman E, Diaz-Mitoma F (2015) Antimicrobial susceptibility of Canadian isolates of Helicobacter pylori in Northeastern Ontario. Can J Infect Dis Med Microbiol 26:137–144. doi:10.1155/2015/853287

    Google Scholar 

  92. Iwamoto A, Tanahashi T, Okada R, Yoshida Y, Kikuchi K, Keida Y, Murakami Y, Yang L et al (2014) Whole-genome sequencing of clarithromycin resistant Helicobacter pylori characterizes unidentified variants of multidrug resistant efflux pump genes. Gut Pathog 6:27. doi:10.1186/1757-4749-6-27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Li X-Z, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623. doi:10.2165/11317030-000000000-00000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li X-Z, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418. doi:10.1128/CMR.00117-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kwon DH, Kato M, El-Zaatari FA, Osato MS, Graham DY (2000) Frame-shift mutations in NAD(P)H flavin oxidoreductase encoding gene (frxA) from metronidazole resistant Helicobacter pylori ATCC43504 and its involvement in metronidazole resistance. FEMS Microbiol Lett 188:197–202. doi:10.1111/j.1574-6968.2000.tb09193.x

    Article  CAS  PubMed  Google Scholar 

  96. Jeong JY, Mukhopadhyay AK, Akada JK, Dailidiene D, Hoffman PS, Berg DE (2001) Roles of FrxA and RdxA nitroreductases of Helicobacter pylori in susceptibility and resistance to metronidazole. J Bacteriol 183:5155–5162. doi:10.1128/JB.183.17.5155-5162.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Binh TT, Suzuki R, Trang TT, Kwon DH, Yamaoka Y (2015) Search for novel candidate mutations for metronidazole resistance in Helicobacter pylori using next-generation sequencing. Antimicrob Agents Chemother 59:2343–2348. doi:10.1128/AAC.04852-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gerrits MM, van der Wouden EJ, Bax DA, van Zwet AA, van Vliet AH, de Jong A, Kusters JG, Thijs JC et al (2004) Role of the rdxA and frxA genes in oxygen-dependent metronidazole resistance of Helicobacter pylori. J Med Microbiol 53:1123–1128. doi:10.1099/jmm.0.45701-0

    Article  CAS  PubMed  Google Scholar 

  99. Whiteway J, Koziarz P, Veall J, Sandhu N, Kumar P, Hoecher B, Lambert IB (1998) Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli. J Bacteriol 180:5529–5539

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nonaka L, Connell SR, Taylor DE (2005) 16S rRNA mutations that confer tetracycline resistance in Helicobacter pylori decrease drug binding in Escherichia coli ribosomes. J Bacteriol 187:3708–3712. doi:10.1128/JB.187.11.3708-3712.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dailidiene D, Bertoli MT, Miciuleviciene J, Mukhopadhyay AK, Dailide G, Pascasio MA, Kupcinskas L, Berg DE (2002) Emergence of tetracycline resistance in Helicobacter pylori: multiple mutational changes in 16S ribosomal DNA and other genetic loci. Antimicrob Agents Chemother 46:3940–3946. doi:10.1128/AAC.46.12.3940-3946.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lawson AJ, Elviss NC, Owen RJ (2005) Real-time PCR detection and frequency of 16S rDNA mutations associated with resistance and reduced susceptibility to tetracycline in Helicobacter pylori from England and Wales. J Antimicrob Chemother 56:282–286. doi:10.1093/jac/dki199

    Article  CAS  PubMed  Google Scholar 

  103. Cambau E, Allerheiligen V, Coulon C, Corbel C, Lascols C, Deforges L, Soussy CJ, Delchier JC et al (2009) Evaluation of a new test, genotype HelicoDR, for molecular detection of antibiotic resistance in Helicobacter pylori. J Clin Microbiol 47:3600–3607. doi:10.1128/JCM.00744-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee JW, Kim N, Nam RH, Park JH, Choi YJ, Kim JM, Kim JS, Jung HC (2014) GenoType HelicoDR test in the determination of antimicrobial resistance of Helicobacter pylori in Korea. Scand J Gastroenterol 49:1058–1067. doi:10.3109/00365521.2014.894117

    Article  CAS  PubMed  Google Scholar 

  105. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP et al (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547. doi:10.1038/41483

    Article  CAS  PubMed  Google Scholar 

  106. Morita Y, Tomida J, Kawamura Y (2012) Multidrug efflux systems in Helicobacter cinaedi. Antibiotics 1:29–43. doi:10.3390/antibiotics1010029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liechti G, Goldberg JB (2012) Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and Helicobacter pylori: paradigm deviations in H. pylori. Front Cell Infect Microbiol 2:29. doi:10.3389/fcimb.2012.00029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Suerbaum S, Josenhans C, Sterzenbach T, Drescher B, Brandt P, Bell M, Droge M, Fartmann B et al (2003) The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus. Proc Natl Acad Sci U S A 100:7901–7906. doi:10.1073/pnas.1332093100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Arnold IC, Zigova Z, Holden M, Lawley TD, Rad R, Dougan G, Falkow S, Bentley SD et al (2011) Comparative whole genome sequence analysis of the carcinogenic bacterial model pathogen Helicobacter felis. Genome Biol Evol 3:302–308. doi:10.1093/gbe/evr022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Goto T, Ogura Y, Hirakawa H, Tomida J, Morita Y, Akaike T, Hayashi T, Kawamura Y (2012) Complete genome sequence of Helicobacter cinaedi strain PAGU611, isolated in a case of human bacteremia. J Bacteriol 194:3744–3745. doi:10.1128/JB.00645-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bina J, Bains M, Hancock RE (2000) Functional expression in Escherichia coli and membrane topology of porin HopE, a member of a large family of conserved proteins in Helicobacter pylori. J Bacteriol 182:2370–2375. doi:10.1128/JB.182.9.2370-2375.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. van Amsterdam K, Bart A, van der Ende A (2005) A Helicobacter pylori TolC efflux pump confers resistance to metronidazole. Antimicrob Agents Chemother 49:1477–1482. doi:10.1128/AAC.49.4.1477-1482.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Stahler FN, Odenbreit S, Haas R, Wilrich J, Van Vliet AH, Kusters JG, Kist M, Bereswill S (2006) The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. Infect Immun 74:3845–3852. doi:10.1128/IAI.02025-05

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Waidner B, Melchers K, Ivanov I, Loferer H, Bensch KW, Kist M, Bereswill S (2002) Identification by RNA profiling and mutational analysis of the novel copper resistance determinants CrdA (HP1326), CrdB (HP1327), and CzcB (HP1328) in Helicobacter pylori. J Bacteriol 184:6700–6708. doi:10.1128/JB.184.23.6700-6708.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Morrison S, Ward A, Hoyle CJ, Henderson PJ (2003) Cloning, expression, purification and properties of a putative multidrug resistance efflux protein from Helicobacter pylori. Int J Antimicrob Agents 22:242–249. doi:10.1016/S0924-8579(03)00222-X

    Article  CAS  PubMed  Google Scholar 

  116. Herrmann L, Schwan D, Garner R, Mobley HL, Haas R, Schafer KP, Melchers K (1999) Helicobacter pylori cadA encodes an essential Cd(II)-Zn(II)-Co(II) resistance factor influencing urease activity. Mol Microbiol 33:524–536. doi:10.1046/j.1365-2958.1999.01496.x

    Article  CAS  PubMed  Google Scholar 

  117. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656. doi:10.1128/MMBR.67.4.593-656.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Snelling WJ, Moran AP, Ryan KA, Scully P, McGourty K, Cooney JC, Annuk H, O’Toole PW (2007) HorB (HP0127) is a gastric epithelial cell adhesion. Helicobacter 12:200–209. doi:10.1111/j.1523-5378.2007.00499.x

    Article  CAS  PubMed  Google Scholar 

  119. Odenbreit S, Swoboda K, Barwig I, Ruhl S, Boren T, Koletzko S, Haas R (2009) Outer membrane protein expression profile in Helicobacter pylori clinical isolates. Infect Immun 77:3782–3790. doi:10.1128/IAI.00364-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Exner MM, Doig P, Trust TJ, Hancock RE (1995) Isolation and characterization of a family of porin proteins from Helicobacter pylori. Infect Immun 63:1567–1572

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Doig P, Exner MM, Hancock RE, Trust TJ (1995) Isolation and characterization of a conserved porin protein from Helicobacter pylori. J Bacteriol 177:5447–5452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang XP, Wang WH, Tian Y, Gao W, Li J (2009) Aspirin increases susceptibility of Helicobacter pylori to metronidazole by augmenting endocellular concentrations of antimicrobials. World J Gastroenterol 15:919–926. doi:10.3748/wjg.15.919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Abe S, Okutsu T, Nakajima H, Kakuda N, Ohtsu I, Aono R (2003) n-Hexane sensitivity of Escherichia coli due to low expression of imp/ostA encoding an 87 kDa minor protein associated with the outer membrane. Microbiology 149:1265–1273. doi:10.1099/mic.0.25927-0

    Article  CAS  PubMed  Google Scholar 

  124. Waidner B, Melchers K, Stahler FN, Kist M, Bereswill S (2005) The Helicobacter pylori CrdRS two-component regulation system (HP1364/HP1365) is required for copper-mediated induction of the copper resistance determinant CrdA. J Bacteriol 187:4683–4688. doi:10.1128/JB.187.13.4683-4688.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hung CL, Cheng HH, Hsieh WC, Tsai ZT, Tsai HK, Chu CH, Hsieh WP, Chen YF et al (2015) The CrdRS two-component system in Helicobacter pylori responds to nitrosative stress. Mol Microbiol 97:1128–1141. doi:10.1111/mmi.13089

    Article  CAS  PubMed  Google Scholar 

  126. Liu ZQ, Zheng PY, Yang PC (2008) Efflux pump gene hefA of Helicobacter pylori plays an important role in multidrug resistance. World J Gastroenterol 14:5217–5222. doi:10.3748/wjg.14.5217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Trainor EA, Horton KE, Savage PB, Testerman TL, McGee DJ (2011) Role of the HefC efflux pump in Helicobacter pylori cholesterol-dependent resistance to ceragenins and bile salts. Infect Immun 79:88–97. doi:10.1128/IAI.00974-09

    Article  CAS  PubMed  Google Scholar 

  128. Huang YQ, Huang GR, Wu MH, Tang HY, Huang ZS, Zhou XH, Yu WQ, Su JW et al (2015) Inhibitory effects of emodin, baicalin, schizandrin and berberine on hefA gene: treatment of Helicobacter pylori-induced multidrug resistance. World J Gastroenterol 21:4225–4231. doi:10.3748/wjg.v21.i14.4225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mehrabadi JF, Sirous M, Daryani NE, Eshraghi S, Akbari B, Shirazi MH (2011) Assessing the role of the RND efflux pump in metronidazole resistance of Helicobacter pylori by RT-PCR assay. J Infect Dev Ctries 5:88–93. doi:10.3855/jidc.1187

    Article  PubMed  Google Scholar 

  130. Yonezawa H, Osaki T, Hanawa T, Kurata S, Ochiai K, Kamiya S (2013) Impact of Helicobacter pylori biofilm formation on clarithromycin susceptibility and generation of resistance mutations. PLoS One 8:e73301. doi:10.1371/journal.pone.0073301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Weeks DL, Eskandari S, Scott DR, Sachs G (2000) A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287:482–485. doi:10.1126/science.287.5452.482

    Article  CAS  PubMed  Google Scholar 

  132. Zhang Y, Xiao M, Horiyama T, Zhang Y, Li X, Nishino K, Yan A (2011) The multidrug efflux pump MdtEF protects against nitrosative damage during the anaerobic respiration in Escherichia coli. J Biol Chem 286:26576–26584. doi:10.1074/jbc.M111.243261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fetar H, Gilmour C, Klinoski R, Daigle DM, Dean CR, Poole K (2011) mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother 55:508–514. doi:10.1128/AAC.00830-10

    Article  CAS  PubMed  Google Scholar 

  134. Srinivasan VB, Mondal A, Venkataramaiah M, Chauhan NK, Rajamohan G (2013) Role of OxyRKP, a novel LysR-family transcriptional regulator, in antimicrobial resistance and virulence in Klebsiella pneumoniae. Microbiology 159:1301–1314. doi:10.1099/mic.0.065052-0

    Article  CAS  PubMed  Google Scholar 

  135. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE (1995) Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 16:45–55. doi:10.1111/j.1365-2958.1995.tb02390.x

    Article  CAS  PubMed  Google Scholar 

  136. Lin J, Cagliero C, Guo B, Barton YW, Maurel MC, Payot S, Zhang Q (2005) Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J Bacteriol 187:7417–7424. doi:10.1128/JB.187.21.7417-7424.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang Z, Liu ZQ, Zheng PY, Tang FA, Yang PC (2010) Influence of efflux pump inhibitors on the multidrug resistance of Helicobacter pylori. World J Gastroenterol 16:1279–1284. doi:10.3748/wjg.v16.i10.1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Falsafi T, Ehsani A, Niknam V (2009) The role of active efflux in antibiotic – resistance of clinical isolates of Helicobacter pylori. Indian J Med Microbiol 27:335–340. doi:10.4103/0255-0857.55452

    Article  CAS  PubMed  Google Scholar 

  139. Aeschlimann JR, Kaatz GW, Rybak MJ (1999) The effects of NorA inhibition on the activities of levofloxacin, ciprofloxacin and norfloxacin against two genetically related strains of Staphylococcus aureus in an in-vitro infection model. J Antimicrob Chemother 44:343–349. doi:10.1093/jac/44.3.343

    Google Scholar 

  140. Yang Y, Chua KL (2013) Assessment of the effect of efflux pump inhibitors on in vitro antimicrobial susceptibility of multidrug-resistant Acinetobacter baumannii. Int J Antimicrob Agents 42:283–284. doi:10.1016/j.ijantimicag.2013.05.011

    Google Scholar 

  141. De Milito A, Fais S (2005) Tumor acidity, chemoresistance and proton pump inhibitors. Future Oncol 1:779–786. doi:10.2217/14796694.1.6.779

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The views expressed in this chapter do not necessarily reflect those of Xian-Zhi Li’s affiliation, Health Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Zhi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, J., Li, XZ. (2016). Antimicrobial Resistance and Drug Efflux Pumps in Helicobacter . In: Li, XZ., Elkins, C., Zgurskaya, H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham. https://doi.org/10.1007/978-3-319-39658-3_19

Download citation

Publish with us

Policies and ethics